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How forest models are connected to reality:
evaluation criteria for their use in decision
support

Albert R. Stage

Abstract: Choice of a model for exploring forest management options depends on the decision space defined by the
actions, indicators, ecosystem scope, and cybernetic context of the decisions. To be useful in a particular decision con-
text, candidate models must include all relevant hypotheses of effects of the actions on the indicators in a spatial and
temporal structure appropriate for the particular decision. The architecture of a suitable model is implied or constrained
by these components of the decision space. A set of attributes for assessing a model’s suitability for decision support is
proposed. In addition to a firm foundation in science, decision support models should provide predictions with quanti-
fied bias and precision, and without artifacts that influence choice of management alternatives. Descriptions of informa-
tion flow across levels of integration within and between models and between models and field observations should be
included in model descriptions. Schematic diagrams of these flows illustrate several broad classes of how modelling
systems may be linked to reality to improve their utility.

Résumé : Le choix d’un modèle pour examiner différentes options d’aménagement forestier dépend de l’espace des dé-
cisions telle que définie par les actions, les indicateurs, l’ampleur de l’écosystème et le contexte cybernétique des déci-
sions. Pour être utiles dans un contexte décisionnel particulier, les modèles susceptibles d’être choisis doivent inclure
toutes les hypothèses pertinentes concernant les effets des actions sur les indicateurs dans une structure spatiale et tem-
porelle appropriée pour ce cas particulier. L’architecture d’un modèle approprié est déterminée ou limitée par ces com-
posantes de l’espace des décisions. Un ensemble de caractéristiques pour évaluer la pertinence d’un modèle d’aide à la
décision est proposé. En plus de posséder de solides fondements scientifiques, les modèles d’aide à la décision de-
vraient fournir des prédictions dont le biais et la précision sont quantifiés et qui sont dépourvues d’artéfacts qui in-
fluencent le choix des options d’aménagement. La description des modèles devrait inclure la description du flux de
l’information entre les divers niveaux d’intégration dans et entre les modèles ainsi qu’entre les modèles et les observa-
tions de terrain. Des diagrammes schématiques de ces flux illustrent plusieurs grandes catégories de liens potentiels
entre les systèmes de modélisation et la réalité qui sont susceptibles d’améliorer leur utilité.

[Traduit par la Rédaction] Stage 421

Introduction

Choice of a model for exploring options for managing for-
ested ecosystems depends on the decision space as defined
by the set of management actions under consideration, the
ecological bounds of the system to be affected, the cyber-
netic context of the decision, and the indicators of the conse-
quent effects that are meaningful to the decision-maker.
Within the framework set by the decision space, the candi-
date model must contain all of the relevant knowledge of ef-
fects in a structure appropriate for the particular decision, in
short, how it is linked to the real world. There is inevitably a
shortfall between the ideal linkages from a scientific view

and the linkages that are feasible in a given decision-making
context. Thus, architecture of the ideal model for a particular
management analysis is implied (or constrained) by the in-
teractions among these sets of connections.

My objectives in this paper are threefold. First, I define at-
tributes of the decision space in which the model is to be
used. Second, I examine model linkages to the environment
and to the system being managed as a protocol for docu-
menting existing models to better inform their selection for
decision support. Finally, I examine how these linkages may
be strengthened to improve the predictive capabilities of the
modelling system and thereby its usefulness for informing
management decisions. Categorizing a model’s linkages to
reality suggests an alternative title for this paper: “An anat-
omy of empiricism”.

Model attributes critical to decision support

Of the many (infinite) ways a model might be designed,
which attributes are critical to its usefulness to inform a de-
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cision? Critical, in my view, are appropriate links to the de-
cision space, firm foundation in science, known accuracy
and precision, and freedom from artifacts.

Links to decision space
That different models are needed to support different deci-

sions is a widely repeated mantra. Criteria for choice, how-
ever, are seldom explicitly stated because the structure of the
decision-supporting analysis is not explicitly stated. The de-
cision space of a management or policy analysis is defined
by four kinds of information. The first three of these bounds
are based on Holling’s (1978) comprehensive discussion of
these concepts.

The first bound is the set of management actions being
proposed. Defining this set is the joint responsibility of the
decision-makers and subject-matter specialists. A valuable
contribution of the latter is formulating innovative actions
that address the problems motivating the analysis. Their role,
however, is not the same as the role of decision-maker, no
matter how “expert” they may be.

The second bound is the list of attributes (indicators) that
rank one alternative relative to another. This list must be pro-
vided by the decision-makers and their clientele well in ad-
vance of the analysis itself. Each indicator must be defined
in terms of its spatial and temporal resolution. Inventory pro-
cedures to initiate the model must be compatible with the
definitions and specifications of these indicators.

The third bound is the ecological extent of the population
to be affected by the decision and the initial states of its in-
dicators.

A fourth attribute of the decision, its cybernetic context,
specifies how information from the real world feeds back
into the analysis of subsequent decisions. Is the decision of
long-lasting consequence, or can it be revised as reality un-
folds? For example, a harvest scheduling analysis may “pro-
gram” harvest for a very long time span. But the processes
of inventory, monitoring, and analysis will be repeated at
shorter intervals so that feedback effects can be recognized
and incorporated into revised plans.

Taken together, these “lists” imply the properties required
of the estimates, i.e., permissible bias, stochasticity, and
smoothness of predictions. They do not directly define the
architecture of the best model to inform the decision.

