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Abstract—Diameter increment is an important variable in modeling tree growth. Most facets of 
predicted tree development are dependent in part on diameter or diameter increment, the most 
commonly measured stand variable. The behavior of the Forest Vegetation Simulator (FVS) largely 
relies on the performance of the diameter increment model and the subsequent use of predicted 
dbh in forecasting tree attributes. 
	 Previous	research	has	shown	the	efficacy	of	localized	inventory	data	in	calibrating	model	param-
eters when better predictions of individual and stand growth in focal geographic areas are sought. 
A sample-based sensitivity analysis (SA) is proposed as a preliminary step to model calibration, in 
order	to	identify	which	variables	are	most	influential	in	determining	predicted	outcomes.	SIMLab	
software was used for SA of the default dbh increment submodel in FVS-SN; samples were obtained 
from a recent inventory of longleaf pine stands in Fort Bragg, NC. Preliminary results show that 
dbh is by far the most important variable, followed by site index and competition-related predic-
tors.	Topographical	and	other	site	variables	were	largely	non-influential.	Before	calibration	and	
re-engineering	of	the	submodel,	variables	conveying	redundant	or	non-influential	information	may	
be considered for elimination. 

Introduction ______________________________________________________

Project Background 

 The Fort Bragg military installation is located 10 miles northwest of Fayetteville, 
North Carolina, in the Sandhills Region. Of the 161,597 total acres, an estimated 65,000 
are covered by longleaf pine (Pinus palustris Mill.) dominated forests. Habitat recovery 
efforts for the endangered red-cockaded woodpecker (Picoides borealis) currently are a 
priority at Fort Bragg (Blythe and others 2001). Forest inventory and monitoring are 
needed to assess suitability of forest conditions to the species’ habitat requirements (U.S. 
Fish and Wildlife Service 2003), as well as to provide indicators of overall ecosystem 
integrity and capability of lands to support military training operations. 
 A 10-year forest inventory program is currently implemented throughout the instal-
lation; in addition, forest stands are annually monitored to update changes resulting 
from	natural	growth	and	silviculture	treatments.	In	order	to	plan	for	future	growth	of	the	
forest and development of military facilities, 10-year growth projections at the stand level 
were	formulated	for	the	entire	installation	at	the	time	of	the	first	inventory.	However,	
model-based simulations provided unrealistically high stocking levels, and preliminary 
testing of the Southern Variant (Donnelly and others 2001) of FVS (FVS-SN) showed a 
similar tendency.
 The main reason for such discrepancy has been speculated as being related to an 
erroneous	representation	of	the	inherent	maximum	size-density	boundary	for	key	forest	
species	(Shaw	and	Long	2007).	This	issue	cannot	be	adequately	solved	by	standard	model	
re-fitting	techniques;	DeRose	and	others	(this	proceedings)	proposed	a	modification	to	
FVS program logic that would yield more accurate survival predictions, in accordance 
with	the	findings	by	Shaw	and	Long	(2007).	However,	Fort	Bragg	spans	over	an	area	
much smaller than the one referenced by developers of FVS-SN (see after). For this 
reason, we put into question the validity of all components of the SN model, under the 
hypothesis that discrepancies between local growing conditions and the more general 
relationships outlined by the variant might prompt growth prediction errors at the 
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individual tree scale. A research effort is currently underway which aims to evaluate 
and	refit	FVS-SN	using	forest	inventory	data	collected	on	Fort	Bragg	(Shaw	and	others	
2006).	This	paper	represents	a	first	step	using	the	base	FVS-SN	submodels	in	order	to	
establish	how	Fort	Bragg	data	look	in	relation	to	the	submodels	specified	in	SN	over	a	
much wider geographic range, and thus calibrated over a much different dataset.

