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Plant Competition and
Its Course Through Time

Michael J. Hutchings and Christopher S. J. Budd

Mean plant weight and density in competing populations can be related using the
competition-density effect and recipracal equations, and the —3/2 power law. Ap-
plication of these equations, their interrelationships, and conditions under which
their properties alter or fail to apply are discussed. Their importance in teaching
ecology is briefly considered. (Accepted for publication 20 February 1981)

General statements in ecology are usu-
ally of a qualitative nature; the variety of
organisms, habitats, and limiting factors
in the environment preclude precise
quantitative expression of biolagical
phenomena. When an ecological phe-
nomenon can be expressed mathemati-
cally, it is often more important to under-
stand the implications of the expression,
rather than its derivation.

There has been widespread interest in
mathematical expressions describing the
relationships between mean weight and
density in populations of competing
plants—the so-called —3/2 power law
and its associated equations. Misunder-
standing these equations and their full
implications by many university under-
graduates specializing in ecology may be
due to their limited mathematical back-
ground and the fact that no single re-
search paper has provided a suitable
comprehensive treatment of the subject
(but see Harper 1977, Willey and Heath
1969). We aim to (a) review these expres-
sions and describe their use in the inter-
pretation of data, (b) offer avenues for
exploring further relevant literature, (c)
encourage the use of illustrative experi-
ments as teaching aids. Finally, a thor-
ough understanding of this material can
provide new insights into related areas of
plant ecology.

GROWTH OF A POPULATION
OF COMPETING PLANTS

Although different members of a plant
population may be at very different
stages of growth, the manner of accumu-
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lation of biomass through time by a pop-
ulation often closely parallels that for a
single plant; the growth curve is sigmoid
(Figure 1). Increase in biomass is slow
early in growth, but as time passes it
gathers momentum and enters an expo-
nential phase. Eventually, as their sizes
increase, plants begin to interfere with
each other’s growth by competing for the
same essential resources, and the maxi-
mum potential growth rate of the popula-
tion will not be maintained. Plant compe-
tition may be defined as ‘‘the tendency
of neighbouring plants to utilise the same
quantum of light, ion of a mineral nutri-
ent, molecule of water, or volume of
space’’ (Grime 1973). Under competitive
conditions the form or size of a plant
may be modified without leading to the
death of the plant; these modifications
are known as plastic responses. If the
capacity of a plant to withstand competi-
tion by its plastic responses is exceeded,
it will die.

As the population continues to grow, a
point is reached when the habitat may
support no more biomass; carrying ca-
pacity of the habitat has been reached,
and any further growth can occur only at
the expense of some biomass already
present. Thus, parts of plants or even
whole plants will be lost from the popula-
tion. In the case of woody species, if
dead support tissues are included in the
measurement of biomass, the maximum
biomass achieved will depend strongly
on the species and may not be reached
for a long time.

This broad description of plant popula-
tion growth, competition, and death con-
ceals several characteristic features of
the growth of individuals in the popula-
tion. In a population of seedlings there is

a wide range of growth rates, even be-
fore competition occurs, because of dif-
ferences in seed size, time of germina-
tion, and individual genotype. This range
of growth rates, which increases through
time, leads to an alteration in the fre-
quency distribution of plant weight.
Whereas the distribution of the weights
of individual seeds and young seedlings
is normal, it becomes progressively more
positively skewed as growth proceeds
(Obeid et al. 1967), and often achieves
log-normality under competitive condi-
tions. Thus, the population consists of
many small plants and a few large
plants—the dominance hierarchy char-
acteristic of competing populations.
The increase in skewness is a direct
result of the plasticity of plants. Eventu-
ally, further development of skewness is
prevented by the death of those plants
under the greatest competitive stress—
the smallest in the population (White and
Harper 1970). Although weight skewness
develops, the height frequency distribu-
tion remains normal or becomes nega-
tively skewed, demonstrating that low
weight plants, which may be of low
competitive ability, grow tall and still
manage to intercept some light (Figure
2). A fuller account of the details of
changes in weight skewness has recently
been provided by Mohler et al. (1978).