Foundation in science
First, and foremost, to be useful in the particular decision

context, model architecture must provide a comfortable
“home” for the scientific hypotheses defining how the par-
ticular actions affect the selected indicators. Supplying these
hypotheses of effect is the proper role of subject matter spe-
cialists (scientists). These hypotheses of effect define the ar-
chitecture of the model. A decision is “science based” to the
extent that all relevant and acceptable hypotheses of effect
have been used to display the consequences of the manage-
ment actions. Hypotheses of effect may be true, but irrele-
vant. Their inclusion in the model may have little effect on
how the indicators respond to the proposed actions. Ver-
ifying that relevant hypotheses of effect have not been ig-
nored is a crucial role for scientists in the decision process.
That is very different from having scientists make the deci-
sion!

Development of a dynamic model of forested ecosystems
depends on three broad scientific domains: ecophysiology,
statistical inference (including sampling and estimation), and
biomathematics (Blake et al. 1990; Sharpe 1990). All three
of these scientific domains involve transforming information
from the real world into predictions about future states of
nature. Slighting any of the three can vitiate a model for use
in decision support.

Models with a strong basis in scientific knowledge of the
processes represented should behave more realistically, par-
ticularly in the extremes, than models having a structure de-
termined by statistical analysis that has not been guided by
the same scientific knowledge. It is this lack of scientific
context that defines an empirical model rather than its basis
in real world data. The differences in behavior are attribut-
able to a strong bias toward parsimony among statistical an-
alysts, while specialists in the particular scientific field have
a bias toward ever-greater complexity. Extreme outcomes of
the modelled processes are seldom represented in observa-
tional data so that the model complexity needed for a full
description of the process may fail to pass significance tests.
The result is not that the model must necessarily be a trade-
off between statistical precision and biological integrity, but
rather, the model represents a judgement call on whether the
additional complexity represents firmly founded relations in
the relevant science or whether the relations are still hypo-
thetical. This distinction is crucial if the intended use of the
model is to support decisions. Its complexity need be no
greater than that essential to represent the effects of pro-
posed actions.

Level of organization
Allen and Starr (1982) used level of organization to liter-

ally define the “organs” for which the processes are repre-
sented and observed. For each level of organization, there is
a corresponding set of featured processes within a hierarchi-
cal sequence of processes. For example, if the leaves are the
organs, then the appropriate processes may be photosynthe-
sis and respiration. In contrast, in a pipe theory model, the
featured organs are the population of pipes, modelled by
rates of birth, increase in length, and mortality (transition to
heartwood). If the level of organization is a tree, the pro-
cesses being modelled are regeneration, accretion, and mor-
tality. These processes are the aggregation of the leaf-level
processes of photosynthesis, respiration, and within-tree al-
location of their net productivity, which, in turn, may be
guided by a pipe theory submodel. One defining attribute of
so-called process modelling is that inference proceeds from
lower levels in which the system is observable only in highly
instrumented situations to higher levels of organization for
which the required indicators are defined (Blake et al. 1990).

Level of integration
Models of the same level of organization may differ in the

temporal and spatial scales at which the “organs” interact.
For example, the same models of leaf physiology may be in-
tegrated to the stand level as in BGC (Running and
Coughlan 1988) or at the tree level in Milner’s TreeBGC
(Milner et al. 2003). Although both models share the same
level of organization and processes, they are scaled differ-
ently. The validity of moving between levels of integration
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depends on whether new processes become operative at the
upper level and whether the processes are scale invariant.

Basis for treatment effects
Hypotheses of effect relate ecosystem responses to the ac-

tions for particular levels of organization and integration of
the processes. However, these levels may not correspond to
the levels of integration implied by the indicators specified
in the decision space. The model provides the missing con-
nections.

Modellers have used two alternative modelling strategies
to represent effects of management activities. The choice de-
pends on whether effects of the particular actions can be re-
trieved from real world data.

The more challenging alternative is the case in which the
hypotheses of effects cannot be observed at the level of orga-
nization represented by existing data sets. Then, the model
must be designed to integrate the known effects at more de-
tailed levels into estimates of effects at the level of the se-
lected indicator variables. For example, existing stand data
sets may not include structures that could be created by pro-
posed silvicultural prescriptions (say “partial retention” or
many of the currently popular silvicultural proposals). How-
ever, we often have data on individual trees that can be mod-
elled at the tree level of organization. Then, integration of
these individual tree predictions by the model produces the
desired stand-level information. Or consider the “action” of
increasing carbon dioxide in the atmosphere. For some time,
cells or seedlings were the only level of organization for
which hypotheses of effect were known. Then, models were
developed to integrate effects up to the tree level of organi-
zation and thence to stand (and world) levels of integration.
In the ideal world, we would have both detailed studies of
the processes under controlled conditions and field experi-
ments similar to the carbon dioxide enrichment plots in
loblolly pine (LaDoau and Clark 2001), but replicated in
time and in different ecosystems.

In the easier alternative, the proposed actions and the state
variables inherent in the hypotheses of effect have been di-
rectly observed in existing data sets, or can be quickly col-
lected. The essential prerequisite is that all relevant
hypotheses of effect can be tested with the data. Response
surfaces of the processes represented in these data will pro-
vide accurate representation of the expected outcomes if the
sample data have been collected with procedures supporting
valid sampling inferences. Then, use of the model is primar-
ily interpolative among the driving variables. It is essentially
an inference tool to extend the sample-based information to
estimate how population totals would change under pro-
posed management scenarios (collections of actions).

