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Abstract—Diameter increment is an important variable in modeling tree growth. Most facets of 
predicted tree development are dependent in part on diameter or diameter increment, the most 
commonly measured stand variable. The behavior of the Forest Vegetation Simulator (FVS) largely 
relies on the performance of the diameter increment model and the subsequent use of predicted 
dbh in forecasting tree attributes. 
	 Previous research has shown the efficacy of localized inventory data in calibrating model param-
eters when better predictions of individual and stand growth in focal geographic areas are sought. 
A sample-based sensitivity analysis (SA) is proposed as a preliminary step to model calibration, in 
order to identify which variables are most influential in determining predicted outcomes. SIMLab 
software was used for SA of the default dbh increment submodel in FVS-SN; samples were obtained 
from a recent inventory of longleaf pine stands in Fort Bragg, NC. Preliminary results show that 
dbh is by far the most important variable, followed by site index and competition-related predic-
tors. Topographical and other site variables were largely non-influential. Before calibration and 
re-engineering of the submodel, variables conveying redundant or non-influential information may 
be considered for elimination. 

Introduction_______________________________________________________

Project Background 

	 The Fort Bragg military installation is located 10 miles northwest of Fayetteville, 
North Carolina, in the Sandhills Region. Of the 161,597 total acres, an estimated 65,000 
are covered by longleaf pine (Pinus palustris Mill.) dominated forests. Habitat recovery 
efforts for the endangered red-cockaded woodpecker (Picoides borealis) currently are a 
priority at Fort Bragg (Blythe and others 2001). Forest inventory and monitoring are 
needed to assess suitability of forest conditions to the species’ habitat requirements (U.S. 
Fish and Wildlife Service 2003), as well as to provide indicators of overall ecosystem 
integrity and capability of lands to support military training operations. 
	 A 10-year forest inventory program is currently implemented throughout the instal-
lation; in addition, forest stands are annually monitored to update changes resulting 
from natural growth and silviculture treatments. In order to plan for future growth of the 
forest and development of military facilities, 10-year growth projections at the stand level 
were formulated for the entire installation at the time of the first inventory. However, 
model-based simulations provided unrealistically high stocking levels, and preliminary 
testing of the Southern Variant (Donnelly and others 2001) of FVS (FVS-SN) showed a 
similar tendency.
	 The main reason for such discrepancy has been speculated as being related to an 
erroneous representation of the inherent maximum size-density boundary for key forest 
species (Shaw and Long 2007). This issue cannot be adequately solved by standard model 
re-fitting techniques; DeRose and others (this proceedings) proposed a modification to 
FVS program logic that would yield more accurate survival predictions, in accordance 
with the findings by Shaw and Long (2007). However, Fort Bragg spans over an area 
much smaller than the one referenced by developers of FVS-SN (see after). For this 
reason, we put into question the validity of all components of the SN model, under the 
hypothesis that discrepancies between local growing conditions and the more general 
relationships outlined by the variant might prompt growth prediction errors at the 
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individual tree scale. A research effort is currently underway which aims to evaluate 
and refit FVS-SN using forest inventory data collected on Fort Bragg (Shaw and others 
2006). This paper represents a first step using the base FVS-SN submodels in order to 
establish how Fort Bragg data look in relation to the submodels specified in SN over a 
much wider geographic range, and thus calibrated over a much different dataset.