The Southern Variant: Features and Challenges

	 FVS-SN	was	developed	from	Forest	Inventory	and	Analysis	(FIA)	data,	Forest	Ser-
vice	research	data,	and	data	from	the	Bureau	of	Indian	Affairs.	Its	geographic	coverage	
spans most of the southeastern United States (Donnelly and others 2001). Growth re-
lationships	for	such	a	wide	area	are	refined	with	the	help	of	species-specific	coefficients	
for each submodel equation. All submodels portray average growing conditions and al-
lometric relationship throughout the southern states. Additionally, diameter increment 
and standing volume computations also include location codes accounting for the region, 
National Forest, and Ranger District where the stand is situated, and Ecological Unit 
Codes (Keys and others 1995) at the province level as a mean of distinguishing between 
major geographic areas within the region.
 Even if the model includes a self-calibration feature, allowing it to adjust diameter 
and	height	growth	predictions	based	on	field	 increment	data	 (Dixon	2002)	 there	are	
grounds	to	suspect	that	local	variability	is	not	adequately	reflected.	Developers	of	FVS-
SN	stated	that	“If	further	research	and/or	evidence	shows	that	tree	growth	differences	
are	distinguishable	at	finer	scales,	such	results	can	be	fit	into	the	growth	relationships”	
at subsequent time (Donnelly and others 2001). Therefore, ecological subdivisions at 
a scale smaller than Province level may in some cases be proven to have an effect on 
diameter change computations.
	 Since	the	first	version of Prognosis (Stage 1973), diameter growth prediction has 
represented the key modeling function, upon which other submodels depend, at least 
in	part,	for	their	inputs.	In	FVS-SN	the	diameter	growth	submodel	for	large	trees,	i.e.,	
those	with	a	diameter	at	breast	height	(dbh)	greater	than	3	inches,	uses	a	14-coefficient	
equation with a mixture of categorical and continuous variables (table 1). The dependent 
variable is the logarithm of the predicted periodic change in squared inside-bark diameter 
(Wykoff	and	others	1982).	
	 When	this	equation	was	fitted	to	the	Fort	Bragg	data	in	its	complete	form,	three	po-
tential problems emerged. First, the regression yielded relatively low R2 values. Second, 
some	coefficients	were	found	to	have	unrealistic	signs,	for	example,	competition-related	
variables with a positive effect on growth. Both anomalies have been previously related 
to correlation problems and the degree of variability in a given data set (Neter and others 
1990); nevertheless, FVS-SN developers stated that “detection of multicollinearity was 
a major effort in picking independent variables for the diameter increment submodel of 
FVS-SN”	(D.	Donnelly,	personal	communication),	which	rules	out	interconnected	dis-
tributions of independent variables as a source of error. Third, since the ranges of some 
variables are relatively small on Fort Bragg as compared to the variability found within 
the geographic range encompassed by FVS-SN, we anticipated that some input factors might 
be redundant or even unnecessary components of the submodel at the local scale. 

Sensitivity Analysis of Model Output

	 In	order	to	assess	and	rank	the	role	of	each	independent	variable	in	predicting	diam-
eter increment of longleaf pine on Fort Bragg, we carried out a sensitivity analysis (SA) 
of	model	output	on	the	diameter	increment	submodel	of	FVS-SN.	Innis	(1979)	defined	
SA as “the systematic search for those model entities to which the model is most sensi-
tive”;	the	terms	“model	entities”	refers	to	the	measurement	accuracy	of	input	factors,	
the value of the parameters used by the model (Herring 2007), as well as the model 
form itself. The effect of incremental inclusion of independent variables and the effect 
of changes in functional relationships may be assessed both at the submodel and at the 
model superstructure level. However, the most general use of SA is concerned with model 
simplification	(Saltelli	and	others	2008).	The	objective	is	to	identify	the	factor	or	the	sub-
set	of	input	factors	that	can	be	fixed	at	any	given	value	over	their	range	of	uncertainty	
without	reducing	significantly	the	output	variance.	Regardless	of	their	contribution	to	
model predictions, insensitive model components need neither to be measured with great 
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precision	nor	to	be	scrutinized	during	refitting	of	the	model.	Since	their	behavior	is	closer	
to that of constants than of variables, they might be omitted for the sake of parsimony 
should the model be reworked under a different form. Conversely, it is useful to know 
about model components with high sensitivity, because these have the greatest impact 
on model predictions (Vanclay and Skovsgaard 1997) and might need to be measured or 
assessed with greater care.
 Most SA approaches to date have relied on local SA, i.e., the evaluation of the effect 
exerted on model outputs by individually varying only one of the model inputs across 
its entire range of plausible values, while holding all other inputs constant (Cullen and 
Frey 1999). A major drawback of this method is that interactions between input vari-
ables cannot be computationally taken into account. Thus, the results of nominal range 
sensitivity analysis are potentially misleading, especially for multilinear and nonlinear 
models (Frey and Patil 2002).
	 Hamilton	(1997)	proposed	what	he	called	“sensitivity	analysis”	of	the	FVS	suite	as	
a whole. His method was based on a priori alteration of submodel output, by means of 
FVS	keywords	such	as	BAIMULT,	HTGMULT	and	MORTMULT	(Van	Dyck	2001).	The	
percent difference in selected stand descriptors at the end of the modeling time step, 
resulting	from	the	introduction	of	fixed	perturbations	in	each	of	the	submodels,	repre-
sented the author’s chosen sensitivity metric. However, this approach was affected by 
limitations similar to one-factor-at-a-time analysis.
	 We	propose	the	use	of	first-order	sensitivity	indices,	which	assess	the	variance	of	model	
output Y due to model input Xi	(Saltelli	and	others	2004).	Our	specific	aim	is	to	assess	which	
of	the	input	factors	are	most	influential	on	the	large-tree	diameter	growth	submodel.