Temporal structure
Farnham et al. (1986) characterized models as having ei-

ther yield architecture or growth architecture. The dichot-
omy depends on whether the models use the integrated or
differential representation of processes. Yield architecture
uses age as an argument in functions estimating increments
or state variables characterizing the vegetation. On the other
hand, growth architecture uses initial boundary conditions
and differential or finite difference equations to generate the
vegetation trajectory through time.

Yield architecture generally produces models with stable,
predictable behavior. However, its trajectories are so firmly
predetermined that introducing effects of intervening treat-
ment tends to be cumbersome and difficult to justify from a
biological process point of view. However, Snowdon (2002)
and Pienaar and Rheney (1995) provided examples of yield
model structures that permit intervention.

Growth architecture can more easily accommodate physi-
ologically detailed submodels because the developmental
process of most vegetation is controlled by rates of produc-
tion and transport rather than by effects of aging per se.
Growth architecture has a risk, however. Estimating develop-
ment of an individual by the simultaneous application of in-
dependently developed submodels may result in biological
monstrosities. For example, in the aspen model of Sievänen
et al. (1988), some combinations of parameters could pro-
duce trees of large diameter having negligible biomass. They
demonstrated that strict numerical optimization of parameter
estimates must be subservient to overall model behavior.

Growth architecture, in addition to the above consider-
ations, requires time steps that are appropriate for the resolu-
tion of the process relations and for the mathematical
method of integration being used by the model. If change is
expressed as differential equations, then size of the time step
must be small enough for the numerical integration method
to produce adequate accuracy. If change is estimated by fi-
nite difference equations, then time steps must conform to
the implicit time interval of the functions used to estimate
increment. Cao (2000) developed methods of parameter esti-
mation that permit calibration of tree accretion and mortality
models with annual time steps using data from longer peri-
ods of varying length. However, in his protocol, all interact-
ing models must be calibrated simultaneously.

Temporal resolution of the model is critical when its use
in decision support requires linking separate models of eco-
system components. Again, mixtures and gradations are the
rule. Linkages between models can be complicated, if not
proscribed, by incompatible temporal span and resolution.
For example, Elliot and Hall’s (1997) variant of the WEPP
watershed erosion model was sensitive to the first several
months and years after disturbance of the vegetation,
whereas candidate vegetation models used yield architecture
to initiate a new stand as it would exist no fewer than 3
years after disturbance (Elliot and Hall 1997).

Stochasticity
All processes can be considered as the sum of two compo-

nents: one deterministic and the other stochastic. Knowledge
of the deterministic component is embodied in the model’s
functional relations. The stochastic component represents in-
fluences beyond our present predictive capability (or deliber-
ately omitted from the model). Inclusion of the stochastic
component is important in growth architecture models be-
cause many processes operate as deviation amplifiers. Sim-
ply put, the big get bigger faster. Any process for which the
trend with time is monotonically increasing and concave up-
ward will amplify positive deviations from the average
increment more than negative deviations. Therefore, models
of increments that are to be executed iteratively must include
effects of random variation. Otherwise, the mean and distri-
bution of the final indicators will be biased.
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Provides appropriate resolution of predictions with
quantified accuracy

An oft-repeated criterion for the choice of a model is that
broad policy decisions should be based on models that pro-
duce correspondingly approximate (low resolution) esti-
mates of effects. I wish I could find the factual basis for this
mantra, for I believe it to be wrong. Most decisions in eco-
system management are nested in the sense that the broad
policy decisions inevitably are followed by more localized
decisions about more detailed prescriptions. Also, from the
biological view, the outcomes of many processes are con-
trolled by extremes of the driving variables rather than by
variation near their means. Low-resolution models usually
represent mean effects, thereby masking variation significant
for planning purposes. For example, if volume of timber re-
moved and sediment production are positively correlated, a
strategic plan might reduce the intended cut to reduce the
sediment to an acceptable level. More effective planning
would use information on size and location of areas where
the two effects are less positively correlated so that the sedi-
ment target could be achieved with a higher cut.

Contradictions between the models supporting different
levels of analysis can create chaos in management and (es-
pecially) in fostering acceptance of the analyses by inter-
ested parties — managers and their publics. Reviewers of
broad, policy-setting plans inevitably ask for more detail
about specific locales to interpret what the policy means “on
the ground”. A brute force solution is to use the more de-
tailed model for both levels. A more sophisticated solution is
to use metamodelling (Stage et al. 1995; Urban et al. 1999)
or sampling inference (Moeur and Stage 1995).

Certain applications, such as harvest scheduling and in-
ventory updating, need unbiased estimates of current incre-
ment. Other decisions such as choosing silvicultural systems
are based on gaming, optimization, or economic analysis to
find a suite of activities that meets the goals of management.
For these decisions, the need for unbiasedness shifts to the
differences between alternatives.