The Southern Variant: Features and Challenges

	 FVS-SN was developed from Forest Inventory and Analysis (FIA) data, Forest Ser-
vice research data, and data from the Bureau of Indian Affairs. Its geographic coverage 
spans most of the southeastern United States (Donnelly and others 2001). Growth re-
lationships for such a wide area are refined with the help of species-specific coefficients 
for each submodel equation. All submodels portray average growing conditions and al-
lometric relationship throughout the southern states. Additionally, diameter increment 
and standing volume computations also include location codes accounting for the region, 
National Forest, and Ranger District where the stand is situated, and Ecological Unit 
Codes (Keys and others 1995) at the province level as a mean of distinguishing between 
major geographic areas within the region.
	 Even if the model includes a self-calibration feature, allowing it to adjust diameter 
and height growth predictions based on field increment data (Dixon 2002) there are 
grounds to suspect that local variability is not adequately reflected. Developers of FVS-
SN stated that “If further research and/or evidence shows that tree growth differences 
are distinguishable at finer scales, such results can be fit into the growth relationships” 
at subsequent time (Donnelly and others 2001). Therefore, ecological subdivisions at 
a scale smaller than Province level may in some cases be proven to have an effect on 
diameter change computations.
	 Since the first version of Prognosis (Stage 1973), diameter growth prediction has 
represented the key modeling function, upon which other submodels depend, at least 
in part, for their inputs. In FVS-SN the diameter growth submodel for large trees, i.e., 
those with a diameter at breast height (dbh) greater than 3 inches, uses a 14-coefficient 
equation with a mixture of categorical and continuous variables (table 1). The dependent 
variable is the logarithm of the predicted periodic change in squared inside-bark diameter 
(Wykoff and others 1982). 
	 When this equation was fitted to the Fort Bragg data in its complete form, three po-
tential problems emerged. First, the regression yielded relatively low R2 values. Second, 
some coefficients were found to have unrealistic signs, for example, competition-related 
variables with a positive effect on growth. Both anomalies have been previously related 
to correlation problems and the degree of variability in a given data set (Neter and others 
1990); nevertheless, FVS-SN developers stated that “detection of multicollinearity was 
a major effort in picking independent variables for the diameter increment submodel of 
FVS-SN” (D. Donnelly, personal communication), which rules out interconnected dis-
tributions of independent variables as a source of error. Third, since the ranges of some 
variables are relatively small on Fort Bragg as compared to the variability found within 
the geographic range encompassed by FVS-SN, we anticipated that some input factors might 
be redundant or even unnecessary components of the submodel at the local scale. 

Sensitivity Analysis of Model Output

	 In order to assess and rank the role of each independent variable in predicting diam-
eter increment of longleaf pine on Fort Bragg, we carried out a sensitivity analysis (SA) 
of model output on the diameter increment submodel of FVS-SN. Innis (1979) defined 
SA as “the systematic search for those model entities to which the model is most sensi-
tive”; the terms “model entities” refers to the measurement accuracy of input factors, 
the value of the parameters used by the model (Herring 2007), as well as the model 
form itself. The effect of incremental inclusion of independent variables and the effect 
of changes in functional relationships may be assessed both at the submodel and at the 
model superstructure level. However, the most general use of SA is concerned with model 
simplification (Saltelli and others 2008). The objective is to identify the factor or the sub-
set of input factors that can be fixed at any given value over their range of uncertainty 
without reducing significantly the output variance. Regardless of their contribution to 
model predictions, insensitive model components need neither to be measured with great 
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precision nor to be scrutinized during refitting of the model. Since their behavior is closer 
to that of constants than of variables, they might be omitted for the sake of parsimony 
should the model be reworked under a different form. Conversely, it is useful to know 
about model components with high sensitivity, because these have the greatest impact 
on model predictions (Vanclay and Skovsgaard 1997) and might need to be measured or 
assessed with greater care.
	 Most SA approaches to date have relied on local SA, i.e., the evaluation of the effect 
exerted on model outputs by individually varying only one of the model inputs across 
its entire range of plausible values, while holding all other inputs constant (Cullen and 
Frey 1999). A major drawback of this method is that interactions between input vari-
ables cannot be computationally taken into account. Thus, the results of nominal range 
sensitivity analysis are potentially misleading, especially for multilinear and nonlinear 
models (Frey and Patil 2002).
	 Hamilton (1997) proposed what he called “sensitivity analysis” of the FVS suite as 
a whole. His method was based on a priori alteration of submodel output, by means of 
FVS keywords such as BAIMULT, HTGMULT and MORTMULT (Van Dyck 2001). The 
percent difference in selected stand descriptors at the end of the modeling time step, 
resulting from the introduction of fixed perturbations in each of the submodels, repre-
sented the author’s chosen sensitivity metric. However, this approach was affected by 
limitations similar to one-factor-at-a-time analysis.
	 We propose the use of first-order sensitivity indices, which assess the variance of model 
output Y due to model input Xi (Saltelli and others 2004). Our specific aim is to assess which 
of the input factors are most influential on the large-tree diameter growth submodel.