Methods _________________________________________________________
 Although several techniques have been proposed (Frey and Patil 2002), sampling-
based approaches to uncertainty and sensitivity analysis are both effective and widely 
used. Analyses of this type involve generating, via Monte Carlo simulations, a set of 
model evaluations Yi (i = 1… N), corresponding to N different sampled values Xi of the 
vector X = f (X1,X2,…Xk) of k input factors, and subsequently mapping uncertain analysis 
inputs to uncertain analysis results. The steps involved in conducting such an effort are 
the	following	(Helton	2005):

Definition	 of	 probability	 distributions	 to	 characterize	 uncertainty	 in	 analysis	•	
inputs;
Generation of samples from uncertain analysis inputs;•	
Propagation of sampled inputs through model simulation;•	

Table 1—Variables and description in the FVS diameter growth submodel (from Donnelly and 
others 2001). Input variables account for the growth potential of individual trees, the 
influence of the tree’s neighbors and the site’s ability to support growth.

Variable Description

ln(dds)a = b
0

intercept

+ b
1
 · ln dbh log of dbh (at beginning of estimation period)

+ b
2
 · dbh2 squared dbh

+ b
3
 · ln crwn log of percent crown ratio

+ b
4
 · hrel relative height 

+ b
5
 · SI site index for the species 

+ b
6
 · plttba plot basal area

+ b
7
 · pntbal plot basal area in trees larger than subject tree 

+ b
8
 · tan slp tangent of slope in degrees

+ b
9
 · f cos tangent of slope, cosine of aspect 

+ b
10

 · f sin tangent of slope, sine of aspect 

+ b
11

 · fortype categorical variable for forest type group 

+ b
12

 · ecounit categorical variable for ecological unit group 

+ b
13

 · plant categorical variable for planted stands
 a dds = (diameter inside bark at time

0
 + periodic diameter growth)2 – diameter inside bark2 (Wykoff and 

others 1982).
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Table 3—Correlation between input factors as measured from Fort Bragg 
inventory data. 

Variable 1 Variable 2 Pearson’s R

dbh (inches) Height (feet) 0.69
Height (feet) Live crown ratio –0.34
Live crown ratio Stand basal area (feet2 ac-–1) 0.35
Stand basal area (feet2 ac–1) Plot basal area (feet2 ac–1) 0.56

Assessment of uncertainty analysis results; and•	
Determination of sensitivity analysis results.•	

 Since we were interested in model parsimony, rather than in assessing error propa-
gation through the model, we chose to consider only stochastic uncertainty, i.e., that 
arising from the behavioral properties of the system under study. Therefore, we adopted 
the default FVS-SN dbh increment submodel as the function to evaluate, retaining its 
original	parameterization	and	 evaluating	uncertainty	 of	 each	 input	 factor	 across	 its	
potential variability in the inventory.
 Growth data from 7,302 individual longleaf pines were available from Fort Bragg 
forest inventory and were used to infer the shape, statistical properties (estimates of 
population mean and standard deviation) and range of each factor’s probability density 
function (PDF) (table 2). PDFs of sample variables were positively tested for normality 
by means of one-variable Kolmogorov-Smirnov test (p < 0.05) and truncated to minima 
and	maxima	measured	in	the	field	to	avoid	sampling	outliers.	Variables	such	as	slope	and	
forest type coding were assigned a discrete PDF with classes and weights inferred from 
sample frequencies. Biologically relevant correlations between input factors (tree dbh 
and height, tree height and crown ratio, crown ratio and stand basal area, and between 
stand	basal	area	and	plot	basal	area)	were	computed	by	means	of	Pearson’s	coefficients	
and their value entered in a dependence tree structure (Meeuwissen and Cooke 1994) 
(table 3).
 Next, we generated an iterated sample of elements from the distribution of the inputs 
previously	specified.	Latin	hypercube,	or	n-dimension	stratified	sampling,	was	chosen	
because	of	 its	efficient	 stratification	properties	allowing	 for	 the	extraction	of	a	 large	
amount	of	uncertainty	and	sensitivity	information	with	a	relatively	small	sample	size	
(Helton and Davis 2003). Moreover, this technique performs better than simple random 
sampling	when	the	output	is	dominated	by	a	few	input	factors	(Iman	and	others	1981).	
	 SIMLab	software	(EU	IPSC	2004)	was	used	for	all	steps	of	SA;	the	software	archi-
tecture	is	represented	in	figure	1.	The	randomized	sample	is	generated	in	SIMLab	using	
an	iterative	function	based	on	a	user-defined	seed	number.	We	instructed	the	software	
to generate 10,000 samples, a number close to the number of tree records used for the 
default	parameterization	of	FVS-SN	in	longleaf	pine	(Donnelly	and	others	2001)	but	much	
higher than the suggested minimum (McKay and others 1979). The generated sample 
served as a starting point for Monte Carlo-based model runs; in the model execution 