Historically, analytical methods for comparing manage-
ment alternatives have assumed predictions to be determinis-
tic. The accuracy of the estimates has seldom entered
analyses in other than a pass–fail mode. A much-used alibi
was that planners and managers were uncomfortable with in-
terval estimates. Consequently, early forest growth models
represented only the deterministic component. Later, how-
ever, models including both the deterministic and stochastic
components were developed (e.g., Hatch 1971; Stage 1973;
Monserud 1975; Daniels and Burkhart 1975) or the stochas-
tic behavior of the model predictions was modelled explic-
itly (Stage and Renner 1988; Hamilton 1991). The modellers
should break this vicious circle. Indeed, lack of accuracy
data for estimates of stand structure was a major point of
criticism directed at the California spotted owl draft environ-
mental impact statement.1

Accuracy required for a specific decision depends on the
costs of improving accuracy in relation to the costs of a
wrong decision. (Hamilton 1979). Newberry and Stage
(1988) have discussed more details on desirable statistical

properties of models of forest dynamics and recurring man-
agement decisions.

Absence of artifacts
In the most general sense, models are used in decision

support to rank alternatives. Therefore, these ranks must not
depend on artifacts produced by the model. In particular, the
model structure should not produce artificial discontinuities
in what should be smoothly changing state variables. Unfor-
tunately, modellers who use broad classes to represent attrib-
utes that are essentially continuous variates often overlook
this requirement. For example, the discrete fire behavior fuel
models of Anderson (1982), when embedded in a dynamic
model for silvicultural gaming, would lead one to create
stand structures right at the more favorable side of the dis-
continuity between fuel models (classes). At that point, the
model is most biased so that the expected advantages will
not be realized.

Links to real world: environment

Model connections to the environment may be set either
at inventory time, or they may interact dynamically with es-
timates of how factors are expected to change through time.
The first class I would call models with a static environment
and the second class models with a dynamic environment.

Factors of the environment
Ford and Fraser (1968) have grouped environmental fac-

tors affecting growth according to their mode of influence as
follows.
(1) Those actually used in the growth process, i.e.,

photosynthetically active radiation, carbon dioxide, oxy-
gen, water, or nutrients, which can be considered as
pools in the environment from which plants draw. How
these dynamically changing pools are allocated to indi-
viduals in the model depends on the level of organiza-
tion at which processes are represented and on the
resolution at which competition for these pools is mod-
elled.

(2) Those not actually used, but which influence rates, i.e.,
air or soil temperature, humidity or wind.

(3) Those that operate in the regulation of meristem activ-
ity, e.g., day length, temperature, and spectral properties
of light.

One class of models requires direct measurement of these
factors (driving variables). Often, more easily obtainable
surrogates represent the factors, such as latitude for day
length, or elevation and aspect for radiation, temperature,
and precipitation.

Providing site-specific input of factors affecting growth
poses a major impediment to their direct use as driving vari-
ables. When the decision space requires site-specific
predictions, the input of the growth factors is usually derived
as estimates from another model. These estimates add a
source of uncertainty that decreases the apparent advantages
of the more detailed model architecture.

Another class uses the phytometric approach. Observa-
tions on existing vegetation define the integrated effects of
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the factors. For example, the concept of site index uses
height of dominant trees as the phytometer. Classifying sites
into habitat types as defined by potential vegetation is a
phytometric approach at a broader level of organization. In
the Rocky Mountains of the western United States, we have
found that habitat type, used in conjunction with slope, as-
pect, elevation, and geographic location, not only indicates
conifer productivity but is also crucial to predicting the com-
position of understory vegetation (Ferguson et al. 1986;
Stage 1989). Although readily recognized in the field by ob-
servers capable of identifying some 30–40 indicator species,
occurrences of habitat types have not been readily predict-
able from direct measurement of site factors such as precipi-
tation, potential evapotranspiration, soil, and parent material
properties. This difficulty suggests that the usefulness of
models using biophysical site factors as input to predict oc-
currence of particular species may be similarly limited.

Of course, when the intended use of the model is to fore-
cast future patterns of vegetation in response to changes in
site factors, e.g., global warming or regional cooling, a
dynamic-environment model is essential (Neilson and
Drapek 1998; Bonan et al. 2003). Again, the design of a
management decision model must depend on the alternatives
to be evaluated.

Spatial resolution
Models that have no explicit representation of spatial rela-

tions are termed point models. Point models represent an
average over some neighborhood defined by a limit of
within-neighborhood variability. By analogy with terms in
geographic information systems, the alternative can be
called a polygon model. Polygon models are spatially ex-
plicit to some defined level of precision of tree locations
within a polygon. Locating sampling points within polygons
may bridge the two alternatives.

Representation of trees in spatial relationship to each
other has been motivated by the need to represent competi-
tion for light, moisture, and nutrients at a finer scale than the
stand average. Whether this level of detail adds resolution to
the analysis is still in question, although in my opinion, it
does in ecosystems that are primarily light limited, although
I also believe that exact X,Y coordinates are more precise
than the trees’ actual occupation of space. In contrast, pro-
cesses of water uptake in moisture-limited ecosystems per-
mit trees in the same neighborhood, but not physically
occupying the same space, to compete for water and nutri-
ents (e.g., Bormann 1957; Wu et al. 1985). Furthermore,
some processes such as contagion and diffusion affecting in-
dividual trees may act over greater distances than included
in most stand models. Analytical integration of spatially
structured processes awaits further developments in ecologi-
cal field theory (Wu et al. 1985; Clark 1990).

In addition, linkage to models of other ecosystem pro-
cesses, such as a detailed fire spread model, may require
spatial distribution of fuels from the vegetation model.

