

ASSOCIATION FOR
WOMEN IN MATHEMATICS

Newsletter

VOLUME 56, NO. 1 • JANUARY–FEBRUARY 2026

The purpose of the Association for Women in Mathematics is to create a community in which women and girls can thrive in their mathematical endeavors, and to promote equitable opportunity and gender-inclusivity across the mathematical sciences.

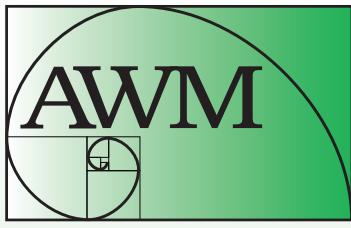
IN THIS ISSUE

3 AWM Student Column
5 Dr. Laurette Foster: A Legacy of Excellence
7 Book Review
9 Upcoming Opportunities from The Edge Foundation
10 Media Column
12 Education Column
14 2026 AWM Dissertation Prize Winners
15 2026 AWM-MAA Etta Zuber Falconer Award Winner Announced
16 2026 Ruth I. Michler Memorial Prize Winner Announced
17 2026 Alice T. Schafer Mathematical Prize Winners Announced
18 In Memoriam: Debra Boutin
19 2027 AWM Prizes and Awards Call for Nominations

PRESIDENT'S REPORT

As the year comes to an end, I find myself reflecting on our organization's accomplishments in 2025. To me, the most significant was hosting the 2025 AWM Research Symposium at the University of Wisconsin–Madison despite the loss of federal funding the week before. A successful, record-breaking symposium speaks to the remarkable resilience and energy of the AWM community. Entering 2026, our mission remains as important as ever: to create a community in which women and girls can thrive in their mathematical endeavors and to promote equitable opportunity and gender-inclusivity across the mathematical sciences. The start of a calendar year is an invitation to assess our accomplishments and consider future opportunities to work together as we build a mathematical community that is equitable, inclusive, and vibrant.

Over the past several months, AWM members have continued to showcase extraordinary creativity and commitment. Our student chapters remain active and engaged, hosting workshops, mentoring events, outreach events, research talks, and celebrations of mathematics and community. Many of these events were initiated or organized by volunteers—students, faculty, and professionals—whose work strengthens the connective tissue that holds AWM together.


Unfortunately, we also continuously confront an academic landscape marked by uncertainty. Shifts in priorities, strains on higher-education budgets, and the ongoing pressures facing students and early career professionals have a disproportionate impact on those already underrepresented in our field. These challenges are real, and so is our collective responsibility to respond to them. AWM's policy and advocacy efforts remain active, and we are committed to supporting equitable practices in hiring, promotion, research support, and representation. Our involvement in this work holistically improves the health and well-being of the mathematical profession.

As we move into spring and beyond, strengthening mentorship and professional support is at the forefront of my mind. There is a strong opportunity for AWM to expand its mentoring, networking, and peer support. We are working with a leadership development organization to design a leadership program for women in mathematics. The initiative will prepare current and emerging women leaders in mathematics for leadership roles, including department chairs, deans, and institutional change agents. The program is designed for women who are aspiring to or entering the early stages of administrative leadership, with a focus on practical skill building, peer networking, and sustained reflection. Our presence as leaders enhances the health, well-being, and vibrancy of our field.

As we prepare for 2026, a semiprime one step beyond a perfect square, I am reminded that even ordinary-looking numbers carry surprising structure. The same is true of our community. We are built from many independent “primes” whose strengths and contributions create something uniquely powerful. AWM thrives from and is sustained by the energy, dedication, and generosity of its dynamic members.

I invite you to participate in whatever ways feel meaningful: submit an article to the newsletter, join a committee, nominate a student or colleague for an award, organize an event,

continued on page 2

ASSOCIATION FOR
WOMEN IN MATHEMATICS

AWM was founded in 1971 at the Joint Meetings in Atlantic City.

The *Newsletter* is published bi-monthly. Articles, letters to the editor, and announcements are welcome. Authors sign consent to publish forms. The electronic version is freely available at awm-math.org.

Opinions expressed in *AWM Newsletter* articles are those of the authors and do not necessarily reflect opinions of the editors or policies of the Association for Women in Mathematics.

Circulation: 3500. © 2026, AWM

EXECUTIVE COMMITTEE

President

Raegan Higgins
Texas Tech University
Department of Mathematics & Statistics
1108 Memorial Circle
Lubbock, TX 79409-1042
raegan@awm-math.org

Past President Talitha Washington

Treasurer Mary Shepherd

Clerk Alejandra Alvarado

At-Large Members

Rebecca Garcia	Caroline Klivans
Courtney Gibbons	Emille Lawrence
Monica Jackson	Rosa Orellana
Gizem Karaali	Shanise Walker

Media Coordinator

Kimberly Ayers,
socialmedia@awm-math.org

Meetings Coordinator

Lakeshia Legette Jones,
meetingscoordinator@awm-math.org

Newsletter Editor

Dandrielle Lewis,
awmnewsletteeditor@awm-math.org

NEWSLETTER TEAM

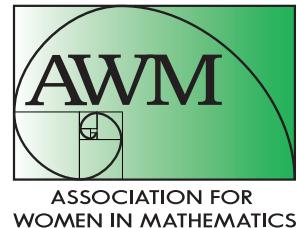
Margaret Bayer, Book Review
Jacqueline Dewar, Education Column
Jenny Fuselier, Associate Editor,
fuselier@awm-math.org
Meghan Lee, Student Column
Sarah Greenwald, Media Column
Nandhini Ravishankar, Student Column
Alice Silverberg, Media Column

PRESIDENT'S REPORT *continued from page 1*

or encourage someone to join or reach out to another member who might benefit from their support. Every contribution strengthens our community and extends the reach of our shared mission.

Our strength lies in the fact that we are a community, one that spans institutions, career stages, research areas, professional paths, and lived experiences. Together, we will continue to own the work, broaden the path, and shape the future. I am grateful for all you do and excited for what we will accomplish together in 2026 and the years ahead.

Raegan Higgins
Lubbock, TX
December 1, 2025


Raegan Higgins

Note from the Editor

The term of our Associate Newsletter Editor, Dr. Jenny Fuselier, is coming to an end, and I want to thank her for our outstanding contributions, service, and dedication. She made sure each edition reflected our mission and voice. Her unwavering reliability, creativity, and energy elevated the AWM newsletter, and she will be missed.

Our team and AWM readers have benefitted from her hard work. It has been an honor to collaborate with her. Jenny, with great appreciation, thank you for all you have done. On behalf of the AWM team and readers, we wish you the very best in your next chapter, and we look forward to celebrating you in all your future endeavors.

With great appreciation,
Dandrielle Lewis
AWM Newsletter Editor

ASSOCIATION FOR
WOMEN IN MATHEMATICS

For the latest news, visit
awm-math.org

The Importance of Extending Math to Nonmathematicians

Nandhini Ravishankar, nravish2@ncsu.edu

For a math major, I have a surprisingly small number of friends who also study math. Most of my friends are spread across different fields, studying things like biology, economics, politics, and design. While I've enjoyed spending time working through problem sets with my fellow math majors, I found that surprisingly, some of the most joyful moments I've had while studying math came from the moments that my nonmath friends leaned over my shoulder in the library, asking with equal parts fear and curiosity: "What on Earth are you working on?"

These interactions were always delightful. Not because I enjoyed feeling smart or superior (although I will be the first to admit that I do enjoy the ego boost occasionally), but because explaining mathematics to someone who doesn't already understand what's going on allows you to look at the same concepts through fresh eyes. By explaining the bare bones of these concepts to my friends, I was forced to strip away the struggle and toil of actually doing the math, and rediscover what was actually interesting about it. Watching their faces oscillate between alarm and interest reminded me how strange, creative, and ultimately abstract math is. Through their eyes, the concepts I was studying began to shine in a new light. Instead of simply rushing through a proof, I was able to appreciate how wonderful and weird math really is.

A couple weeks ago, I read a *New York Times* article titled "You Don't Need to Be Good at Math to Enjoy It," an interview with mathematician Eugenia Cheng regarding her philosophies on mathematical thinking and teaching. Cheng, who recently left a tenured position at the University of Sheffield in England to teach at the School of the Art Institute of Chicago, felt that after spending most of her career working with people who were already good at math, she wanted to reach out to those who had been discouraged by the mathematics education system. She wanted to work with students who had been told that they were not good at math, who were struggling with the rigid structure and many rules without explanation that are common in mathematics education.

When reading, I resonated the most with her finding that students who have historically struggled with math often found it easier to think of it as an abstract concept when compared to students who are "good at math." Cheng explained, a student who disliked the strict rules of math growing up is much more excited to find out that there are mathematical worlds where $1+1$ doesn't necessarily equal 2.

I felt that this fell in line with what my peers and I had experienced throughout our studies. Being "good at math" had cramped my ability to think about math creatively, especially when I first started studying math. I had learned to prioritize following rules, which lent more importance to correctness rather than exploration. On the other hand, I noticed how some of my friends who were not as good as math at a young age were much more willing to accept and play with "weird" mathematical concepts.

Wanting to learn more, I reached out to Dr. Cheng myself. To my delight, she responded.

I first asked, "Why is it important that everyone, not just mathematicians, are able to explore and interact with mathematical concepts, even without fully understanding them?"

continued on page 4

Membership Dues

Membership runs from Oct. 1 to Sept. 30

Individual: \$70/\$100 **Family:** \$40

Contributing: \$160/\$190

New member, affiliate and reciprocal members, retired, part-time: \$35

Student: \$25 **Unemployed:** \$20

Outreach: \$10

AWM is a 501(c)(3) organization.