Table 2—Characterization of the input factors for sensitivity analysis of the diameter increment submodel.

Input	 Definition	 PDF	shape	 Range	 Units	 Notes

D Diameter at breast height Normal 2–30 inches 
CR Live crown ratio Normal 1–00 percent 
H Tree height Normal 10–101 feet For relative height computation 
H40 Height of 40 thickest trees ac-1 Normal 40–103 feet
SI Site Index Normal 44–132 feet 
BA Basal area (stand) Normal 5.5–158 feet2 ac-1 

pointBA Basal area (plot) Normal 10–270 feet2 ac-1 For point BA in larger trees computation
rank percentile of tree’s dbh in plot Uniform 0–1 -
slope plot mean slope Discrete 0–0.8 rad 
aspect plot mean aspect Uniform 0–2 rad 
EUC Ecological unit code Constant 0 categ. PVP232
forcode Forest cover type Discrete  0–1 categ. From Donnelly and others (2001)l
plant Plantation origin Constant 0 binary None in Fort Bragg

π
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phase, each element of the sample is supplied to the model as input, and the corresponding 
model predictions are saved for lat uncertainty and sensitivity analyses, performed by 
the statistical post processor.
 Uncertainty analysis aimed at comparing the PDF of generated diameter increment 
values	with	the	ones	measured	in	the	field.	Field	measurements,	inventory	protocols	and	
data treatment are described by Shaw and others (2006).
 The outputs whose sensitivity was evaluated were both dds, the change in squared 
inside-bark diameter (in2) during the estimation period, and dg, the value of inside-bark 
diameter	increment	after	a	5-year	simulation	cycle,	as	computed	by	the	following:

 d inches dib dds dibg ( ) = + −2  [1]

where dib is tree dbh inside bark at the beginning of the modeling period (inches). A 
constant	ratio	of	1.15	has	been	adopted	as	the	bark	thickness	coefficient	for	longleaf	pine	
on	Fort	Bragg,	independent	of	tree	size	or	age	(R.J.	DeRose,	unpublished	data).
	 Sensitivity	indicators	were	represented	by	standardized	regression	coefficients	(SRC),	
that quantify the change in Y associated with a unit of change in a given parameter Xi, 
all	other	parameters	remaining	constant	(Draper	and	Smith	1988;	Helton	1993).	The	
rank-based version of the index was used in order to account for nonlinearity in the model 
(Saltelli and others 2000). Finally, sensitivity tests based on data partitioning such as 
the	Smirnov	two-sample	test	(Conover	1980)	helped	assess	the	importance	of	each	input	
factor. The test splits the sample space for factor Xi into two subsamples according to the 
quantiles	of	the	output	distribution	Y.	If	the	distributions	of	the	two	subsamples	can	be	
proven different (index values closer to 1) then the factor Xi	is	considerer	influential.	The	
influence	of	input	factors	on	model	output	was	computed	separately	for	four	different	
dbh	size	classes.	Independent	variables	were	entered	in	the	model	in	base	rather	than	
composite form (for example, relative height has been split to tree height and height of 
the 40 largest trees per acre). 