Links to the managed ecosystem (state
variables)

Support for use of a model in decision analysis rests in
three classes of data. I believe all of these classes must be

available without regard for the level of organization of the
modelling system. However, the chains of inference between
these data and the model will differ, depending on the
model’s level of organization. The validity of inferences
about management effects depends on both the sampling de-
signs (or lack thereof) underlying data collection and the
truth of the hypotheses of effect embodied in the model.
Hence, model architecture also depends on the kinds of data
available from the real world. Model calibration (tuning, to
be pejorative) is most likely to produce a well-behaved pre-
diction if the state variables for its level of organization can
be directly observed in the field of application. There is,
however, a very real risk that statistical zealots will overfit
data from case studies and destroy the generality of the
model.

The three classes of field data, differing in the methods
used to select sample units and in their role in the
modelling–decision support system, are as follows.
(1) Inventory data: a random sample of the target popula-

tion that includes estimates of recent changes (e.g.,
some inventories).

(2) Treatment effects: a random sample of areas that have
received treatments not represented adequately in the
population sample, preferably measured to the same
standards as (1).

(3) Field laboratories: sites intensively instrumented, with
data recorded over periods spanning a substantial range
of temporal variation in environmental conditions and
stand development.

Inventory data
Models used in decision support have much more strin-

gent requirements for linking to the real world through ob-
jective inventory techniques than do models for representing
scientific understanding (Landsberg 1981). And even for the
latter, the problems of spatial and temporal scaling are sub-
stantial (Ehleringer and Field 1992). Whether a model prop-
erly represents an effect of management activities can
depend on the match between the model structure and the in-
ventory procedures used to initialize its execution. A model
calibrated with true values of driving variables will produce
biased estimates of effects if there is sampling variation in
the initialization of those variables. For example, consider a
tree-level, distance-dependent model of the processes of ac-
cretion and mortality. The driving variables of the model
(e.g., competition, stand density, etc.) are subject to sam-
pling error related to the size of the plot and the sizes of the
trees (Schreuder and Williams 1995). This error introduces
bias into the parameter estimates. While the plot area is
fixed at inventory time, sampling error changes during the
projected time because the trees grow larger in relation to
plot area. This change introduces bias into the estimates, and
the smaller the plot, the larger the bias (Stage and Wykoff
1998).

Often overlooked in the planning process is the need for
model-based estimates of state of the ecosystem at inventory
time to be in accord with the actual inventory estimates. Dis-
crepancies between these two descriptions of the same world
have been the basis for challenging operating plans, at least
of some national forests in the United States. Years ago,
Bruce (1977) discussed the “fall-down” between modelled
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yield and the actual yield “over-hill-and-dale”. Now, we
worry about how much of net primary productivity goes to
feed insects and mycorrhizae and to produce seed or defen-
sive chemicals, terpenes, etc. An effective decision support
system must include the wherewithal to objectively estimate
fall-down. To estimate this fall-down requires data from the
real world combined with knowledge of whether differences
may be attributable to unique conditions during the period of
record.

A major discrepancy between the real world and the
model output is attributable to net effects of processes not
represented in the model and to interactions among mod-
elled processes assumed to be independent. Models may be
designed to estimate maximum potential or realizable yield.
Unfortunately, some may be hybrids of both, depending on
the sources of data used to estimate parameters. For exam-
ple, I know the height increment component of Prognosis is
devoid of top damage, while the diameter increment
submodel is calibrated to random inventory data including
some damage.

An oft-cited prerequisite for using models for manage-
ment analysis is to have “done” model validation (Newberry
and Stage 1988; Vanclay and Skovsgaard 1997). Unfortu-
nately, the decision space is seldom the same as the space
from which the calibration data were drawn, no matter how
careful the original sample inferences. Therefore, I believe
that managers should maintain a database having an ade-
quate basis for valid inferences about the biases of candidate
modelling systems in their particular decision space. Fortu-
nately, the randomization inherent in inventory data can pro-
vide this basis for inference.

The first test of a model of the future is whether it can
represent the past. The variables in this database would in-
clude the indicators deemed appropriate in analysis of simi-
lar management decisions. From this database, a model of
the discrepancies between the model output and the current
real world would be developed that is specific to the deci-
sion space of the proposed analysis (e.g., Zumrawi et al.
2002). Sampling intensity for generating this database must
give particular attention to its power attributes. Unlike most
modelling, the desired outcomes of statistical tests would be
to find all variables to have small and nonsignificant effects.
By modelling the bias and error properties of candidate
models, analysts could establish at least a lower bound for
the uncertainties of the proposed analysis. I say lower bound
because, by definition, such a database can represent neither
new, untried management actions nor environmental condi-
tions that have not occurred previously. This is the real vali-
dation data set.

Data on treatment effects
Inventory data seldom include areas that have received the

treatments being considered in the current analysis. If they
were well represented, the decision would already be “old
hat” and not very interesting. Therefore, an additional data
set is needed to evaluate performance of the model for the
proposed treatments. This information may be sought from
research studies of the intended treatments. However, there
are serious drawbacks to that source.