Institutional Membership Levels

AWM offers a tiered pricing structure for institutional memberships in six categories. Higher levels are:

Supporting Institutions: \$750+

Sponsoring Institutions: \$3000+

See awm-math.org for details.

Executive Sponsorship Levels

\$5000+

\$2500-\$4999

\$1000-\$2499

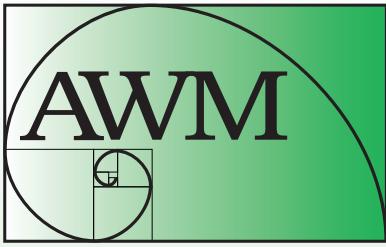
See awm-math.org for details.

Print Subscriptions and Back Orders—

Regular and contributing members living in the US may elect to receive a print version of the *Newsletter*. Libraries, women's studies centers, non-mathematics departments, etc., may purchase a subscription for \$75/year. Back orders are \$20/issue plus shipping/handling (\$5 minimum).

Payment—Payment is by check (drawn on a bank with a US branch), US money order, or international postal order. Visa and MasterCard are also accepted.

Newsletter Ads—AWM will accept advertisements for the *Newsletter* for positions available, programs in any of the mathematical sciences, professional activities and opportunities of interest to the AWM membership and other appropriate subjects. The Managing Director, in consultation with the President and the Newsletter Editor when necessary, will determine whether a proposed ad is acceptable under these guidelines. *All institutions and programs advertising in the Newsletter must be Affirmative Action/Equal Opportunity designated.* Institutional members receive discounts on ads; see the AWM website for details. For non-members, the rate is \$130 for a basic four-line ad. Additional lines are \$16 each. See the AWM website for *Newsletter* display ad rates.


Newsletter Deadlines

Editorial: 17th of January, March, May, July, September, November

Ads: Feb. 1 for March–April, April 1 for May–June, June 1 for July–August, August 1 for September–October, October 1 for November–December, December 1 for January–February

Addresses

Send all queries and all *Newsletter* material except ads and material for columns to Dandriele Lewis, awmnewslettereditor@awm-math.org. Send all book review material to Marge Bayer, bayer@ku.edu. Send all education column material to Jackie Dewar, jdewar@lmu.edu. Send all media column material to Sarah Greenwald, appalachianawm@appstate.edu and Alice Silverberg, asilverb@uci.edu. Send all student chapter corner queries/material to Amanda Howard, student-chapters@awm-math.org. Send all Student Column material to Meghan Lee, meghanlee@ucsb.edu. Send everything else, including ads and address changes, to AWM awm@awm-math.org.

ASSOCIATION FOR
WOMEN IN MATHEMATICS

AWM ONLINE

The *AWM Newsletter* is freely available online.

Online Ads Info: Classified and job link ads may be placed at the AWM website.

Website: <https://awm-math.org>
Updates: webmaster@awm-math.org

Media Coordinator

Kimberly Ayers, socialmedia@awm-math.org

AWM DEADLINES

February 1, 2026:

Deadline for the AWM Essay Contest

February 15, 2026:

Deadline for applications for the
AWM Travel Grants

February 15, 2026:

Deadline for applications for the
AWM Mentoring Travel Grants

July 1, 2026:

Deadline for RCCW Proposals

AWM OFFICE

Darla Kremer, Executive Director
darla@awm-math.org

Samantha Faria, Managing Director
samantha@awm-math.org

Association for Women in Mathematics
Attn: Samantha Faria
201 Charles Street
Providence, RI 02904
401-455-4042
awm@awm-math.org

AWM STUDENT COLUMN *continued from page 3*

Dr. Cheng replied, “I think it’s a core part of thinking clearly, so everyone who is interested in thinking clearly could be helped by this strength. This is even aside from it being a central part of so much information in the world at the moment, and if anyone wants to remain aware of what’s going on, some familiarity with mathematical concepts is needed.”

Her answer spoke clearly to the idea that mathematical thinking is not fundamentally about getting answers right—it is about learning to navigate ambiguity, to reason from assumptions, to test ideas, to sit with uncertainty. These skills matter far beyond mathematics. They matter in politics, in science, in everyday life, in our relationships with one another. Treating math like a set of rules robs us of being able to practice developing these skills in our lives.

I also asked about the fact that, in her article, she spoke about how her way of thinking has been shaped by studying mathematics. Given that she teaches art students, whose minds have presumably also been shaped by their field of study, I wondered if she had noticed any similarities or differences in the way she thinks compared to her students/artists.

Dr. Cheng said, “Yes—we are all interested in abstraction, nuance, gray areas, open-ended questions, deep thinking, humanity, and social justice.”

Lastly, I asked about a point she mentioned in the article—that many students are discouraged by mathematics at an early age because it relies on many rules without explanation. I wanted to know if she thought there was a way to teach introductory math without these rules, or if she thought it possible to continue to enforce those rules yet find a way to communicate the abstractness of math.

Dr. Cheng replied, “I don’t think the rules should be absent, I just think the explanations should be there with them, along with awareness that the rules are only true in context and aren’t universal. For example: commutativity happens to be true for addition and multiplication of numbers, but it’s not true for multiplication of all things (such as matrices) and isn’t true for all ways of combining things, in math and in life.”

This perspective felt like a truly transformative way to think about early mathematical education. If rules were treated as guidelines, instead of strict barriers, there could be many more young people interested in math, rather than being scared away. The people who are considered “bad at math” often bring something invaluable: a willingness to ask unconventional questions. They ask, “Why does this rule work?”, “How can that even be true?”, “What if you changed this assumption?” They poke at the structures we take for granted. This kind of questioning is not a weakness—it is the mathematical curiosity and instinct that many of us spend years trying to develop.

Often, as women in mathematics, many of us have felt pressure to prove ourselves in STEM spaces. That pressure can make us hyperaware of mistakes or slow moments, and sometimes it trains us out of the very curiosity that drew us to math in the first place. When we study with people outside our field, we can be reminded of the joy that drew us to study math in the first place. This article and discussion impressed upon me the importance of sharing the work we do, even while we are students. Explaining concepts to nonmathematicians compels us to find the emotion and wonder in math. We can begin to dismantle the stereotypes that describe math as cold, uninviting, or inaccessible. This narrative often drives away creative minds, and disproportionately drives away young girls. By reframing math as an area that encourages creative thought, we can hopefully attract more young minds into studying math.

Overall, I truly enjoyed learning more about Dr. Eugenia Cheng and her philosophies. Learning about mathematicians who operate with this expansive, imaginative perspective was refreshing. It reminded me that mathematics is at its best when it is curious,

open, and human-centered. Thus, it is in our best interest to create a welcoming environment for those who may not have studied math as deeply as we have.

Finally, something that has been made clear in my studies, and something I kept coming back to when reading this article is the fact that honestly, math is weird. It is strange and abstract, which is what makes it so wonderful to study. That weirdness shouldn't be a barrier—it should be an invitation.

Note from the Editor: The following article features Dr. Laurette Foster, exploring her career, scholarship, and the lasting impact of her work in mathematics. It also highlights her dedication to faculty development and her efforts to strengthen academic communities through teaching, mentorship, and leadership.

Dr. Laurette Foster, A Legacy of Excellence in Mathematics and Faculty Development

Samuel Ivy, Prairie View A&M University, sjivy@pvamu.edu; Sylvia Miller, Prairie View A&M University, shmiller@pvamu.edu; and Senora Sims, Prairie View A&M University, swsims@pvamu.edu

When you speak with Dr. Laurette Blakey Foster, you quickly realize you are in the presence of a trailblazer whose career spans more than five decades of service, scholarship, and leadership. As a senior professor of mathematics and director of the Center for Teaching Excellence at Prairie View A&M University (PVAMU), her journey reflects an unwavering commitment to student success and faculty development. Colleagues describe her as a pillar of wisdom and support—someone who commands respect through humility and service.

Early Foundations and Academic Journey

Dr. Foster earned her BS and MS degrees in mathematics and mathematics education from Virginia State College in 1971 and 1973, respectively, and her EdD in mathematics education (curriculum and instruction) from the University of Houston in 1977. She began her career at PVAMU during a pivotal era of institutional growth. Initially planning to stay only one year, she found herself drawn into a community that felt like family—a department where collaboration and mutual support were the norm. That sense of belonging, coupled with her passion for teaching, became the foundation for a career that has shaped generations of students and faculty.

Advocating Student Success and Curriculum Innovation

Dr. Foster's early work focused on gateway courses such as college algebra, which she identified as critical to student persistence in STEM fields. "Calculus reform was not the issue at Prairie View," she explains. "College algebra is the focus point." Her philosophy—that strong foundations in algebra empower students to succeed in advanced mathematics—sparked national conversations and positioned her as a leader in curriculum reform.

By appreciating mathematics through the eyes of non-mathematicians, by sharing our ideas, by asking unconventional questions, by resisting the pressure to be perfect, we can reclaim that invitation. We can create a better environment for ourselves while we study math today, and more importantly, for the girls who follow us in the future.

This insight led to the development of Contemporary College Algebra, a course designed to maintain rigorous content while introducing innovative pedagogy. "The content should be the same," she insists. "The pedagogy is the only thing that's different." Rather than diluting standards, this long-standing course emphasized active learning, project-based strategies, and collaborative approaches to engage students and to accommodate diverse learning styles. Her leadership extended beyond PVAMU through her service on the Mathematical Association of America's Curriculum Renewal Across the First Two Years (CRAFTY) committee, which examined curriculum redesign for the first two years of college mathematics nationwide.