Results and Discussion ____________________________________________
 Mean modeled dg	was	0.54	±	0.11	inches	(modeling	step:	5	years),	a	value	statistically	
different (two-sample t-test, p < 0.0001) but close to the average 5-year dbh increment 
measured on longleaf pine increment cores in the 2000 inventory (0.60 ± 0.30 inches). 
Nevertheless,	modeled	output	is	characterized	by	a	much	lower	uncertainty	than	mea-
sured	data	(fig.	2),	the	latter	having	a	wider	and	more	skewed	distribution	(range:	0.08	
to	2.58	inches,	skewness	=	+1.565).	We	hypothesized	the	lower	variability	of	modeled	
growth was due to a higher homogeneity of tree measurements used for original FVS-SN 
calibration. However, this was inconsistent with the fact that the default model presents 
a	much	better	goodness-of-fit	to	SIMLab-generated	Fort	Bragg	data	than	to	the	original	
calibration dataset (R2:	0.94	and	0.52	respectively).
	 A	certain	degree	of	model-induced	simplification	was	not	unexpected.	The	slight	over-
prediction at the lower end of the dbh increment range is not likely to be problematic, 

Figure 1—Internal model execution process in 
SIMLab (modified from EU IPSC 2004).
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and	may	be	explained	by	the	presence	of	a	few	old	trees	(ages	≥	100	years),	that	likely	
represent	leftovers	from	past	management	operations	and	might	be	characterized	by	
much	lower	growth	rates	than	would	be	predicted	given	their	actual	size	(fig.	3).	
 To better understand what model component might be responsible for both the ob-
served variance reduction and for underestimation of the higher end of growth range, 
we	re-ran	the	Monte	Carlo	analysis	on	simulated	data	apportioned	into	dbh	size	classes	
(fig.	4).	All	classes	showed	significant	differences	from	their	real	data	counterparts	(two-
sample	t	test);	while	growth	was	usually	overpredicted	in	medium-sized	trees,	it	was	
underpredicted	in	both	small	and	large	trees,	with	the	bias	in	the	first	category	being	the	
most severe (table 4). 
	 The	calibration	and	randomization	routines	embedded	in	FVS	should	partially	resolve	
this issue (Dixon 2002; Stage 1973), but they were not applied here. Our main scope was 
to suggest SA as a means of preliminary model screening, underlining the inaccuracies of 
the FVS-SN base growth model when applied to a local dataset. Such framework should 
be	applicable	to	all	cases,	and	not	only	for	those	submodels	that	may	benefit	from	the	
thorough calibration routines referenced by Dixon (2002). Moreover, FVS developers 
themselves later acknowledged as “unreasonable to assume that growth responses in 
locations	with	substantially	different	environmental	limitations	will	be	the	same.	It	is	
more likely the shape of the response surface in these locations, relative to the selected 
set of predictor variables, will be different. When this is the case, the models should be 
refit”	(Dixon	2002).
	 Underestimation	of	diameter	growth	might	affect	the	final	simulation	result,	both	
at the individual and at the stand level. For example, density-dependent mortality is 
triggered by a threshold relative density value (DeRose and others, this proceedings), 
and in turn mortality intensity depends on simulated relative density of the stand. 
Underestimation of individual dbh and thus quadratic mean diameter of the stand pos-
sibly	will	result	in	overpredictions	of	mean	size	and	density	combinations	and	therefore	
underpredict competition-induced mortality. 
 Diameter growth underprediction may be driven by a number of factors, includ-
ing	both	assuming	excessively	severe	competition,	and	a	disproportionate	influence	

Figure 2—Probability density function of variable d
g
 (5-year diameter growth) resulting from uncertainty 

analysis (10,000 Monte Carlo simulations) as compared to that measured in the field.
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Figure 3—Breast height diameter to breast height age relationship in the sample.

Figure 4—Uncertainty analysis of simulated 5-year diameter increment apportioned into the three dbh size classes (see 
text for description of size classes), as compared to that measured in the field.
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Figure 5—Sensitivity analysis. Standardized rank regression coefficient (SRRC) for input factors of the FVS-SN 
large tree dbh increment submodel, computed for each dbh size class.