Many, perhaps most, of the extant collections of perma-
nent plots lack the requisite randomization validating treat-

ment effects. Attempts to achieve “representativeness” or to
provide a uniform test bed for evaluating management ac-
tions can introduce subtle sources of bias. For example, the
Inland Empire Tree Nutrition Cooperative at the University
of Idaho, Moscow, Idaho, has an impressive number of in-
stallations of trials of fertilization. As the process of site lo-
cation progressed, they noted that they were not finding
suitable sites on certain types of soil parent material. Indeed,
an intensive search for sites to fill the gap also failed. Wher-
ever the targeted parent material was found, the existing
stand was so irregular in age and species mixtures that the
location was deemed not suitable for the experimental de-
sign. Later analysis of other collections of permanent plots
verified that the missing soil parent material type was asso-
ciated with higher mortality rates, hence, the difficulty of
finding uniform stands. Although enticing, the use of the
Cooperative’s data set for model calibration or validation
would be ill advised except for representing the specific
treatments studied.

Monitoring data obtained from a suitably randomized se-
lection of treated sites are an essential part of the modelling
system. Identifying model failures provides guidance for
model evolution. Or alternatively, failure of the treatment to
produce the expected results may indicate problems in the
execution of the intended treatment. In either case, the data
should lead to more effective decisions.

Field laboratories
Models requiring a level of organization that is more de-

tailed than can be observed in routine field sampling still
need evaluation at the level of integration specified by the
indicators defining the decision space. The requirements for
specialized instrumentation to define (and control) the envi-
ronment and to monitor system responses at the detailed or-
ganizational levels preclude randomization as a basis for
inference. In its stead, the experimental areas should also in-
clude reference areas for which the state variables routinely
observed in the inventory are measured at the same spatial
resolution.

Inference structures linking models to
reality

Let me begin this topic with an illustration from the de-
sign of the Prognosis model for stand development as of
about 1973. I had recently finished a reconstruction of cli-
matic variation over the past 300+ years as recorded in the
growth rings of western white pine (Pinus monticola Dougl.
ex D. Don), a stint of using the TRAS growth model (Larson
and Goforth 1970) to project trends in future inventories and
timber supply for the western United States, and an involve-
ment with designing “in-place” inventory procedures for
individual-tree prescription in complex stands. From the
concatenation of these three efforts, it was clear that growth
modelling for both silvicultural decisions and for inventory
projection of broad areas should be based on the expecta-
tions for individual trees in relation to their environment.
Furthermore, effects of the droughts of the 1930s over much
of western North America precluded using yield architecture
or site index. However, substituting site factors and potential
vegetation classes for site index as predictors of productivity
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left me nervous concerning several questions: how to cap-
ture the fact that a particular stand would grow differently if
near the ecotone than if in the center of a mapped habitat
type and how to capture the effects of long-term trends in
weather? My solution for these problems was to program an
internal, self-calibration logic that would adjust the accretion
submodels to closely match the growth in the immediate
past of the inventoried trees. Of course, this facility relied
heavily on the ease of measurement of annual rings and
whorls for the majority of our species!

Now, shift forward to a 1990 meeting of entomologists,
pathologists, and stand modellers sponsored by the Forest
Pest Management Branch of the U.S. Forest Service. The
workshop objective was to design a model of multiple dam-
aging agents acting in concert. Having produced a growing
number of Prognosis extensions for specific pest distur-
bances (Teck et al. 1996), the workshop participants per-
ceived that to model simultaneous effects of these pests
would require a different approach. They concluded that a
model of the physiology of individual trees that could indi-
cate “stress” would be required.

As a generalization from these experiences, I propose the
following categories to document how models link to the
real world and to each other.

Direct experience
Most decisions in forestry relate to actions or environ-

ments that are within the scope of our past experience at
some level of organization. This perception was the basis for
developing yield tables over several centuries. Data from di-
rect experience was the basis for a model in which the level
of organization and the level of integration were both the
same, usually timber volume per unit area (e.g., upper line in
Fig. 1). A limitation of such a model was that the length of

the projection could be no greater than the time span of the
calibration data. The subject ecosystem was bounded by just
the predominant species and two environmental variables,
site index and yield class. Environmental effects were inte-
grated over stand lifetimes. The link to time was just ad-
vancing age. Thus, I would call the conventional yield table
a “direct experience, deterministic, yield architecture point
model using phytometric productivity variables: site index
and yield class”.

Adding levels of integration
When combinations of species and age-classes were pro-

posed that were not represented by stand data from historical
experience, we dropped down an organizational level to
trees. At this level, increment data could usually be found
for trees growing under diverse relations with their neigh-
bors and in varying age and species mixtures. The mix of
ages and species rendered site index a misfit. Consequently,
we replaced it with various combinations of potential vege-
tation, topographic, edaphic, and climatic variables. The
choice was dictated by the available data. Munro (1974)
aptly classified such a model as an individual-tree stand
model, the first part indicating the level of organization and
the last part the level of integration.

The lower pair of lines in Fig. 1 represents such a model,
operating primarily at the tree level but producing the de-
sired stand-level indicators. Addition of understory vegeta-
tion to the mix opened many uses for such models in support
of wildlife habitat management decisions and links to mod-
els of fire behavior for fuel management decisions.

Although there have been many studies of weather effects
on tree increments (e.g., Zahner and Stage 1966; Khatouri
and Moore 1993), only a few tree models for decision sup-
port use weather variables. The usual rationale is that if we
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Fig. 1. Two model structures provide stand levels of integration. The upper line represents conventional yield architecture in which the
calibration data must span a time interval as long as the maximum period of projection. The lower model representation operates at the
tree level of organization using growth architecture with integration to stand-level indicators. Site-specific calibration may improve the
accuracy of projections.
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must use a “typical” past weather sequence to drive the pre-
diction of the future, there is nothing to be gained over using
past experience directly.