Dr. Foster also played a pivotal role in a national initiative supported by the National Science Foundation (NSF) and the Army

continued on page 6

Dr. Laurette Foster

Research Office (ARO). She collaborated with faculty at the United States Military Academy at West Point to improve success rates in gateway mathematics courses. As part of this effort, she trained faculty across the US on alternative delivery methods to enhance student learning outcomes. Her contributions to mathematics education further include a five-year appointment with the Educational Testing Service (ETS) in Princeton, NJ, where she developed questions for the SAT Mathematics Subject Test.

Building the Center for Teaching Excellence

In 2004, Dr. Foster transitioned to lead PVAMU's Center for Teaching Excellence (CTE), expanding her impact from mathematics to the entire university. Under her direction, the CTE has become a hub for faculty development, offering workshops on pedagogy, assessment, and emerging technologies. "We [faculty] have wonderful degrees in content," she notes, "but we're not taught how to teach." Her work addressed this gap, equipping faculty—especially those new to teaching—with strategies to engage diverse learners.

Today, the CTE continues to evolve. It offers training in artificial intelligence tools and fosters interdisciplinary collaboration. Dr. Foster envisions the center as a safe space for faculty—where ideas are shared and innovation thrives. Her leadership also extended to institutional quality initiatives. She served a five-year term as director of PVAMU's Quality Enhancement Plan, which is a key component of the Southern Association of Colleges and Schools (SACS) reaffirmation process.

Legacy of Leadership and Service

A cancer survivor for more than 22 years, Dr. Foster speaks candidly about how that experience shaped her outlook. "If you

embrace cancer so that it's a comma in your life but not a period, you move on," she says. Her resilience underscores a career defined by perseverance and purpose. When asked about her legacy, she responds without hesitation: "Your legacy should be what you do for other people." For her, that means opening doors for students and colleagues, mentoring new faculty, and creating pathways for success.

Her impact on students at PVAMU is exemplified through alumni testimonials. Kimberly Bursey-Reece (Class of 1990) reflects on Foster's unwavering dedication, noting that although she was never her classroom instructor, Foster's guidance and advocacy enabled her to pursue a unique degree plan and succeed beyond the classroom—an enduring testament to her clarity, commitment, and holistic support. Similarly, John Briscoe (Class of 2002 and 2006) recalls meeting Foster as a freshman in 1998, crediting her teaching with shaping his academic foundation, confidence, and discipline. Both accounts underscore Foster's reputation for excellence, patience, and lifelong mentorship—qualities that leave an indelible imprint on the lives of those she serves.

Beyond her direct work with students, Dr. Foster has served as a reviewer and chair for projects submitted to the National Science Foundation, as an external evaluator for mathematics departments and quality enhancement plans, and as a mentor for faculty nationwide. Her contributions have earned her numerous accolades, including the Texas A&M Chancellor's Faculty Award in 2010 and 2011.

Dr. Foster's story is a testament to the transformative power of education and the enduring impact of dedicated educators. As PVAMU and institutions nationwide navigate the complexities of higher education, her example reminds us that excellence begins with a simple, profound commitment to teach, mentor, and care.

CALL FOR PROPOSALS

Research Collaboration Conferences for Women

The AWM works to establish and support research networks for women in all areas of mathematics research. In particular, the AWM RCCW Committee provides mentorship and support to new networks wishing to organize a Research Collaboration Conference for Women (RCCW). The Committee offers help finding a conference venue, developing and submitting a conference proposal, and soliciting travel funding for participants. Thanks to a National Science Foundation grant, some funding may be available through the AWM to support new RCCWs, especially interdisciplinary proposals and proposals that bring together researchers from traditionally underrepresented populations.

Mathematicians interested in organizing the first conference of a new RCCW are invited to submit a proposal to the AWM describing the conference topic, potential co-organizers and project leaders, and potential participants. Proposals should be no more than one page (PDF files only, please) and should be sent to awm.rccw@gmail.com. Deadlines for submission: **July 1**.

More information about Research Collaboration Conferences for Women, existing RCCW networks, and related initiatives can be found at <http://awm-math.org/programs/research-networks/>.

BOOK REVIEW

Book Review Editor: Margaret Bayer, University of Kansas, Lawrence, KS 66045-7523, bayer@ku.edu

Empowering Women in STEM: Working Together to Inspire the Future

Edited by Sanya Mathura

CRC Press, 2022

ISBN 9781032372648

Reviewer: Marge Bayer, bayer@ku.edu

This book is a series of 22 chapters written by different people (mostly women) on the topic of the title. Most of the chapters tell the story of the woman's career progression, the obstacles she faced and the ways she overcame them. Some don't tell personal stories directly, but give advice. One nice feature is that the chapter authors come from eight different countries, and briefer stories of women from other countries are included. The book is most useful for people early in their career, to help them think about how they can control their career. It also shows how institutions and businesses can improve the environment for women and other minorities. My biggest disappointment with the book is that, in spite of the word STEM in the title, all the authors are engineers or work in an engineering industry. All are people who have primarily worked outside academia, although a few have also taught. Many have also worked or volunteered in organizations to improve science education in the schools, to work directly with children in extracurricular programs, or to provide support for women in industry.

The book is divided into three sections: Inspiring the Future, Nontraditional Paths, and Leading the Way. The nontraditional paths theme is clear, but it is a little difficult for me to discern the thematic difference between the first and third sections.

A number of people had a nonstandard educational experience. Shelli Brunswick, chief operating officer of the Space Foundation, went into the US Air Force right after graduating from high school. She figured that she could eventually get an education on the GI Bill. But in fact, she was able to get bachelor's and master's degrees while in the Air Force. A couple of the authors (Claudia Gomez-Villeneuve and Lennis Perez) started university in their home countries, but followed their parents to the US, where they adapted to a new university system in another language. Stephanie Hajducek got her bachelor's degree in industrial engineering technology at the age of 38. Some did not study engineering originally. Marcella Ceva got degrees in international relations and law, and eventually moved into finance. She is included because she is head of a venture capital fund in Latin America that invests exclusively in women in tech.

Only a few horror stories are described. Angelica Gonzalez tells of a professor who "made a vulgar comparison" about her. A male classmate complained and, after a university investigation,

the professor's contract was not renewed. Alex Knight got accustomed to lewd comments from coworkers. Priscilla Nowajewski had to change graduate programs after a professor tried to get her expelled. Generally, the obstacles that the women reported were more commonplace: being in a small minority in degree programs and industry, being mistaken for secretaries, facing difficulties as mothers (including lack of lactation rooms). One of my favorite quotes: "Why is it we can be invisible as engineers but hyper-visible as women?" [p. 142]

The focus of most of the chapters is on the strategies that the women used to succeed. Over and over again, we read that the person learned to seek out opportunities for new responsibilities and new skills. They identified mentors. They applied for any possible promotion. They persisted. And this is what they recommend to their readers.

Many of the women use social media and podcasts to share their experience and advice with others. Alexandra Knight left a career in digital asset management to found STEMAZING, where she leads initiatives to support women in STEM and inspire children. Stephanie Hajducek is a sales manager for a large company, but is also the founder and "chief visionary officer" of This One's for the Gals (TOFTG), which guides K-12 girls in career exploration and workforce development.

The two men who contributed chapters are heavily involved in outreach and media in support of women and girls. Stuart Naismith was in finance when he decided to change careers and become a primary school teacher. In his educational program he got hooked on astrobiology, and soon developed ways to incorporate science into most areas of the curriculum. He developed science materials for other teachers and ran after-school clubs. During the Covid lockdown he created a YouTube channel featuring at-home experiments along with explanations of the science behind them. He has expanded to include a video series called "Robot Review," STEM Career Interviews, and more. Joel Leonard, a facilities engineer, was worried about the looming shortage of maintenance and reliability workers, as many workers approach retirement and few young people enter the industry. He saw one solution as enticing women into the field. He developed MakesboroUSA, created the 3500-member Wild Women Welders Facebook group, and even wrote a song, "Find Me a Maintenance Woman."

One of the more remarkable stories is that of Ludmilla Derr. The title of her chapter is "I #DERRtobedifferent, I Dare to Be Me." She was born in Kazakhstan and moved to Germany when she was 14. Even before she started at university she had a job translating technical materials from Russian to German, and this evolved into work in a chemistry research lab. She got a degree in chemistry, followed by a PhD in materials science. After graduation she worked in the auto industry in Switzerland, before quitting to start her own company in technical marketing and event management. She mentions that one of the advantages she has enjoyed was having been born in the Soviet Union. Why an advantage? Because math and

continued on page 8

BOOK REVIEW *continued from page 7*

science were stressed in the schools and because math and science were considered appropriate professions for women.

The advice all these authors give for women in technical careers:

- Take advantage of every opportunity
- Build your knowledge and skills
- Take chances, don't fear the unknown
- Learn from your mistakes or failures
- Seek out mentors
- Create or join a network
- Communicate, let your supervisors and team know your needs
- Be persistent
- Set boundaries between work and family

Helen Johnson cites the Royal Academy of Engineering when she writes, "57 percent of female engineers in the UK will leave the engineering profession by age 45, as opposed to 17 percent of male engineers." [p. 142] Often this occurs with the birth of a first child. Sarah Marie Bilder focuses on strategies for integrating work and family life in a STEM career. Companies and institutions should provide adequate family leave, provide space for lactation and rest at work, allow flexible work schedules, allow work from home, and encourage open conversations about parenting and priorities. The last is important to combat the impression that women who ask for flexibility and accommodation are not committed to their work.