biomass

—

time

Figure 1. Model graph of the course of bio-
mass accumulation in a plant population.
Dashed line represents the carrying capacity
of the habitat.
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Figure 2. Frequency distribution of plant
height and plant fresh weight in two monocul-
tures of ragweed. A: = on fertile soil. B: = on
infertile soil. Re-drawn from Koyama & Kira
(1956).
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COMPETITION-DENSITY (C-D)
EFFECT EQUATION

Consider a set of plant populations,
each population growing under the same
habitat conditions, but starting growth at
a different density. After a certain period
of growth, when the populations begin to
exhibit plasticity in mean plant weight as
a response to the onset of competition,
the competing populations can all be
fitted to a hyperbolic curve that relates
mean plant weight and density of survi-
vors (Kira et al. 1953), (Figure 3a). Al-
though the equation relating the compet-
ing populations changes with time, it can
be generalized as follows:

w = Kd™? 1)
where w = mean plant weight, d = plant
density, and a, K are constants. This
equation can be represented linearly
(Figure 3b) by plotting on double loga-
rithmic axes, when it can be expressed in
the following form:

logw =logK —alogd 2)

Equation (1) is termed the competi-
tion-density equation (C-D equation),
and the constant a is termed the C-D
index. Through time, the value of a in-
creases; at the seed and early seedling
stages it is zero, implying that mean
plant weight is independent of density.
Given sufficiently intense competition,
the C-D index eventually rises to 1,
which indicates complete compensation
for higher density by lower mean weight,
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resulting in all populations having the
same total biomass. At this stage, the C-
D effect equation has the following form:

w=Kd™! 3)
The gradient of this relationship, on dou-
ble logarithmic axes is —1, and the angle
of the slope is 45° (Figure 3b). Thus when
a is unity and equation (3) applies wd =
K, and since yield Y equals the sum of
the weight of the plants per unit area (or
Y = wd), it follows that yield is constant
in all populations at this stage of growth.

RECIPROCAL EQUATIONS

The major drawback in describing
population weight-density relationships
with the C-D equation is that it assumes
that the density at which the effect of
competition becomes discernible in plant
populations is clearly defined. For exam-
ple, (Figure 3b) a plastic response in
mean weight per plant occurs above the
density marked X after 21 days of
growth. It seems probable, however,
that there is a smooth transition from low
densities, where there is no effect of
competition, to high density ranges, over
which competition exerts an ever-greater
effect, and that this region on the graph
should be represented by a curve. A
suitable equation to describe this situa-
tion was presented by Shinozaki and
Kira (1956). The correspondence be-
tween curves produced by this equation
and data from a wide range of experi-
ments appears good in nearly every case
investigated. Once again, the data are
graphed in double-logarithmic form, but
an equation of the form:

1
T—Ad-i—B )

is used to fit a curve to the points. In this
equation w = mean weight per plant, d =
plant density, and A and B are constants.
Shinozaki and Kira (1956) provide fur-
ther information about the identity of
these constants.

Equation (4) was termed the reciprocal
equation of the C-D effect. By dividing
throughout by density, d, an equation
(the reciprocal equation of the yield-
density effect) can be obtained, repre-
senting the relationship between yield
and density:

1
wd

== =A+ )
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Application of equation (4) to the set
of data graphed in Figure 3 is shown in
Figure 4.

It must be emphasized that all the
above equations refer to the relation-
ships between mean plant weight and
density for populations of different den-
sities, but after the same growing period.

THE —-3/2 POWER LAW

As each population continues to grow,
the capacity of some individuals to ab-
sorb competition by plastic responses
will be exceeded. Once this point has
been reached, plasticity and mortality
occur simultaneously in the population.
Over the time that the population is
undergoing density-dependent mortality
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Figure 3. a. Graph of the changing relationship between mean weight per plant and plant density
for populations of soybean at different densities. Recalculated from Kira et al. (1953). b. The
same relationship plotted on double logarithmic axes. The competition-density equation applies
to the inclined part of the relationship. The point X on the line for 21 days is explained in the text.