Hypotheses of effects of future management and in future
environments that are not, and cannot be, represented in past
experience such as effects of changing climate have required
yet another shift to a more detailed level of organization, the
leaf. In this case (Fig. 2), the real world experience is still in
the past and often in the laboratory or in highly instrumented
field locations such as the Jädraås installation in Sweden
used by Troeng and Linder (1982a, 1982b). Whereas models
operating at the tree and stand levels of organization can
gain some claim to lack of bias by careful randomization of
data collection and use of unbiased estimators in analysis,
models at the leaf level are “out on a limb” in this respect.
How rates of processes operating at the leaf level may be af-
fected by the complex instrumentation required for observa-
tion is not likely to be measurable. Bias in observation of
rates of leaf-level processes may be introduced by the com-
plex instrumentation required and by the lack of randomiza-
tion of sites selected for study.

Models of processes at lower levels of organization often
must assume the rates of each process to be independent of
other processes operating at that organizational level. Care-
ful representation of scaling relations between levels permits
sampling and statistical inference to provide estimates of
lower level parameters from data at a higher, field-
observable level. For example, in the context of a photosyn-
thesis-based model, Sievänen et al. (1988, 1993) showed the
power of statistical analysis to infer process rates and their
interactions that are not directly measurable. More recently,
Monte Carlo and empirical Bayesian estimation methods
have been invoked to combine prior information with partic-
ular data sets to estimate distributions of parameters not di-
rectly measurable (Mäkelä 1988). Mäkelä and Valentine
(2001), however, demonstrated that the same higher level be-

havior can be obtained from any of three hypothesized alter-
native relations between lower level models. To resolve such
problems of indeterminacy, Reynolds and Ford (1999) de-
scribed a protocol using multiple criteria to evaluate model
behavior.

Moving upward in levels of integration has definite risks.
Cumulative effects of changes at the lower level may so con-
trol processes operating at the lower level that the system
changes its overall behavior. The consequence may be that
the model will be incapable of representing loss of resilience
or other emergent attributes of the system.

Site-specific calibration
A basic tenant of forecasting for nonstationary systems is

that the immediate past is the best estimate of the immediate
future. Periodic inventory data can be used in conjunction
with model-based estimates for the same period to scale the
immediate future to the past through estimates that differ
only in response to changes in driving variables (Stage
1981). Figure 1 illustrates the data flow to introduce greater
site specificity into the tree-level projection. Such “self-
calibration” is a special case of the more general use of par-
tially specified models (Wood 2001). Furthermore, average
values of the calibration factors can be used to localize pro-
jections to the particular subpopulation of the ecosystem
represented in the original model calibration (Zumrawi et al.
2002).

Total reliance on the sample of current increments would
ignore effects of transient factors not represented in the
model. In addition, statistical theory holds that performance
of sample estimators can be improved by “shrinkage toward
the population mean” (James and Stein 1961; Lindley and
Smith 1972). Therefore, Prognosis uses multiplicative ad-
justments to the underlying accretion models that start at an
arbitrary half of the indicated adjustments and attenuate ex-
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Fig. 2. Symbiont modelling, combining independent models at two levels of organization, provides a capability for dynamic interac-
tion. Information from the tree-level model is used to initiate the more detailed leaf-level model, assuring a valid link to inventory data
and strong integration to stand-level indicators.
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ponentially through the course of the subsequent projection
(Wykoff et al. 1982).

Metamodelling
Allen and Starr (1982) suggested that, for reasons of prac-

ticality, models should not span more than three levels of or-
ganization. However, not all decision spaces can be so
confined. One approach to the need for modelling land-
scapes is to capture the essential behavior of lower level
models in analytical or tabular forms. These models derived
from models are then used to represent the system at a larger
scale. In this way, model behavior at the lower level can be
used in lieu of data from direct experience to formulate and
calibrate the higher level models. For example, Nguyen
(1990) constructed a metamodel of Prognosis. The difficulty
of that exercise lay in capturing the nuances of species com-
position and diameter distribution of removals in the partial
harvest scenarios. Another option to generate indicators at
levels of integration higher than the model’s level of organi-
zation is to use sampling inference to estimate their distribu-
tions (lower representation in Fig. 3). Urban et al. (1999)
provided examples of several variants of the metamodelling
scheme represented by the upper pair of lines in Fig. 3.
Again, the procedures for partially specified models (Wood
2001) seem relevant to their expressed need for systematic
approaches to parameterization of the metamodel.

Symbiont modelling
Two models that represent the same system at different

levels of organization offer the possibility of being linked to
capitalize on their respective strengths. During the early de-
velopment of Prognosis, we had little experience with tree
models. Therefore, I was concerned that long projections
summing individual tree estimates would assume away criti-

cal information by generating stand variables from a simple
aggregation of tree variables. The estimates would ignore ef-
fects not represented realistically by the equation forms of
the individual tree submodels. Information about these dis-
crepancies should be implicit in stand records of our long-
term permanent plots, if only we had enough of them to
build a stand-level model for complex forests. Accordingly,
I postulated a stand-level model operating in parallel with
the individual tree model, with information passing both
ways at each time step. Three 10-year periods were postu-
lated as sufficient to estimate first- and second-degree tem-
poral effects, at which point the individual tree model would
be shut down and long-range projections produced by the in-
ternally recalibrated stand model. Unfortunately, the stand-
level model was never built, and the 30-year limit quickly
disappeared along with the internal provision for the linked
stand model.