of age-related decline as expressed by the dbh-squared factor. Since the most severe 
bias	affects	high	increment	values	of	small	and	medium	trees,	we	hypothesize	that	the	
cumulate effect of many competition-related variables in the model could excessively 
hamper modeled growth.
 Sensitivity indices ranking the importance and effect of each input factor are shown by 
standardized	rank	regression	coefficients	(SRRCs;	fig.	5)	and	the	Smirnov	test	index	(fig.	
6).	The	signs	of	all	SRRCs	(fig.	5)	were	consistent	with	expectations	for	growth	behavior.	
If	we	exclude	the	role	of	forest	type	coding,	which	is	capable	of	a	large	influence	on	growth	
prediction	in	a	limited	number	of	cases	(when	different	from	longleaf	pine	type;	fig.	6),	
the most important variable is tree diameter. This is consistent with evidence from the 
growth modeling literature (see for example Trasobares and Pukkala 2004. Similarly, 
the	FVS-SN	variant	manual	states:	“DBH	at	the	beginning	of	each	projection	cycle	is	
usually	the	strongest	single	statistical	determinant	of	diameter	growth	during	the	cycle”	
(Donnelly and others 2001). However, the role of starting dbh, always preeminent in 
predicting basal area increment (data not shown), is differentiated when growth output 
is back-transformed to inside-bark inches of increment. 
	 Large	trees	showed	a	very	strong	negative	influence	of	dbh	on	increment	prediction,	
an	apparent	result	of	the	senescence-related	dbh-squared	term	(fig.	5).	This	is	not	un-
expected, since large trees would mostly be unaffected by competition from neighbors, 

Table 4—Mean and range of 5-year diameter growth (inches) for sample-based simulations (10,000 
Monte Carlo runs per size class) as compared to field data. Very small trees: dbh 3 to 5 
inches; small: 5 to 10 inches; medium: 10 to 15 inches; large: higher than 15 inches. 

Size classes Simulated data Fort Bragg inventory
 Mean Range R2 Mean Range

 inches inches inches inches
Very small 0.82 0.39–2.58 0.85 0.66 0.16–1.89
Small 0.59 0.36–0.99 0.95 0.75 0.08–2.28
Medium 0.57 0.34–0.98 0.96 0.55 0.08–2.36
Large 0.47 0.25–0.82 0.96 0.50 0.08–1.57
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Figure 6—Sensitivity analysis. Smirnov test index for input factors of the FVS-SN large tree dbh increment submodel

and even a more fertile site could not adequately compensate growth decline caused by 
senescence. Growth of medium and small trees is driven to a greater extent by factors 
expressing tree and site potential and by competition-related variables. Among factors 
related to growth potential, site index always took the leading role, with tree height and 
live	crown	ratio	somewhat	less	influential	(and	inherently	correlated	to	tree	diameter).	
If	we	assumed	that	the	simultaneous	action	of	several	competition-related	factors	in	the	
model is the main reason for growth underpredictions, the ranking operated by SA might 
be useful to leave out the least important drivers. For example, if just one individual 
and one stand-scale variable were to be retained, the choice would respectively fall upon 
individual dbh ranking and stand basal area, which are capable of determining the larg-
est	influence	on	model	output	among	the	competitive-related	group	of	predictors.
 Topographically related predictor variables such as slope unexpectedly showed a 
small	but	significant	proportionality	 to	growth,	an	effect	 that	may	be	related	 to	site	
morphology and inherent characteristics of longleaf pine sites. Fort Bragg has rolling 
terrain and the effects of slope and aspect on forest growth are not readily apparent. Slope 
position—for	example,	moist	bottomlands	vs.	dry	ridges—is	far	more	likely	to	influence	
stand growth than steepness or aspect. Because both high and low moisture extremes 
are found on sites with relatively low slope values, any effect of slope on growth is likely 
to	be	confounded	during	equation	fitting	and	evaluation.

Conclusions ______________________________________________________
 We propose sensitivity analysis as a preliminary tool to model calibration, and suggest 
the use of sample-based global sensitivity analysis as a means of ranking the importance 
of input factors in determining the magnitude of modeled tree growth. Sensitivity analysis 
can	be	used	to	explore	model	behavior	in	specific	portions	of	the	input	space	to	evaluate	
biologically sound growth dynamics of different stand components (e.g., partitioning data 
into	size	or	density	classes),	and	to	compare	the	behavior	of	alternate	model	formulations.	
The	analysis	could	have	been	done	with	any	submodel	of	any	variant;	the	flexibility	of	
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SIMLab	software	represents	a	strong	support	to	sensitivity	analysis	of	individual	FVS	
submodels and potentially the entire simulation chain.
 Once the factors have been ranked in order of importance and the prediction biases 
have been detected, model developers may simplify model forms in the interest of par-
simony or formulate sampling recommendations in order to focus measurement efforts 
on the most crucial variables. An importance-based ranking of input variables may 
prove useful in designing complex equations, such as in stepwise approaches to model 
calibration. After setting up calibrated model runs, a similar analysis to that described 
in this paper would be useful to show how well the calibrated model performs. Should 
major model validity problems still exist after a comprehensive calibration, local users 
would	need	to	look	into	a	refit	of	the	model	for	local	conditions.
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