Re-drawn from Kira et al. (1953).
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Figure 4. The changing relationship between
mean weight per plant and plant density for
soybean populations at different densities.
The data are the same as in Fig. 3. The curves
are derived from the reciprocal equation
(equation (4) in text). Re-drawn from Shino-
zaki & Kira (1956).

as a result of continuing growth, the
equation relating the points on the graph
is:

w = Kd—3/2 (6)
orlogw =log K — 1.5log d
From equation (6), wd = Kd %,
therefore ]
Y = Kd™” 7

Equation (6) is termed the —3/2 power
equation, or the —3/2 power law (Yoda
et al. 1963). Its gradient is approximately
56°. The reason for the exponent term
being —3/2 is not known, although it is
now fairly clear that the limitation upon
biomass accumulation represented by
this gradient is a reaction against packing
more biomass into a given volume. An
explanation of the exponent was pro-
posed by Yoda et al. (1963), based on a
simple geometrical model with two as-
sumptions. Firstly, all plants of a given
species are geometrically similar, regard-
less of size and growing conditions. The
average ground area or space s occupied
by a plant will then be proportional to the
square of a linear dimension of the plant,
L, in such a way that s « L%, and its
weight w will be proportional to the
volume of space which the plant occu-
pies; in terms of the same linear dimen-
sion then, w o« L3. Thus, the space
occupied by a plant and its weight can be
related by the equation.

s « W2/3 (8)
Secondly, mortality in the population
occurs when the percentage cover of the
plants exceeds 100%, and operates in a
fashion which maintains 100% cover.
The area occupied by a plant and the
density of survivors are then related by
the expression:
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Combining (8) and (9) it can be seen that
(1/d) = w??. Therefore, w « d ™32, or w
= Kd™?2. An alternative derivation re-
lating the power law to equations for
measuring spatial pattern in plant popu-
lations has been presented by White and
Harper (1970).

The equations described above are
normally used to illustrate weight—densi-
ty relationships in monocultures. The
conditions that must be satisfied for
them to apply are minimal. For the C-D
and reciprocal equations, the popula-
tions must have been growing for the
same length of time and there should be
no environmental gradients within or be-
tween the populations. The —3/2 power
law describes the weight-density rela-
tionships in a population at different
times as thinning proceeds. It can also
describe the relationship between popu-
lations on plots of different fertility
which are undergoing thinning, but only
when light intensity is the same for all
plots.

Both situations are illustrated in the
experiment upon Erigeron canadensis
carried out by Yoda et al. (1963). Experi-
mental monocultures of this species
were established from a fixed, high-sow-
ing density on plots with a wide range of
soil fertilities. Plants were harvested
from the treatments six times after estab-
lishment, and mean weight and density
of surviving plants were recorded. As
time passed the mean weight of surviving
plants increased and their density
dropped in such a way that the data
collected from all the experimental plots
fell along the same thinning line (Figure
5). However, on the more fertile plots
growth was faster, resulting in greater
competition and higher mortality, so at
any given harvest date the data points for
the more fertile plots appear further
along the thinning line (i.e. diagonally to
the left) than those for the less fertile
plots (Figure 5). On more fertile plots the
density of surviving plants was lower,
but their mean weight and total plot yield
were greater. These differences among
plots of different fertility levels increased
as time passed.

Further relationships between mean
weight of whole plants or plant parts and
density, in pure and mixed stands, have
been proposed by Bleasdale (1967),
Bleasdale and Nelder (1960), Farazdaghi
and Harris (1968), and Holliday (1960a)
inter alia. These have not proved to be
such valuable general statements as the
equations given above.

VALUE OF THE C-D, RECIPROCAL,
AND -3/2 POWER LAW EQUATIONS

The best comprehensive illustration of
the importance of these equations and
their interrelationships is provided by
the experiment upon buckwheat report-
ed by Yoda et al. (1963) (see Figures 6a
and b). In this experiment, replicate pop-
ulations were established at initial densi-
ties of 25, 100, 2000, 10000 and 50000
seeds m~2. The density and mean dry
weight of surviving plants were deter-
mined for populations sampled after 21,
34, 49 and 63 days of growth.