The recommendation of the Forest Pest Management
Branch workshop lay dormant until 2000 when Kelsey
Milner (see Milner et al. 2003) undertook the task of linking
his leaf – individual-tree, distance-independent model to the
expanded version of the Prognosis model for stand develop-
ment (Teck et al. 1996). His immediate motivation was to be
able to use the highly developed and supported links to in-
ventory methods for initiating the model and representing re-
generation and to use the powerful methods for simulating
management and controlling model parameters contained in
Crookston’s (1990) Event Monitor. In the working version
(Milner et al. 2003), both sets of models of the accretion and
mortality processes are executed in parallel with the capabil-
ity to interact at arbitrary intervals in the simulation (Fig. 2).

Our present challenge is to develop cross-links at each
time step so that a stronger synergism results. It would seem
that the strong sampling basis, including the self-calibration
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Fig. 3. Data to calibrate models at the landscape level of organization are seldom available, and simple integration of component stand
projections may not be computationally feasible. Sampling inference from a designed inventory of sample stands (lower representation)
may be used if contagious processes are not hypothesized. Metamodelling (upper representation) permits landscape-level processes to
be represented.
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capability, of the accretion components in the tree-level
model could help overcome the sampling inference deficien-
cies of the physiological data (Baldwin et al. 2001). Con-
versely, the indicators of physiological functioning could
add resolution to the modelling of pest effects and their in-
teractions with environmental driving variables.

Combination of symbiont modelling with metamodelling
would address the problem of cumulative effects operating at
landscape and larger scales. The missing landscape-level
processes would be added to the metamodel representation
of the lower level model to create a model at the landscape
level of organization.

Evaluating strength of links to reality

One objective of this discussion of models for use in com-
paring management alternatives was to search for objective
ways to evaluate and improve the strength of potential mod-
els or combinations of models for analysis of management
alternatives. Accuracy of model forecasts depends on the ac-
curacy of the inventory-based input data, the spatial and
temporal variability of the driving environmental variables,
as well as on the stochasticity imbedded in the model.

Gregg and Hummel (2002) have provided software to esti-
mate how sampling variation in inventory data propagates
through the Forest Vegetation Simulator. Error budgeting ad-
dresses the propagation of error attributable to parameter un-
certainty within a model and to uncertainty in driving
variables (Gertner 1987). Unfortunately, that procedure re-
quires information on the correlation of parameter variation,
information seldom available unless the parameters have
been simultaneously estimated. Other, also computationally
intensive methods to assess uncertainty have been developed
(e.g., Green et al. 1999; Guan 2000; Fang et al. 2001).

To scale between levels of organization, Norman (1992)
suggested evaluating various scaling schemes against the
(more) detailed model. Perhaps symbiont modelling pro-
vides an objective and efficient framework for such an eval-
uation. Coupled with site-specific calibration in highly
instrumented installations, the inference process can proceed
in both directions.

The preceding analysis methods become very cumber-
some when all sources of uncertainty are considered. In final
analysis, data obtained from long-term field observation are
the standard for assessing model uncertainties. These meth-
ods could be combined with analyses of the modelling of
spatial and temporal correlations among projection errors
(Stage and Renner 1988) to provide error estimates at the
ecosystem level.

Summary

That a model used in decision support must span the deci-
sion space, in representation of effects of proposed actions
on selected indicators, in ecological scope, and with assump-
tions appropriate to the cybernetic context of the decisions,
should be a tautology. Unfortunately, not all model architec-
tures have been designed with these constraints in view.
Models used in decision support require a firm foundation in
science and should produce predictions with quantified bias

and precision and that are free of artifacts that confound
choice of management alternatives.

Current classifications of models are not well suited to
choosing a model to use in decision analysis. Diversity
among extant models is so great that careless classification
by a few imprecise adjectives is counterproductive. As a
minimum, model descriptions should include the level of or-
ganization at which its processes are represented, the level of
integration of its indicators of the ecosystem, how the model
represents time and space, its links to the environment in-
cluding the ecosystems represented, and its treatment of
stochasticity. Each of these model attributes is needed to
evaluate the suitability of a candidate model for decision
support. Perhaps with these descriptors tabulated, a classifi-
cation specialist might find some natural clusters. I doubt it.

Validity of model-based evaluations of management alter-
natives rests on the strengths of their inferential links to the
real world. Sample inventory data are inferred to the man-
aged population through statistical inference. Hypothesized
effects of management actions are imputed to members of
the managed population through physiological inferences. If
either science is slighted, model predictions are suspect.
However, by combining dynamic calibration of model esti-
mates to field data with dynamic interactions between mod-
els of the same ecosystem at different levels of organization,
the usefulness of the estimates for decision-making may be
improved.

Data from a randomized inventory of the target population
should be used to construct a model of the bias inherent in
the predictions. Variables significant in this model of differ-
ences between the model and the real world define the un-
knowns in the model–ecosystem relations. Understanding
the limits of our knowledge may be a deciding factor in the
decision process. Continuous updating of this bias model
and the insight it provides is the real contribution of ecosys-
tem monitoring to management of forested ecosystems and
to the further evolution of modelling systems capturing this
new knowledge.
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