Claudia Gomez-Villeneuve faced a variety of responses at her company regarding parenting. Her first child was born while she was still a graduate student. Her second was born while she was working at a large company in Canada. At that time, her

boss was clueless, questioning her future on specific projects and in the company in general. While she was on maternity leave, she was moved to a different department; the move was essentially a demotion. This complicated her progress towards license requirements as a professional engineer. The good news was that her new boss (an accountant, not an engineer) was more open to her ideas and needs. She was able to change her work to 80% of full-time equivalent, which she maintained for 12 years. However, returning from maternity leave after the birth of her third child, she again found that her previous job role had been eliminated. In fact, with the help of a former boss, she was able to get a better job in the company, as project engineer and project manager. At that point she figured out that her salary was significantly below those of men in similar positions. She presented her salary research to her boss, and was able to get a significant salary adjustment. Eventually, through her own persistence and by proving herself by taking on extra work, she was able to get a promotion to the management position she felt she deserved, while still continuing part-time at 80%. When she eventually left the company (during a downturn in the industry), she turned to organizing conferences for women (and their allies) in engineering, and teaching at the university level.

Of course, with many authors and perspectives, you will not find everything in this book speaks to you, and you may not agree with everything. It is the variety of experiences that make this book valuable. I found the personal stories particularly interesting. I found some chapters less interesting, when they offered platitudes without concrete examples. At times, I also wished for more careful editing, even just for typos. Despite these drawbacks, the book gives a good framework for a woman in STEM to think about her career.

NSF-AWM Travel Grants for Women

Mathematics Travel Grants. The objective of the NSF-AWM Travel Grants is to enable women mathematicians to attend conferences in their fields, which provides them a valuable opportunity to advance their research activities and their visibility in the research community. Having more women attend such meetings also increases the size of the pool from which speakers at subsequent meetings may be drawn and thus addresses the persistent problem of the absence of women speakers at some research conferences. The Mathematics Travel Grants provide full or partial support for travel and subsistence for a meeting or conference in the applicant's field of specialization.

Selection Procedure. All awards will be determined on a competitive basis by a selection panel consisting of distinguished mathematicians appointed by the AWM. A maximum of \$2300 for domestic travel and of \$3500 for foreign travel will be funded. For foreign travel, US air carriers must be used (exceptions only per federal grants regulations; prior AWM approval required).

Eligibility and Applications. Please see the website (<https://awm-math.org/awards/awm-grants/travel-grants/>) for details on eligibility and do not hesitate to contact awm@awm-math.org or 401-455-4042 for guidance. Applications from members of underrepresented minorities are especially welcome.

Deadlines. There are three award periods per year. Applications are due **February 15, 2026**. All travel must be completed before **June 30, 2026**.

The Sylvia Bozeman and Rhonda Hughes EDGE Foundation

Enhancing Diversity in Graduate Education

Upcoming Opportunities from the EDGE Foundation

The EDGE Foundation is pleased to announce a number of opportunities for graduate students and faculty members in the mathematical sciences community. Please read below to learn more about these opportunities.

The EDGE Summer Program is a four-week, residential session designed to prepare a cohort of women and gender-nonconforming individuals to thrive in their PhD programs in the mathematical sciences. Program participants attend daily lectures in subjects such as Linear Algebra, Real Analysis, Measure Theory, and Applied Mathematics. EDGE coursework is designed to prepare participants for graduate research and qualification exams, while also providing practical experience in a rigorous academic setting. Participants delve deeper into these subjects through collaborative daily problem sessions with guidance from EDGE mentors, who are current graduate students and often EDGE alumnae.

The EDGE Summer Program provides a supportive space for participants to navigate challenges and develop strategies for success. Through formal and informal mentoring, participants will learn how to complete their first year, tackle qualifying exams, find and work with a research advisor, and prepare for life after graduate school—all while bringing their full selves to their academic environments.

The EDGE Summer Program will be held May 31–June 27 at the University of Waterloo in Canada. Applications are due **February 13, 2026**. To apply, visit <https://www.mathprograms.org/db/programs/1809>.

The Karen EDGE Fellowship supports and enhances the research programs and collaborations of mid-career mathematicians who are members of an underrepresented minority group. Mathematicians of any gender identity are eligible. The award consists of \$8,000 per year for three years.

The Karen EDGE Fellowship, established by an extraordinary gift from Abel Prize winner, Karen Uhlenbeck, propels forward the research careers of its recipients. As one Karen EDGE Fellow wrote, “only through the generosity of Karen Uhlenbeck and the EDGE Foundation was I able to start so many new, exciting projects.”

Applications are due **March 13, 2026**. To apply, visit <https://www.mathprograms.org/db/programs/1813>.

The Mary Beth Ruskai Research Fund for Women is a grant opportunity for women in the mathematical sciences to advance their research careers through travel, collaboration, or other activities. The grant consists of \$5,000 over a 12 month period.

The Ruskai Research Fund was established by a generous request from the estate of Mary Beth Ruskai. The scope of these grants reflects Beth’s commitment to women and to interdisciplinary work.

Applications are due **April 10, 2026**. To apply, visit <https://www.mathprograms.org/db/programs/1812>.

Please email any questions to edgestaff@edgeforwomen.org.
For more information on the EDGE Foundation, visit www.edgeforwomen.org.

MEDIA COLUMN

Media Column Editors: Sarah J. Greenwald, Appalachian State University, appalachianawm@appstate.edu, and Alice Silverberg, University of California, Irvine, asilverb@uci.edu.

Mathematical Messaging in *Velma*

Sarah J. Greenwald, Appalachian State University, greenwaldsj@appstate.edu

Velma, an adult animated cartoon related to the *Scooby-Doo* franchise, has been scorched by critics as well as fans of the franchise. The first incarnation began in 1969 and followed the adventures of four teenagers and their talking dog as they solved mysteries. Previous versions that I'm familiar with generally followed a similar plotline and were either suitable for children or suggested parental guidance for children. The show has been reimagined so that Velma is now South Asian, Daphne is East Asian and Norville is Black, while Fred remains white. I appreciate that the main characters are more diverse than they used to be but I miss *Scooby-Doo*, the talking dog, who isn't in this version. *Velma* is rated TV-MA, which is not recommended for anyone under the age of 17. New episodes aired in 2023 and 2024 on the streaming service Max. There are a few mathematical references.

Both Fred and Velma have mathematical visions. While these are a small part of the show, I'm pleased that they aren't relegated to one genius character as they were in the shows *NUMB3RS* and *The Librarians* [1]. I think that the visions in *Velma* are a parody of those in the prior shows, without the math genius. I found it interesting that in Episode 1, also called "Velma," Velma tells Norville "... I don't want to do our math homework together. Just email me your answers like always." So, Velma is not portrayed as mathematically talented but she can still have mathematical visions. Previously in the franchise, Velma was the most intelligent character, including in science, but not so here. Perhaps they changed her intelligence level to challenge the "model minority" stereotype of Asians in the US who are automatically labeled by some as successful, high-achieving and gifted [2], but I'm unhappy that they dumbed her down. Fred isn't very bright in the show but he has visions too. These visions occur when Fred or Velma is either thinking hard or has some kind of revelation or change in viewpoint. To me, the fact that they both can have these visions is a tiny step in the right direction of subtly communicating the message that mathematics is for everyone.

Velma has her first mathematical vision in Season 1 Episode 2, "The Candy Man." She is reconsidering an important plot point that I don't want to spoil. We see mathematical items come across the screen, pass in front of Velma's upper body, and leave very quickly. Even though the mathematics has nothing to do with the plot point, I see it as a reflection of her new logical thoughts clicking into place. Items include numbers like $\sqrt{1,000,000.2}$, a

logical statement " $x = y$ then $y = x$," and a triangle with an altitude drawn in. I was surprised to see some errors: the volumes $v = \pi r^2$ and $V = \frac{1}{3}r^2$ are both missing items and $\frac{x-b\sqrt{b^2+4ac}}{2a}$ is an incorrect version of the quadratic formula. Perhaps these errors are purposely there to again highlight that Velma isn't great at mathematics. If not, then I'm guessing that these were typos from the writers or animators.

Velma and Fred have mathematical visions in Season 1 Episode 4, "Velma Makes a List." Fred is the first of the two to have a mathematical vision in this episode. His initial vision is filled with immature references that objectify women. It is not all his fault as Velma is the one to ask him to rank the "five hottest girls" at their school in order to try and keep them safe. As he is thinking hard, there is a closeup of his eyes that now have numbers and more in them. Then, light rays emanate from behind him and we see the full mathematical vision. As such, this animation is quite different from the one that Velma had.

Among other items in Fred's vision, we see examples of how the show earns its TV-MA rating using suggestive humor. There is $\frac{RU}{18}$ and 80085 and an outline of a woman's pretty face near $QT\pi$, B4I4Q and *perfect* $10 = 36 + 34 + 36$ as well as an outline of feminine buttocks above $V = \pi r^2 \text{hot}$. The vision ends on an outline of breasts with both nipples labeled as (x, y) . It would have made more sense if the "before I fork you" reference was paired with the "are you over 18" one, but they are separated. The number 80085 is presumably for "boobs" on a calculator. I was intrigued at the lengths that they went to in order to creatively showcase Fred's view of women by employing letters, numbers, and formulas. I wondered if it was on purpose that they used the number 34 instead of 24 that is often used for an ideal figure for a woman or if it was a mistake that they made the waist size so much larger as it seems to contradict the rest of Fred's expectations for his ideal mental picture of women's bodies. Fred's vision overlays the room and we can still see his view of Velma, unlike the vision in the earlier episode that showed us Velma's face as we were seeing her thoughts. I found it odd that we are gazing at Velma in both of these visions. Is Velma the object of our gaze for the first two mathematical visions because of the "male gaze" that historically placed the camera on women for heterosexual men? Alternatively, are we to identify more with Velma and her thinking in her vision when she is the object of the camera? I'm not sure.