At the beginning of growth, mean
weight (i.e. seed weight) is the same for
all populations, regardless of starting
density. When the changing relationship
between mean weight and density is plot-
ted on double logarithmic axes (Figure
6a), the initial locus of movement of the
less dense populations on the graph is
vertical. This occurs for a shorter length
of time in more dense populations. As
time passes, competition begins to take
place and exerts continually depressing
effect upon the rate of increase in the
mean weight of plants. Thus, in compet-
ing populations, weight plasticity devel-
ops, along with the changes in distribu-
tion of weights and heights described
above. At first, only the densest popula-
tions exhibit plasticity, but as the plants

5x w"-

10'1

1072

mean weight per plant (g)

103

10%

Density of survi?/ing plants (no m2)
Figure 5. Changes in number of survivors and
mean plant weight through time in monocul-
tures of Erigeron canadensis. Numbers 1-5
represent data collected from plots of different
fertility. 1 = highest fertility, 5 = lowest fertility.
Separate harvests are indicated by their dates
and the results from a single harvest date are
joined by solid lines. The straight line has a
gradient of —3/2. Re-drawn and adapted from
Yoda et al. (1963).
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continue to grow, the effect of competi-
tion is observed in the less dense popula-
tions. In other words, as plant size in-
creases, fewer plants per unit area are
required for competition to result. The
change in mean weight per plant over a
given period of time is smaller for more
densely planted populations.

A curve based on the reciprocal equa-
tion (4) may be drawn connecting all
populations which have had the same
period of growth (solid lines in Figure
6a). At the highest planting densities, the
gradient of this curve reaches the value
of —1, indicating that biomass is the
same on these plots at a given time.
Thus, there is a completely reciprocal
relationship between mean plant weight
and density. Each successive date of
harvesting reveals that the position of
the —1 gradient has risen, showing that
biomass has accumulated between har-
vests, but that the relationship between
the populations has not changed.

As time passes, populations exhibit
density-dependent mortality, which oc-
curs earlier in more dense populations.
The densest populations in Figure 6a
have already exhibited mortality before
the harvest at 21 days; thus, their curves
move diagonally to the left through time
rather than vertically. The result of den-
sity-dependent mortality is that popula-
tions starting growth with widely differ-
ing densities gradually converge upon a
common density, which will decrease
through time (Figure 6b). If the points
relating log (mean weight) to log (density
of survivors) are joined through time for
a single thinning population, the gradient
of this line is —3/2 (see dotted line in
Figure 6a). This line appears to represent
a limit on the amount of biomass that can
be supported for any given plant density.
For high plant densities, when the mean
weight is low, biomass is also low; later
in growth, when density has fallen, but
mean weight of survivors is greater, the
total biomass has increased. Thus, as
growth proceeds, it appears to be accom-
panied by an increasingly efficient use of
‘‘biological space’’ (sensu Ross and
Harper 1972), allowing biomass to be
accumulated. An increasing proportion
of the biomass of woody species travel-
ing along the thinning line will be dead
supporting tissues.

Too low a planting density, or too
short a life span or growing period to
accumulate the necessary biomass may
result in the growth of a population never
being constrained by the —3/2 thinning
line. This is the case with the two lowest
planting densities in the present experi-
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ment; Figures 6a and b illustrate that
they have not been subject during the
experiment to the heavy density-depen-
dent mortality characteristic of popula-
tions following the thinning line.

As the falling density in the heavily
competing populations reaches that of
lower density populations, their growth
and thinning patterns become identical
(Figure 6b). Thus, the time trajectory for
lower density populations is the same
—3/2 thinning line as for populations of
higher initial planting densities, but the
former reach the thinning line at a higher
point on the graph. All populations
which reach the thinning line should the-
oretically converge and move along it at
the same rate when they grow under the
same conditions, regardless of the densi-
ties at which they commenced growth.
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Figure 6. a. Reciprocal equation curves (solid
lines) and —3/2 power law (dotted line) in
buckwheat, showing the inter-relationship be-
tween the two. The relationship between the
—3/2 power law and the maximum weight of
biomass which can be supported by the plot is
also indicated by the transition point marked
on the graph at X. The exact position in which
this point of transition has been drawn is
arbitrary since it is not based upon collected
data. Graph re-drawn and adapted from Yoda
et al. (1963). b. Time-survival curves in buck-
wheat populations starting growth at a wide
range of densities. Dotted lines indicate the
extrapolation from experimental data collected
for the first 63 days of plant growth. Graph re-
drawn and adapted from Yoda et al. (1963).

No points may lie to the right of the
thinning line; mortality ensures that as
growth proceeds the thinning line is not
transgressed.