Methods__________________________________________________________
	 Although several techniques have been proposed (Frey and Patil 2002), sampling-
based approaches to uncertainty and sensitivity analysis are both effective and widely 
used. Analyses of this type involve generating, via Monte Carlo simulations, a set of 
model evaluations Yi (i = 1… N), corresponding to N different sampled values Xi of the 
vector X = f (X1,X2,…Xk) of k input factors, and subsequently mapping uncertain analysis 
inputs to uncertain analysis results. The steps involved in conducting such an effort are 
the following (Helton 2005):

Definition of probability distributions to characterize uncertainty in analysis •	
inputs;
Generation of samples from uncertain analysis inputs;•	
Propagation of sampled inputs through model simulation;•	

Table 1—Variables and description in the FVS diameter growth submodel (from Donnelly and 
others 2001). Input variables account for the growth potential of individual trees, the 
influence of the tree’s neighbors and the site’s ability to support growth.

Variable Description

ln(dds)a = b
0

intercept

+ b
1
 · ln dbh log of dbh (at beginning of estimation period)

+ b
2
 · dbh2 squared dbh

+ b
3
 · ln crwn log of percent crown ratio

+ b
4
 · hrel relative height 

+ b
5
 · SI site index for the species 

+ b
6
 · plttba plot basal area

+ b
7
 · pntbal plot basal area in trees larger than subject tree 

+ b
8
 · tan slp tangent of slope in degrees

+ b
9
 · f cos tangent of slope, cosine of aspect 

+ b
10

 · f sin tangent of slope, sine of aspect 

+ b
11

 · fortype categorical variable for forest type group 

+ b
12

 · ecounit categorical variable for ecological unit group 

+ b
13

 · plant categorical variable for planted stands
	 a dds = (diameter inside bark at time

0
 + periodic diameter growth)2 – diameter inside bark2 (Wykoff and 

others 1982).
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Table 3—Correlation between input factors as measured from Fort Bragg 
inventory data. 

Variable 1	 Variable 2	 Pearson’s R

dbh (inches)	 Height (feet)	 0.69
Height (feet)	 Live crown ratio	 –0.34
Live crown ratio	 Stand basal area (feet2 ac-–1)	 0.35
Stand basal area (feet2 ac–1)	 Plot basal area (feet2 ac–1)	 0.56

Assessment of uncertainty analysis results; and•	
Determination of sensitivity analysis results.•	

	 Since we were interested in model parsimony, rather than in assessing error propa-
gation through the model, we chose to consider only stochastic uncertainty, i.e., that 
arising from the behavioral properties of the system under study. Therefore, we adopted 
the default FVS-SN dbh increment submodel as the function to evaluate, retaining its 
original parameterization and evaluating uncertainty of each input factor across its 
potential variability in the inventory.
	 Growth data from 7,302 individual longleaf pines were available from Fort Bragg 
forest inventory and were used to infer the shape, statistical properties (estimates of 
population mean and standard deviation) and range of each factor’s probability density 
function (PDF) (table 2). PDFs of sample variables were positively tested for normality 
by means of one-variable Kolmogorov-Smirnov test (p < 0.05) and truncated to minima 
and maxima measured in the field to avoid sampling outliers. Variables such as slope and 
forest type coding were assigned a discrete PDF with classes and weights inferred from 
sample frequencies. Biologically relevant correlations between input factors (tree dbh 
and height, tree height and crown ratio, crown ratio and stand basal area, and between 
stand basal area and plot basal area) were computed by means of Pearson’s coefficients 
and their value entered in a dependence tree structure (Meeuwissen and Cooke 1994) 
(table 3).
	 Next, we generated an iterated sample of elements from the distribution of the inputs 
previously specified. Latin hypercube, or n-dimension stratified sampling, was chosen 
because of its efficient stratification properties allowing for the extraction of a large 
amount of uncertainty and sensitivity information with a relatively small sample size 
(Helton and Davis 2003). Moreover, this technique performs better than simple random 
sampling when the output is dominated by a few input factors (Iman and others 1981). 
	 SIMLab software (EU IPSC 2004) was used for all steps of SA; the software archi-
tecture is represented in figure 1. The randomized sample is generated in SIMLab using 
an iterative function based on a user-defined seed number. We instructed the software 
to generate 10,000 samples, a number close to the number of tree records used for the 
default parameterization of FVS-SN in longleaf pine (Donnelly and others 2001) but much 
higher than the suggested minimum (McKay and others 1979). The generated sample 
served as a starting point for Monte Carlo-based model runs; in the model execution 