In the same episode, as she leaves, Velma hands Fred a copy of the book *The Feminine Mystique*. He feels weird after reading it. He sees a sexy woman in a bikini but then quickly turns his attention to a frumpy artist who wears sensible shoes and is "forging her own identity, regardless of what society expects." The mathematical vision starts and we see Euler's formula, a cone with $V = \frac{1}{3}\pi r^2 h$ and a graph with a brain on it instead of the earlier buttocks. The term "perfect" is now paired with *IQ=180* instead of the previous body measurements. I'm guessing that the equation $y = ax^2 + bx + c$ was supposed to have a superscript for a power of 2. However, the superscripts are correct everywhere else. Fred picks up *The Feminine Mystique* and asks the book: "What have you done to

me?" Later, Fred envisions equations swirling around Velma. Some of the same mathematical items from the artist are shown. In addition, this vision has *leader + brilliant + knows herself = HOT???* overlaying Velma.

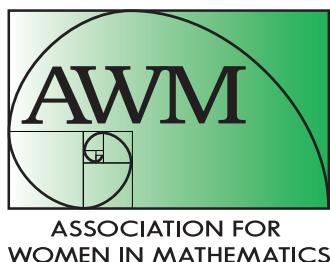
Even later, Fred lets Velma know that the book she gave him has opened his eyes, and Velma has a vision. We first see mathematical items swirling around her but then the gaze changes to show equations around Fred. During all his visions, Fred's eyes open wide and light rays emanate from him while Velma has neither of these effects. Is this supposed to imply that it is easier for Velma to think mathematically or that Fred is a bit possessed by the visions but Velma isn't? In considering the entirety of the mathematical visions, I am confused by the differences in how they begin and whom we view while they occur. I am unsure what messages these differences are intended to convey.

Plotlines related to women in science are in the show, mostly connected to the character of Dr. Edna Perdue, a neurosurgeon and mad scientist. In a flashback scene from the 1970s, Perdue lectures to scientists and the military in Season 1, Episode 6, "The Sins of the Fathers and Some of the Mothers." Mathematical items are shown briefly on a blackboard. They aren't connected to a mathematical vision. We see equations and graphs on the board, including a cone. I feel that the blackboard is used to contextualize her intelligence. When the audience gasps at her discovery, one member of the audience questions, "a woman scientist?" In Season 2, Episode 6, "Private Velmjamin," Perdue is "a brilliant Black female scientist who consistently defied the barriers of her time."

My favorite references in the show are in Season 2, Episode 2, "Creaky Friday." I especially like the silly humor that is early in the episode. Velma has gained popularity and sprays the symbol π on a piece of pie using whipped cream. Velma says: "Not gonna lie. Being popular doesn't suck. People finally laugh at my hilarious jokes." And everyone does laugh. I also found it interesting that gender differences are visible in the same episode. In an 1890s flashback at a school, a board has:

today's lessons
boys = reading + math
girls = look pretty

If the writers intended to showcase changes from the 1890s until today, with the π on the pie, then I wish this were more clearly connected.


While there is a brief mention of Norville and math homework in Season 1, it isn't until Season 2 that we explicitly see mathematical equations around him. In Season 2, Episode 3, "When Velma Met Money," Norville collects and works with data on a computer. There are equations on a whiteboard. Later, we see that Norville has written equations and mathematical symbols all over the room, including on the ceiling, somehow! This episode also features a science fair. Neil deGrasse Tyson is a part of it. One character, whose identity I don't want to divulge for plot purposes, says they can't think of a famous woman scientist, even as they encourage Velma to participate.

A South Asian student (Velma), a white student (Fred), a Black scientist (Dr. Edna Perdue) and a Black student (Norville) each have their own mathematical moments in the show. While I would have liked it even better if the mathematical items were better connected to the plots and if I had better understood the reasons for the differences in the animations and gazes connected to Fred and Velma, I do think *Velma* showcases that mathematics is an activity for diverse people. There is diversity in their races and ethnicities as well as in their level of mathematical talent. In addition, the brief blackboard scene conveys the applicability of mathematics in medicine, which I like. Thus, even though the show itself has been panned by so many, overall, I would rate the mathematical representations positively.

Acknowledgment: I greatly appreciate the help I had from Andrew Nestler in bringing the mathematical items in *Velma* to my attention.

References

- [1] Greenwald, Sarah J. 2015. "The Librarians' Math Girl," *AWM Newsletter* 45(5), September–October, pp. 8–9. <https://www.drive-hq.com/folder/p8755087/14442180598.aspx>
- [2] Yadavalli, Anila, J. D. Walker, Jeff J. Shi, and Jonathan Rogness. 2024. "I Just Feel the Need to be Good at Something, and that Thing Should be Math": Acknowledging Asian/Asian American Identity in an Accelerated Mathematics Program, *PRIMUS* 34(5), pp. 476–490. <https://doi.org/10.1080/10511970.2022.2032505>

For the latest news, visit
awm-math.org

EDUCATION COLUMN

Education Column Editor: Jackie Dewar, Loyola Marymount University, jdewar@lmu.edu

It's Cool to Learn New Things: Updating Your Skill Set for Data Science

Helen Burn, Highline College, hburn@highline.edu

For many of us in the field of mathematics, our background encompasses coursework in three pivotal domains that equip us to teach introductory data science courses: mathematics, statistics, and computer science. Over a decade ago, I found myself teaching introductory statistics almost exclusively, driven by both enrollment demands and a deepening passion that blossomed during my graduate studies in higher education in the early aughts. Transitioning to the rapidly growing field of data science is not merely a professional detour; it is a strategic move that enhances our prospects as mathematics educators. With the increasing demand for data science and AI curricula, our expertise is more urgently needed than ever.

I took the plunge and am currently teaching my second iteration of *Introduction to Data Science*,¹ modeled after the University of Washington's initial course in its data science minor.² This project-based course includes drawing conclusions from tables, using visualizations and statistical tools to relate variables and make inferences, and introducing machine learning concepts. Data integrity and ethics are addressed throughout the course. In parallel, a dedicated team of colleagues at Highline College is serving as pathfinders for a project aimed at providing two-year college students with access to introductory data science curriculum. The initiative has garnered significant support from the Washington State Board of Community and Technical Colleges (SBCTC). For full details, please refer to page 5 of the SBCTC's *Math Pathways and Placement Fall Newsletter 2025*.³

As the course start date approached, I prepared for the anticipated challenges, dedicating extra hours to teach—and, at times, learn—new topics for my students. What surprised me was not the time commitment but the unexpected ease and delight of the learning process itself. When I shared this realization with my team member from computer science, they remarked, "It's cool to learn new things, isn't it?"

¹ https://catalog.highline.edu/preview_course_nopop.php?catoid=30&coid=140332

² <https://dataminor.uw.edu/>

³ <https://docs.google.com/document/d/1jXvDPO7GDN1OpzXA-X91kDVTwCSLIXqjNKRY9kDbU5Cw/edit?tab=t.0#heading=h.uwtpzkmp9874>

If you already teach statistics at the introductory level, here are the practical shifts I've found worth the time as you upskill yourself to teach introductory data science. Embrace these changes, and I hope you, too, discover the joy I found along the way!

First, replace the graphing calculator with statistical software tools in your introductory statistics class. In the two-year college setting, graphing calculators continue to be the preferred technology. However, changing this is essential, as introductory data science relies on technology for creating visualizations and analyzing data. The more tools you become familiar with, the smoother your transition to any software used for visualization will be. While the calculator was once liberating, it now restricts us to small data sets and complex procedures for basic visualizations. In contrast, software designed for data visualization allows students to upload data and produce high-quality graphics in minutes. This shift does not abandon core concepts; rather, it reframes them. Instead of spending 30 minutes constructing a complicated visualization, your students can spend 10 minutes generating visualizations and 20 minutes interpreting them—focusing on the stories the data tell.

Second, messy, imperfect datasets are prevalent in data science. Finding high-quality data often requires you to wrangle it yourself, which presents a valuable opportunity to enhance your Excel features. While many of us are familiar with basic Excel commands for calculating statistics, it's equally important to strategically use filters for exploring, selecting, or sorting data, as well as efficiently navigating a spreadsheet without excessive scrolling. I've discovered numerous nuances of Excel through practice and quick internet searches. For example, my students and I discovered that when calculating descriptive statistics on a filtered dataset, Excel does not ignore hidden rows, while the COUNT and COUNTA functions do. The more you make strategic use of such Excel skills while teaching introductory statistics, the easier it will be to design activities and lessons focused on data cleaning and exploratory data analysis in introductory data science. Moreover, finding and wrangling your own data provides direct exposure to data bias, an essential topic when teaching data ethics.

Third, develop ways to reduce the theoretical content required for teaching descriptive and inferential statistics. The Mathematical Association of America's StatPrep project⁴ was invaluable in teaching me to present measures such as standard deviation with intuition and visualization, and to leverage bootstrapped sampling distributions and simulation-based demonstrations rather than lengthy algebraic derivations. This adjustment will prepare you to teach introductory data science, where descriptive statistics are taught swiftly and quickly applied. Four weeks into my introductory data science course, students are interpreting linear regression coefficients, evaluating goodness-of-fit statistics, calculating confidence intervals, and interpreting *p*-values.