Ultimately, if growth continues and
the habitat can support no more bio-
mass, the increasing weight of plants
must be compensated by an equal loss of
biomass through mortality. At this stage
of growth all populations under the same
growing conditions are at the same point
on the graph. Reaching this stage may
take hundreds of years for tree species,
in which a high proportion of the bio-
mass is woody support structures. As
plants continue to grow and self-thin,
they now follow a —1 gradient, rather
than a —3/2 gradient. This —1 gradient
represents the ultimate limit upon bio-
mass accumulation for the species con-
cerned under these conditions (see Fig-
ure 6a). Thus populations have passed
from a stage where they are limited by
physical constraints (occupation of bio-
logical space), to one where they are
limited by the carrying capacity of the
habitat.

The position of the —3/2 thinning line
is not known to be altered by habitat
conditions except for light intensity. As
light intensity decreases the thinning line
falls to the left, and the value of the
intercept K, in equation (6) declines.
Thus, at any density, less biomass can be
produced before thinning will occur (e.g.
data on Helianthus annuus, Figure 4 in
White and Harper 1970). This result rein-
forces the view that thinning is usually
caused by plants’ net assimilation rate or
their light compensation falling below a
critical point, although there is also some
evidence to suggest that the dynamics of
thinning also alter when light intensity
decreases (e.g. White and Harper 1970,
Ford 1975). If the nutrient supply is
increased, the position of the thinning
line is not changed, but it is reached
more rapidly, and populations move
along it faster as a result of a greater
growth rate.

The position of the —1 gradient repre-
senting the limit to biomass accumula-
tion depends largely on a particular spe-
cies’ maximum size, which is controlled
by its genotype. However, for any spe-
cies, the position of this line can be
modified by the availability of essential
resources in the habitat, especially light
and nutrients. If the resource supply
increases, the position of the line rises,
so that it is reached when fewer plants of
greater mean size are still surviving in
the population. The converse is true if
resource supply diminishes.
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APPLICABILITY OF THE EQUATIONS

The validity of equation (4) has been
demonstrated (Shinozaki and Kira 1956,
Holliday 1960b), in particular over the
range where a = 1. However, there is
some evidence to show that over this
range it does not always describe the
relationship between mean weight and
density, especially where the mean
weight of parts of plants is considered,
rather than total plant weight. It has been
shown for many crop plants, particularly
when products of reproductive growth
rather than vegetative growth are consid-
ered, that the yield-density relationship
is parabolic rather than asymptotic (Fig-
ure 7); so yield is not totally independent
of density at high densities (Holliday
1960b), and the value of a is greater than
unity.

The —3/2 power law has been verified
for a wide range of species, including
many herbs, shrubs, and trees, under
both natural and experimental condi-
tions. White (1980) has documented the
law for about 80 species. The power law
has also been applied to mixed plots and
it can be applied to components of plant
yield (White and Harper 1970). This final
example, however, requires the ratio be-
tween the weight of a plant component
and the weight of the whole plant to
remain constant as population growth
proceeds. Mohler et al. (1978) showed
that this ratio does not hold for pin
cherry and balsam fir, and that the expo-
nent term in the equation varies consid-
erably for different components.

The seasonal growth of clone-forming
perennial herbs does not follow the —3/2
thinning line (Hutchings 1979, Hutchings
and Barkham 1976), although there is a

- ~~a

yield per unit area
N
’
’

planting density

Figure 7. Asymptotic relationship between
plant density and yield per unit area expected
for total plant weight (solid line), and parabolic
relationship between plant density and yield
per unit area expected for products of repro-
ductive growth (dotted line). See text for fur-
ther explanation.
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strong connection between mean shoot
weight, shoot density and the thinning
line in these species. Here the shoot is
part of a large plant consisting of several
connected shoots, and is alternately the
sink and source for large-scale transloca-
tions of carbohydrates and other materi-
als. The clonal species investigated by
Hutchings mainly exhibit large changes
in mean shoot weight until maturity, but
little mortality until after maturity. Mean
shoot weight stops increasing just at the
point when any further increase would
result in density-dependent mortality
and movement of the population along
the thinning line (Figure 6a in Hutchings
1979). Clonal herbs therefore appear to
produce a maximum standing crop close
to the limit which can be achieved by any
plant at the particular density at which
they mature, but without undergoing
density-dependent mortality; these spe-
cies are limited by the —3/2 thinning line,
but do not move along it.