Table 2—Characterization of the input factors for sensitivity analysis of the diameter increment submodel.

Input	 Definition	 PDF shape	 Range	 Units	 Notes

D	 Diameter at breast height	 Normal	 2–30	 inches	
CR	 Live crown ratio	 Normal	 1–00	 percent	
H	 Tree height	 Normal	 10–101	 feet	 For relative height computation 
H40	 Height of 40 thickest trees ac-1	 Normal	 40–103	 feet
SI	 Site Index	 Normal	 44–132	 feet	
BA	 Basal area (stand)	 Normal	 5.5–158	 feet2 ac-1	

pointBA	 Basal area (plot)	 Normal	 10–270	 feet2 ac-1	 For point BA in larger trees computation
rank	 percentile of tree’s dbh in plot	 Uniform	 0–1	 -
slope	 plot mean slope	 Discrete	 0–0.8	 rad	
aspect	 plot mean aspect	 Uniform	 0–2	 rad	
EUC	 Ecological unit code	 Constant	 0	 categ.	 PVP232
forcode	 Forest cover type	 Discrete 	 0–1	 categ.	 From Donnelly and others (2001)l
plant	 Plantation origin	 Constant	 0	 binary	 None in Fort Bragg

π
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phase, each element of the sample is supplied to the model as input, and the corresponding 
model predictions are saved for lat uncertainty and sensitivity analyses, performed by 
the statistical post processor.
	 Uncertainty analysis aimed at comparing the PDF of generated diameter increment 
values with the ones measured in the field. Field measurements, inventory protocols and 
data treatment are described by Shaw and others (2006).
	 The outputs whose sensitivity was evaluated were both dds, the change in squared 
inside-bark diameter (in2) during the estimation period, and dg, the value of inside-bark 
diameter increment after a 5-year simulation cycle, as computed by the following:

	 d inches dib dds dibg ( ) = + −2 	 [1]

where dib is tree dbh inside bark at the beginning of the modeling period (inches). A 
constant ratio of 1.15 has been adopted as the bark thickness coefficient for longleaf pine 
on Fort Bragg, independent of tree size or age (R.J. DeRose, unpublished data).
	 Sensitivity indicators were represented by standardized regression coefficients (SRC), 
that quantify the change in Y associated with a unit of change in a given parameter Xi, 
all other parameters remaining constant (Draper and Smith 1988; Helton 1993). The 
rank-based version of the index was used in order to account for nonlinearity in the model 
(Saltelli and others 2000). Finally, sensitivity tests based on data partitioning such as 
the Smirnov two-sample test (Conover 1980) helped assess the importance of each input 
factor. The test splits the sample space for factor Xi into two subsamples according to the 
quantiles of the output distribution Y. If the distributions of the two subsamples can be 
proven different (index values closer to 1) then the factor Xi is considerer influential. The 
influence of input factors on model output was computed separately for four different 
dbh size classes. Independent variables were entered in the model in base rather than 
composite form (for example, relative height has been split to tree height and height of 
the 40 largest trees per acre). 