⁴ <http://www.statprep.org/>

Fourth, take advantage of internet resources to learn about decision trees and random forests, which are common machine learning techniques. This is where my joy of learning really surprised me; I had assumed it would take hours to figure out how to present these concepts to students. However, I discovered that you don't need to be a neural network engineer to grasp the basics and convey useful intuition. Start with decision trees and random forests, as both offer clear visual metaphors. Familiarize yourself with confusion matrices, accuracy measures, precision/recall tradeoffs, ROC curves, and feature importance tables. Watch a few short explainers on these algorithms, and you'll be ready. Treat neural networks as another tool to simplify; focus on what they predict, how to evaluate performance, and when they are preferable to simpler models. A great resource to boost your learning is to explore Josh Starmer's YouTube channel, StatQuest,⁵ for clear and engaging explanations of data science concepts. I have also gained deep insights into data science trends through subscribing to the website Towards Data Science.⁶

Finally, as more departments and colleges begin to adopt data science curricula, they face important decisions about whether to design courses that require programming languages. There are ongoing debates about whether to mandate the use of R or Python in introductory data science courses. The version of the course I am teaching uses point-and-click software, making data science accessible to students in data-adjacent fields as well as those interested in what I refer to as "Big D Data Science." Although, in the summer of 2024, I invested in my own skills through two weeks of intensive R training offered by Data Science for Environmental Health,⁷ I have not yet learned Python, and that's perfectly fine. My goal is incremental growth. Given the rapid advancements in AI, considerable

uncertainty surrounds the future of programming requirements, and I'm eager to see how my state will navigate the expansion of introductory data science courses within the two-year college curriculum.

Ultimately, by learning new skills we model the very qualities we want our students to adopt: intellectual curiosity and the ability to adapt to new challenges. Starting small—whether it's importing a dataset, cleaning some dirty data, crafting a thoughtful visualization, or teaching students to interpret computer output—will help you level up your skills to teach introductory data science which, in turn, may be essential to keeping new opportunities within reach. So, start with one minor change this term. It's cool to learn new things, and the process is often easier and more joyful than you expect.

References

Data Science for Environmental Health. (n.d.). *Resources*. Retrieved November 6, 2025, from <https://daseh.org/resources.html>.

Highline College. (2025). *Computer Science 180: Introduction to Data Science*. Retrieved November 6, 2025, from https://catalog.highline.edu/preview_course_nopop.php?catoid=30&coid=140332.

Starmer, J. (n.d.). *StatQuest with Josh Starmer*. YouTube. Retrieved November 6, 2025, from <https://www.youtube.com/c/joshstarmer>.

StatPrep. (n.d.). *About StatPrep*. Retrieved November 6, 2025, from <https://www.statprep.org/about.html>.

Towards Data Science. (n.d.). Retrieved November 6, 2025, from <https://towardsdatascience.com/>.

University of Washington. (2025). *Data science minor*. Retrieved November 6, 2025, from <https://dataminor.uw.edu/>.

Washington State Board for Community and Technical College. (September 2025). *Math Pathways and Placement Fall Newsletter*. Retrieved November 6, 2025, from <https://docs.google.com/document/d/1jXvDPO7GDN1OpzXAX91kDVTwCSLIXqjNKRY9kDbU5Cw/edit?usp=sharing>.

NSF-AWM Mentoring Travel Grants for Women

Mathematics Mentoring Grants. The objective of the NSF-AWM Mathematics Mentoring Travel Grants is to help junior women to develop long-term working and mentoring relationships with senior mathematicians. This relationship should help the junior mathematicians to establish their research programs and eventually receive tenure. Each grant funds travel, accommodations, and other required expenses for an untenured woman mathematician to travel to an institute or a department to do research with a specified individual for one month. The applicant's and mentor's research must be in a field which is supported by the Division of Mathematical Sciences of the National Science Foundation.

Selection Procedure. All awards will be determined on a competitive basis by a selection panel consisting of distinguished mathematicians appointed by the AWM. A maximum of \$5000 per award will be funded.

Eligibility and Applications. Please see the website (<https://awm-math.org/awards/awm-grants/travel-grants/>) for details on eligibility and do not hesitate to contact us at awm@awm-math.org or 401-455-4042 for guidance. Applications from members of underrepresented minorities are especially welcome.

Deadline. There one award period per year. Applications are due **February 15, 2026**. All travel must be completed before **June 30, 2026**.

AWM Honors 2026 Dissertation Prize Winners

Tejas Bhatnagar and Naghme Akhavan

Tejas Bhatnagar is recognized for her dissertation, *Monodromy Results for Abelian Surfaces and K3 Surfaces in Characteristic p* written at the University of Wisconsin–Madison in 2025 under the direction of Ananth Shankar. She is currently an NSF postdoctoral fellow at the Ohio State University.

Dr. Bhatnagar's research is in algebraic and arithmetic geometry in positive and mixed characteristic. In her thesis, Bhatnagar provided a very satisfactory description of the p -adic monodromy representation of ordinary Kuga–Satake abelian variety A over the equal characteristic local field $K = \mathbb{F}_q(t)$ with bad reduction (here q is a p power) based on its reduction type. Bhatnagar's theorem on monodromy is not only an important theorem in itself, but also opens new directions for future research. As a consequence of this theorem, Bhatnagar proved a finiteness result on reductions of the p -power Hecke orbit of A in the orthogonal Shimura variety when the abelian part of the reduction of A is supersingular. Bhatnagar is described as a strong, independent, talented, creative, and versatile mathematician. “Bhatnagar has shown herself to be both independent and wide-ranging in her interests within the subject, and most relevant for this prize, she wrote a really first-rate dissertation.”

Response from Tejas Bhatnagar

I am very honored to receive this prize and deeply thankful to AWM for recognizing my thesis. I am indebted to my advisor, Ananth Shankar for his mathematics, mentorship and generosity. I sincerely thank Jordan Ellenberg and Yunqing Tang for their constant encouragement. My time at UW–Madison was profoundly influenced by my friends and the vibrant mathematics community there, to whom I am very grateful. I thank my partner, Nitin, for his unwavering support. Finally, this prize belongs as much to my parents as it does to me—thank you to them for everything.

Naghme Akhavan is recognized for her 2025 dissertation, *Mathematical Modeling of Border Cell Cluster Migration in *Drosophila Melanogaster**, written under the direction of Bradford E. Peercy at the University of Maryland, Baltimore County. She is currently a postdoctoral assistant professor at the University of Michigan.

Dr. Akhavan's dissertation is truly groundbreaking in both scope and execution. By demonstrating how extracellular geometry regulates chemoattractant landscapes and by pioneering a new phase-field framework with the tangential interface force, she has opened avenues of inquiry that were not previously attempted in mathematical biology. Her work is rigorous and original—integrating mathematics and biology in ways that will both impact and influence mathematical models in cell migration.

Response from Naghme Akhavan

I am deeply honored to receive the AWM Dissertation Prize. I would like to thank my advisor, Dr. Brad Peercy, for his guidance and support, as well as my collaborators and mentors who have shaped my research journey. I am also grateful to my family and friends for their constant encouragement and to the AWM for its dedication to supporting women in mathematics. This recognition inspires me to continue advancing mathematical biology and mentoring future scientists.

The AWM Dissertation Prize was established in 2016, an annual award recognizing exceptional work in a dissertation defended in the last 24 months. The award is intended to be based entirely on the dissertation itself, not on other work of the individual. Learn more at www.awm-math.org. The prizes were presented on January 5, 2026 during the Joint Prize Ceremony at the Joint Mathematics Meeting in Washington, DC.

Christina Edholm Named 2026 AWM-MAA Etta Zuber Falconer Lecturer

In recognition of her distinguished contributions to mathematical biology, her innovative approaches to broadening participation in mathematics, as well as her skill in delivering expository lectures, the Association for Women in Mathematics and the Mathematical Association of America are pleased to announce that the 2026 Etta Z. Falconer Lecturer will be **Dr. Christina Edholm**, associate professor at Scripps College.

Edholm earned her BA in Mathematics from Willamette University and her MS and PhD in Mathematics from the University of Nebraska–Lincoln. Following a postdoctoral appointment at the University of Tennessee at Knoxville, she joined the Department of Mathematics at Scripps College, where she currently serves as an associate professor. She was recently awarded a Faculty Leadership Fellowship through the Claremont Colleges to cultivate promising leaders across campuses and was appointed extended graduate faculty of the Claremont Colleges.

Edholm is an extraordinary researcher. Her work bridges mathematics and the study of biological systems, using techniques from ordinary differential equations, continuous-time Markov chains, and stochastic differential equations. She has worked with 50 coauthors and published 20 peer-reviewed publications that address a variety of infectious diseases using a range of tools from discrete and continuous dynamical systems, as well as optimal control and stochastic processes. It is worthy of note that many of these papers arose from collaborations with African researchers that began from her participation in the MASUMA program in Zimbabwe and from collaborations through the American Institute of Mathematics SQuaRE program. Edholm has also developed research partnerships through the American Mathematical Society Mathematics Research Community, as well as the Women in Mathematical Biology Research Community. Edholm's ability to collaborate, and in particular her ability to bring scholars together for research, is notable. Edholm co-organized multiple sessions on mathematical biology, bringing together graduate students, postdocs, and faculty to share recent developments in the research areas of the organizers.