The only environmental variable
which appears to alter the —3/2 gradient
of the mean weight vs. density relation-
ship (as well as altering its position on
the graph—see above) is light intensity.
Ford (1975) and White and Harper (1970)
have presented data which appear to
show that as light intensity drops, the
gradient of the thinning line falls, ap-
proaching —1. However, this relation-
ship may well be an artifact caused by
fitting a gradient through points, some of
which refer to the —3/2 thinning line and
some to the ultimate —1 gradient for the
plot under the reduced light régime (see
Figure 8). This seems possible since the
range of light intensities in experimental
and natural situations where the power
law has been demonstrated have not
revealed any systematic variation from a
gradient of —3/2.

The most important generalization
concerning the —3/2 power law has been
made by White (1980, and see also Gor-
ham 1979). This concerns the relatively
constant position of the thinning line for
a large number of species, including
herbs, shrubs and trees. Virtually all
calculated values of log K in the equation
lie between 3.5 and 4.3, which is just
over a six-fold range in linear terms.
Although Harper (1977) suggested that
the value of log K might vary in a sys-
tematic manner, reflecting the influence
of canopy geometry upon thinning and
biomass accumulation, no general theory
explaining its variations has yet been
developed (White 1980). Such detailed
interpretation of the value of log K ob-
tained for different species may not be

log(mean weight per plant)

log (density of surviving plants)

Figure 8. Possible explanation for the failure
of the —3/2 power law at low light intensities.
A: = —3/2 thinning line at high light intensity.
B: = ultimate yield line (gradient —1) at high
lightintensity. C: = 3/2 thinning line at low light
intensity. D: = ultimate yield line (gradient —1)
at low light intensity. E: = regression line
plotted through data points on lines C and D.

justified by the data on which it is based.

Gorham (1979) has also clearly demon-
strated that the relationship between
standing crop and density for a wide
range of plants in monocultures (mosses,
ferns, gymnosperms, monocotyledons
and dicotyledons) of differing size and
architecture can be expressed by the
simple rule in equation (7), with a value
of log K just below 4.0. The subjects
used in experiments on which this con-
clusion was based ranged from large
trees (density 0.1 shoots m™2, standing
crop 26,000-m™2) to large mosses (densi-
ty 10,000 shoots'm™2, standing crop 120
gm™).

RELEVANCE OF THE EQUATIONS
IN TEACHING ECOLOGY

Experimental study of growth and
self-thinning of plants illustrates several
fundamental principles of plant ecology
in addition to those outlined in previous
sections of this paper. This approach
thus provides a basis for deeper under-
standing of the interactions between the
individual plants in populations, and the
interactions between the population and
its habitat. When supplemented with fur-
ther data these types of experiments can
highlight the struggle for survival be-
tween the individual plants in a popula-
tion. The dominant plants in a population
leave more propagules than suppressed
plants, and thus stand the best chance of
having their genes represented in follow-

BioScience Vol. 31 No. 9



ing generations. Dominance may be
achieved because of particular geno-
types, or favorable environmental condi-
tions, or a combination of both. Several
workers have demonstrated the develop-
ment of a dominance hierarchy in com-
peting plant populations (e.g. Obeid et
al. 1967); the course of events is predict-
able and can easily be observed. It is also
easy to prove that the heaviest mortality
risks fall on the smaller plants in the
population.

Turning to the interactions between
the population and its environment, sev-
eral important facts can be noted. (1)
Rate of growth, rate of reaching the —3/2
thinning line, and rate of thinning depend
on habitat conditions. Site fertility and
light intensity appear to be the main
controlling factors. (2) Thinning pro-
ceeds in a density-dependent fashion. (3)
In sites of lower light intensity, thinning
lines fall to a lower level on the graph,
and the ultimate level of biomass that
can be supported also falls. Change in
fertility level, however, does not appear
to alter the position of the thinning line.
(4) For a given species, the habitat, rath-
er than the density of planting will usual-
ly be the factor controlling the biomass
that can be supported, but the major
habitat factors of light intensity and fer-
tility exercise different controlling ef-
fects. These important lessons, which
can be learned from simple laboratory
experiments like those conducted by
Yoda et al. (1963), provide ample justifi-
cation for laying heavy emphasis in de-
gree courses on teaching the relation-
ships  between plant growth,
competition, mortality, and biomass
accumulation.
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