Results and Discussion_____________________________________________
	 Mean modeled dg was 0.54 ± 0.11 inches (modeling step: 5 years), a value statistically 
different (two-sample t-test, p < 0.0001) but close to the average 5-year dbh increment 
measured on longleaf pine increment cores in the 2000 inventory (0.60 ± 0.30 inches). 
Nevertheless, modeled output is characterized by a much lower uncertainty than mea-
sured data (fig. 2), the latter having a wider and more skewed distribution (range: 0.08 
to 2.58 inches, skewness = +1.565). We hypothesized the lower variability of modeled 
growth was due to a higher homogeneity of tree measurements used for original FVS-SN 
calibration. However, this was inconsistent with the fact that the default model presents 
a much better goodness-of-fit to SIMLab-generated Fort Bragg data than to the original 
calibration dataset (R2: 0.94 and 0.52 respectively).
	 A certain degree of model-induced simplification was not unexpected. The slight over-
prediction at the lower end of the dbh increment range is not likely to be problematic, 

Figure 1—Internal model execution process in 
SIMLab (modified from EU IPSC 2004).
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and may be explained by the presence of a few old trees (ages ≥ 100 years), that likely 
represent leftovers from past management operations and might be characterized by 
much lower growth rates than would be predicted given their actual size (fig. 3). 
	 To better understand what model component might be responsible for both the ob-
served variance reduction and for underestimation of the higher end of growth range, 
we re-ran the Monte Carlo analysis on simulated data apportioned into dbh size classes 
(fig. 4). All classes showed significant differences from their real data counterparts (two-
sample t test); while growth was usually overpredicted in medium-sized trees, it was 
underpredicted in both small and large trees, with the bias in the first category being the 
most severe (table 4). 
	 The calibration and randomization routines embedded in FVS should partially resolve 
this issue (Dixon 2002; Stage 1973), but they were not applied here. Our main scope was 
to suggest SA as a means of preliminary model screening, underlining the inaccuracies of 
the FVS-SN base growth model when applied to a local dataset. Such framework should 
be applicable to all cases, and not only for those submodels that may benefit from the 
thorough calibration routines referenced by Dixon (2002). Moreover, FVS developers 
themselves later acknowledged as “unreasonable to assume that growth responses in 
locations with substantially different environmental limitations will be the same. It is 
more likely the shape of the response surface in these locations, relative to the selected 
set of predictor variables, will be different. When this is the case, the models should be 
refit” (Dixon 2002).
	 Underestimation of diameter growth might affect the final simulation result, both 
at the individual and at the stand level. For example, density-dependent mortality is 
triggered by a threshold relative density value (DeRose and others, this proceedings), 
and in turn mortality intensity depends on simulated relative density of the stand. 
Underestimation of individual dbh and thus quadratic mean diameter of the stand pos-
sibly will result in overpredictions of mean size and density combinations and therefore 
underpredict competition-induced mortality. 
	 Diameter growth underprediction may be driven by a number of factors, includ-
ing both assuming excessively severe competition, and a disproportionate influence 

Figure 2—Probability density function of variable d
g
 (5-year diameter growth) resulting from uncertainty 

analysis (10,000 Monte Carlo simulations) as compared to that measured in the field.
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Figure 3—Breast height diameter to breast height age relationship in the sample.

Figure 4—Uncertainty analysis of simulated 5-year diameter increment apportioned into the three dbh size classes (see 
text for description of size classes), as compared to that measured in the field.
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Figure 5—Sensitivity analysis. Standardized rank regression coefficient (SRRC) for input factors of the FVS-SN 
large tree dbh increment submodel, computed for each dbh size class.

of age-related decline as expressed by the dbh-squared factor. Since the most severe 
bias affects high increment values of small and medium trees, we hypothesize that the 
cumulate effect of many competition-related variables in the model could excessively 
hamper modeled growth.
	 Sensitivity indices ranking the importance and effect of each input factor are shown by 
standardized rank regression coefficients (SRRCs; fig. 5) and the Smirnov test index (fig. 
6). The signs of all SRRCs (fig. 5) were consistent with expectations for growth behavior. 
If we exclude the role of forest type coding, which is capable of a large influence on growth 
prediction in a limited number of cases (when different from longleaf pine type; fig. 6), 
the most important variable is tree diameter. This is consistent with evidence from the 
growth modeling literature (see for example Trasobares and Pukkala 2004. Similarly, 
the FVS-SN variant manual states: “DBH at the beginning of each projection cycle is 
usually the strongest single statistical determinant of diameter growth during the cycle” 
(Donnelly and others 2001). However, the role of starting dbh, always preeminent in 
predicting basal area increment (data not shown), is differentiated when growth output 
is back-transformed to inside-bark inches of increment. 
	 Large trees showed a very strong negative influence of dbh on increment prediction, 
an apparent result of the senescence-related dbh-squared term (fig. 5). This is not un-
expected, since large trees would mostly be unaffected by competition from neighbors, 