In addition to her research accomplishments, Edholm is an outstanding teacher and mentor. She is known for her engaging exposition and for translating research into the classroom. At Scripps College, she developed a core course in mathematical biology and received the Mary W. Johnson Faculty Teaching Award for her efforts. She has supervised eight senior theses and directed eight undergraduate research projects. Some of her collaborations with undergraduates have been published in *SIAM Undergraduate Research Online*, and for her excellence in integrating undergraduates into research, she was awarded the Mary W. Johnson Faculty Scholarship Award. Edholm's commitment to

outreach and social justice is remarkable. As mentioned earlier, she is an active research participant in the Women in Mathematical Biology Research Community; beyond this, she organizes conference sessions for the community. Edholm is committed to expanding access to mathematics for diverse groups through her service in national organizations. She recently served a three-year term on the Society for Industrial and Applied Mathematics Workshop Celebrating Diversity Working Group, which she chaired in 2023.

Edholm has an outstanding record of excellence in research, teaching, and outreach, and we are pleased to name her as the distinguished 2026 Etta Z. Falconer Lecturer.

The Falconer lectures were established in memory of Etta Zuber Falconer (1933–2002). Her many years of service in promoting mathematics at Spelman College and efforts to enhance the movement of minorities and women into scientific careers through many forums in the mathematics and science communities were extraordinary. Falconer lecturers are women who have made distinguished contributions to the mathematical sciences or mathematics education.

Martha E. Precup Wins Ruth I. Michler Memorial Prize

The Association for Women in Mathematics and Cornell University are pleased to announce that **Martha E. Precup** (Washington University in St. Louis) has been awarded the 2026–2027 Ruth I. Michler Memorial Prize.

Citation

Martha Precup is the recipient of the 2026–2027 Ruth I. Michler Prize. Her research interests center on the rich combinatorics and algebraic geometry that arise in the study of flag varieties. In her semester at Cornell, she plans to expand on her recent work on Hessenberg varieties and Springer fibers.

Dr. Precup received her PhD from the University of Notre Dame in 2013. She then held post-doctoral positions at Baylor University and Northwestern University. She joined the faculty at Washington University at St. Louis in 2018 and was promoted to associate professor in 2024. She has held both a single PI NSF grant and a CAREER award. Since joining Washington University, she has advised four graduate students and mentored research projects with seven undergraduates. Dr. Precup has served as a faculty organizer for the Sonia Kovalevsky Math Day at Washington University, and the faculty advisor for the Undergraduate Association for Women in Mathematics.

Response from Precup

It is an honor to receive the 2026–2027 Ruth I. Michler Memorial Prize. I am deeply grateful for this recognition and for the support of my research on the combinatorics and geometry of flag varieties. I look forward to participating in the vibrant research community at Cornell University. My sincere thanks go to the Association for Women in Mathematics, the Michler family, and the Cornell Mathematics Department. I am also deeply appreciative of my mentors and colleagues for their continued support.

The Ruth I. Michler Memorial Prize was established through a generous donation from Ruth's parents Gerhard and Waltraud Michler of Essen, Germany. The award grants a mid-career mathematician a residential fellowship in the Cornell University Mathematics Department without teaching obligations. The Michlers established the memorial prize with the Association for Women in Mathematics to honor Ruth's commitment to the AWM mission of supporting women mathematicians. Cornell University was chosen as the host institution because of its distinctive research atmosphere and because Ithaca was Ruth's birthplace.

2026 Alice T. Schafer Mathematics Prize Winners

The Association for Women in Mathematics (AWM) has awarded the 36th Annual Alice T. Schafer Prizes for Excellence in Mathematics by an Undergraduate Woman to **Khyathi Komalan**, California Institute of Technology, **Chloe Marple**, Pomona College, and **Saskia Solotko**, Tufts University. The 2026 AWM Alice T. Schafer Prizes were presented during the Joint Prize Session at the 2026 Joint Mathematics Meetings in Washington, DC.

Khyathi Komalan is a sophomore at Caltech majoring in mathematics. She has demonstrated extraordinary mathematical talent and resilience. Khyathi has been self-studying undergraduate and graduate-level mathematics since high school. She is interested in many topics including category theory, algebraic quantum field theory, and topological data analysis, with three single author preprints on arXiv and two more in preparation. As a freshman, Khyathi won the Caltech Morgan Ward Prize for her independent work in non-hermitian ribbon fusion categories. During summer 2025 she was a visiting researcher at the Topos Institute in Oxford.

Khyathi is also a gifted expositor and educator. Her seminar talks have been praised for clarity, creativity, and originality. Mentors describe her as one of the most promising students they have ever encountered. She is described as an incredibly resourceful, driven, gifted, and creative student.

Chloe Marple is a mathematics major at Pomona College and a 2025 Goldwater scholar. Her research experiences are extensive, having participated in REUs at Williams College and the Fields Institute, as well as in summer research projects at Claremont McKenna College and at her alma mater. Chloe has coauthored three manuscripts, all at the professional/nonundergraduate level; one of them has been published in *Contemporary Mathematics* and two of them have been submitted for publication. She also has three papers in preparation. Her research expands a variety of topics, including quantized Weyl algebras and representations of groups, knot theory, C*-algebras, and quantum topology. Chloe's mentors remark that she is an exceptional researcher and mathematician with impressive depth of technique and broad foundations. She is creative and driven, and advances the research further with hard work and brilliant ideas.

Chloe has showcased her research through talk and poster presentations in venues such as the JMM, MAA meetings and SACNAS conferences. She is highly regarded for her work as a teaching assistant in upper-level courses in linear algebra, abstract algebra, and real analysis. She is an integral part of the Pomona College math community, assisting in the development of events and programs that give greater accessibility to students for opportunities in mathematics during and after their undergraduate studies.

Saskia Solotko is a mathematics major at Tufts University with remarkably broad research achievements in combinatorics, algebraic geometry, and group theory. She has participated in NSF-funded REUs at Bryn Mawr College (MathILy-EST), Texas State, and the University of Minnesota, as well as collaborated with her professors. Her work on classifying prime graphs of finite groups will appear in the *Journal of Pure and Applied Algebra*. Her other three papers concern multitriangulations on the half-cylinder, curves in projective space, and fold-and-punch constructions in mathematical origami. Her research mentors describe a student already working at a very high level, praising her creativity, insight and relentless hard work, and describing unexpected and elegant results.

Saskia is celebrated for her excellent mathematical communication skills, and has spoken about her work twice at the JMM, as well as at the China-US Group Theory Conference and at Women in Mathematics in New England. At Tufts, she has been an active member of the community, including as a teaching assistant and course assistant and REU mentor at the VERSEIM REU, and has been recognized by her department with a Guterman Award for academic achievement. Her nominators agree that Solotko shows great promise as a future leader in mathematics.

Full citations and responses from the winners are available here:

<https://awm-math.org/awards/schafer-prize-for-undergraduates/schafer-prize-2026/>

In 1990, the Executive Committee of the AWM established the annual Alice T. Schafer Prize for Excellence in Mathematics by an Undergraduate Woman. The prize is named for Alice T. Schafer (1915–2009), one of the founders of AWM and its second president, who contributed greatly to women in mathematics throughout her career.

IN MEMORIAM

Debra Boutin

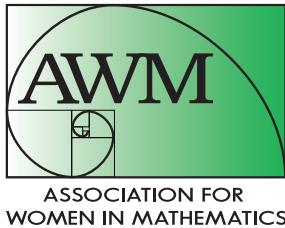
Sally Cockburn, Hamilton College, scockbur@hamilton.edu

Debra Boutin, Samuel F. Pratt Professor of Mathematics Emerita of Hamilton College, passed away on August 20, 2025 in Greenfield, Massachusetts, surrounded by her family, just 13 months after retiring from teaching. To anyone who knew her, Debra's defining characteristic was her deep passion for mathematical research, yet her path to academia was an unusual one.

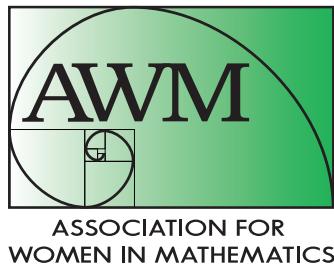
Born in 1957, and raised in Chicopee, Massachusetts, Debra joined the Navy right out of high school. After serving her enlisted time, she continued as a reservist, completing 20 years of service in total.

While still a navy reservist, she used the GI bill to get an Associate of Science degree in 1987 from Springfield Technical Community College, majoring in data processing. There, she discovered her love of, and talent for, mathematical thinking, and she just never looked back. She studied mathematics at Smith College as an Ada Comstock Scholar, a program for women of nontraditional college age, and graduated in 1991 *summa cum laude*, Phi Beta Kappa, Sigma Xi, and winner of the Science Achievement Award. She earned a PhD from Cornell University in 1998; her dissertation *Centralizers of Finite Subgroups of Automorphisms and Outer Automorphism of Free Groups* was supervised by Karen Vogtmann. After spending a year in a visiting position at Trinity College, she joined the Hamilton College faculty in 1999. In 2008, she was the inaugural recipient of the Dean's Scholarly Award for Early Career Achievement, and in 2023, she was awarded another Dean's Scholarly Award for Career Achievement. She was named Samuel F. Pratt Professor of Mathematics in 2019; she was department chair from 2022 to 2024.