Table 4—Mean and range of 5-year diameter growth (inches) for sample-based simulations (10,000 
Monte Carlo runs per size class) as compared to field data. Very small trees: dbh 3 to 5 
inches; small: 5 to 10 inches; medium: 10 to 15 inches; large: higher than 15 inches. 

Size classes	 Simulated data	 Fort Bragg inventory
	 Mean	 Range	 R2	 Mean	 Range

	 inches	 inches	 inches	 inches
Very small	 0.82	 0.39–2.58	 0.85	 0.66	 0.16–1.89
Small	 0.59	 0.36–0.99	 0.95	 0.75	 0.08–2.28
Medium	 0.57	 0.34–0.98	 0.96	 0.55	 0.08–2.36
Large	 0.47	 0.25–0.82	 0.96	 0.50	 0.08–1.57
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Figure 6—Sensitivity analysis. Smirnov test index for input factors of the FVS-SN large tree dbh increment submodel

and even a more fertile site could not adequately compensate growth decline caused by 
senescence. Growth of medium and small trees is driven to a greater extent by factors 
expressing tree and site potential and by competition-related variables. Among factors 
related to growth potential, site index always took the leading role, with tree height and 
live crown ratio somewhat less influential (and inherently correlated to tree diameter). 
If we assumed that the simultaneous action of several competition-related factors in the 
model is the main reason for growth underpredictions, the ranking operated by SA might 
be useful to leave out the least important drivers. For example, if just one individual 
and one stand-scale variable were to be retained, the choice would respectively fall upon 
individual dbh ranking and stand basal area, which are capable of determining the larg-
est influence on model output among the competitive-related group of predictors.
	 Topographically related predictor variables such as slope unexpectedly showed a 
small but significant proportionality to growth, an effect that may be related to site 
morphology and inherent characteristics of longleaf pine sites. Fort Bragg has rolling 
terrain and the effects of slope and aspect on forest growth are not readily apparent. Slope 
position—for example, moist bottomlands vs. dry ridges—is far more likely to influence 
stand growth than steepness or aspect. Because both high and low moisture extremes 
are found on sites with relatively low slope values, any effect of slope on growth is likely 
to be confounded during equation fitting and evaluation.

Conclusions_______________________________________________________
	 We propose sensitivity analysis as a preliminary tool to model calibration, and suggest 
the use of sample-based global sensitivity analysis as a means of ranking the importance 
of input factors in determining the magnitude of modeled tree growth. Sensitivity analysis 
can be used to explore model behavior in specific portions of the input space to evaluate 
biologically sound growth dynamics of different stand components (e.g., partitioning data 
into size or density classes), and to compare the behavior of alternate model formulations. 
The analysis could have been done with any submodel of any variant; the flexibility of 
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SIMLab software represents a strong support to sensitivity analysis of individual FVS 
submodels and potentially the entire simulation chain.
	 Once the factors have been ranked in order of importance and the prediction biases 
have been detected, model developers may simplify model forms in the interest of par-
simony or formulate sampling recommendations in order to focus measurement efforts 
on the most crucial variables. An importance-based ranking of input variables may 
prove useful in designing complex equations, such as in stepwise approaches to model 
calibration. After setting up calibrated model runs, a similar analysis to that described 
in this paper would be useful to show how well the calibrated model performs. Should 
major model validity problems still exist after a comprehensive calibration, local users 
would need to look into a refit of the model for local conditions.
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