Over her career, Debra's research interests migrated from finite group theory to graph theory. She made significant contributions in the study of graph symmetry parameters by writing pioneering papers on determining number, distinguishing number, cost of 2-distinguishing and paint cost. She also introduced the concept of geometric graph homomorphisms, which are vertex functions that preserve both vertex adjacencies and edge crossings in straight-line drawings of graphs. During several summers,


Debra made contributions to applied mathematics as a research adjunct at the Institute for Defense Analysis in the Center for Communications Research.

Debra was renowned for her collaboration with both internationally famous scholars and junior faculty just beginning their careers. Of her 32 published papers, 20 were written with a combined total of 15 different coauthors. Perhaps her most fruitful collaboration was with Michael O. Albertson, the L. Clark Seelye Professor of Mathematics at Smith College; not only did they coauthor eight papers, they were also married from 1993 until his death from cancer in 2009. Debra delighted in attending mathematical conferences around the world, where she presented her work with clarity and enthusiasm, and sought out old friends and new collaborators.


When she started at Hamilton College, Debra was an MAA Project NExT Fellow. She repaid this experience many times over by mentoring young faculty throughout her career. In the summer of 2019, she participated in the first Research Collaboration Conference for Women in Graph Theory and Applications. There, she led a workshop for five early-career women on graph symmetry parameters. The group published four papers together, with many continuing to pursue this topic with new collaborators of their own. She also mentored junior women faculty at Hamilton College in disciplines ranging from physics to classics.

Debra also made many contributions to the wider community. She refereed articles for over 20 journals and served as an external reviewer for departments and tenure/promotion candidates at other institutions. In 2012/13, she was the secretary for the Discrete Math Activity Group for SIAM. Within Hamilton College, she served stints on all the major faculty committees. Most formidably, she was the faculty chair the year that COVID hit. After retiring, she applied her mathematical skills to acting as treasurer of the local library and arts center.

Debra is survived by her two daughters Elizabeth Albertson and Holly Alexander; Holly's wife, Amber Fox; her two sons Matthew Konda and his wife Vani Konda; Nicholas Albertson and his husband, Scott Mehl; and her three grandchildren, Mia-Faye Downham, Sonali Konda, and Anjali Konda. Following the example Debra set her entire life, her family cared for Debra in her final months with extraordinary levelheadedness, courage and compassion. May we all have such love and support when we leave this world.

For the latest news, visit
awm-math.org

2027 AWM Prizes and Awards Call for Nominations

Nominations for the following AWM prizes and awards will be accepted between **April 1 and May 15, 2026** on mathprograms.org. Recipients will be recognized at the Awards Ceremony at the Joint Mathematics Meetings in Chicago in 2027.

2027 Class of AWM Fellows

The Association for Women in Mathematics Fellows Program recognizes members of any gender who have demonstrated a sustained commitment to the support and advancement of women in the mathematical sciences, consistent with the AWM mission: “to create a community in which women and girls can thrive in their mathematical endeavors, and to promote equitable opportunity and treatment of women and others of marginalized genders and gender identities across the mathematical sciences.” For more information visit <https://awm-math.org/awards/awm-fellows/>.

2027 Louise Hay Award

The Louise Hay Award for Contributions to Mathematics Education recognizes outstanding achievements in any area of mathematics education, to be interpreted in the broadest possible sense. The annual presentation of this award is intended to highlight the importance of mathematics education and to evoke the memory of all that Hay exemplified as a teacher, scholar, administrator, and human being. For more information visit <https://awm-math.org/awards/hay-award/>.

2027 M. Gweneth Humphreys Award

The M. Gweneth Humphreys Award recognizes outstanding mentorship activities. This prize is awarded to a mathematics teacher who has encouraged women undergraduate students to pursue mathematical careers and/or the study of mathematics at the graduate level. M. Gweneth Humphreys (1911–2006) taught mathematics to women for her entire career, first at Mount St. Scholastica College, then for several years at Sophie Newcomb College, and finally for over thirty years at Randolph-Macon Woman’s College. This award, funded by contributions from her former students and colleagues at Randolph-Macon, recognizes her commitment to and her profound influence on undergraduate students of mathematics. For more information visit <https://awm-math.org/awards/humphreys-award/>.

2027 AWM Joan & Joseph Birman Research Prize in Topology and Geometry

The AWM Birman Research Prize highlights outstanding contributions by women in topology and geometry. The award is made possible by a generous contribution from Joan Birman, whose work has been in low dimensional topology, and her husband, Joseph, who was a theoretical physicist specializing in applications of group theory to solid state physics. This prize has been awarded every other year since 2015. For more information visit <https://awm-math.org/awards/awm-birman-research-prize/>.

2027 Mary and Alfie Gray Award for Social Justice

The Mary and Alfie Gray Award for Social Justice to reward the vigorous and imaginative application of the mathematical sciences to advancing the cause of social justice, defined as promoting a just society by challenging injustice and valuing diversity. Social justice exists when all people share a common humanity and therefore have a right to equitable treatment, support for their human rights, and a fair allocation of community resources. For more information visit <https://awm-math.org/awards/gray-award/>.

Division of Access, Engagement, and Success
Office of Faculty Recruitment

Be a Part of the 2026 RIT's Future Faculty Career Exploration Program

Fall 2026
Rochester, NY

Who:

PhD or MFA candidates, postdocs, or early-career scholars considering a rewarding academic career

What:

A rigorous four-day experience designed to give you a behind-the-scenes look at faculty life with valuable professional development insights, academic exposure, and networking opportunities

When:

September 30-October 3, 2026

Where:

In-person at Rochester Institute of Technology in Rochester, NY

Apply:

Learn more and apply at rit.edu/aes/ffcep
or by scanning this QR code

Contact:

Nancy Dimock,

Assistant Director for Faculty Recruitment
facultyr@rit.edu | 585-475-7010

Association for Symbolic Logic Student Travel Awards

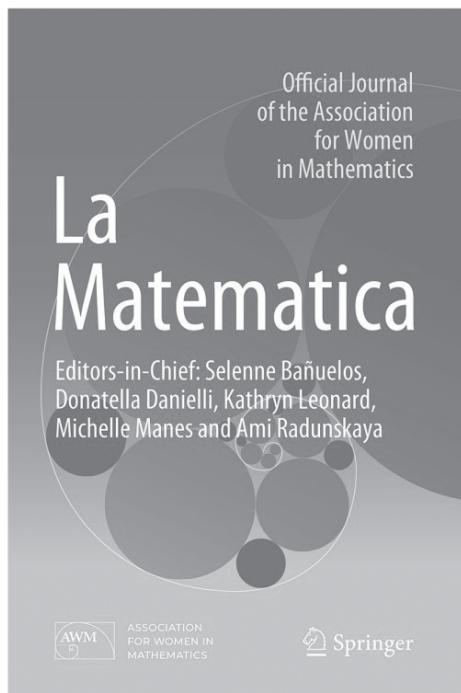
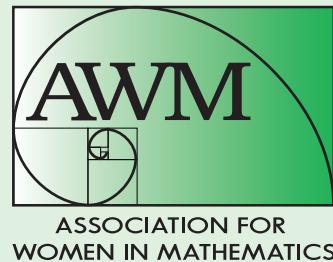
The ASL offers modest student travel awards through its NSF grant to graduate students in logic to attend its annual meetings in North America and Europe. These awards are available to US citizens and permanent residents as well as to international students enrolled at US universities. You do not need to be an ASL member to apply for these awards. Air travel paid for with NSF funds must be in compliance with the Fly America Act.

The next two ASL meetings for which NSF funding is available are the **2026 Logic Colloquium** (European Summer Meeting) (June 29–July 3, 2026 at Swansea University in Wales, UK) and the **2026 North American Annual Meeting** (July 19–22, 2026 at the University of Pennsylvania in Philadelphia, PA, USA). The deadline for applying for a student travel award for the North American Annual Meeting is **April 19, 2026**. Please follow the directions below to apply and submit applications to asl@uconn.edu. Details for applying for student travel awards for the Logic Colloquium will be posted when they become available at <https://aslonline.org/meet/>.

The ASL also offers student travel awards to **ASL-sponsored meetings**. These awards are only open to ASL student members but students do not need to be US citizens or attend US universities. Applications must be sent to the ASL Office at asl@uconn.edu at least three months before the start of the sponsored meeting. For a full list of ASL-sponsored meetings, see <https://aslonline.org/meet/>.

To be considered for a travel award for any of these meetings, please ask your thesis supervisor to send a brief recommendation letter. You must also submit a brief (1 page) letter of application that includes: (1) your name; (2) your home institution; (3) your thesis supervisor's name; (4) a one-paragraph description of your studies and work in logic; (5) a paragraph indicating why it is important to attend the meeting; (6) your estimate of the travel expenses you will incur; (7) (for NSF awards) US citizenship or visa status; and (7) (optional) an indication of your gender and minority status. Women and members of minority groups are strongly encouraged to apply.

ASL, Department of Mathematics,
University of Connecticut
341 Mansfield Road, U-1009
Storrs, CT 06269-1009
Email: asl@uconn.edu
Phone: (860) 486-3989
Website: aslonline.org



Shop the AWM Store where all proceeds support AWM activities and programs!

<https://store.awm-math.org/>

Get the T-shirt size you want, not just the sizes we have on-hand at conferences!

New inventory is being added. Our quality shirts and onesies are screen-printed by ASCOTT, a small woman-owned T-shirt company in Ann Arbor, Michigan!

Student chapters get large order discounts.

La Matematica, the official journal of the AWM, wants to publish your work!

The AWM launched its flagship journal, *La Matematica*, in 2021, and we are looking for your submissions! *La Matematica* is an international, doubly anonymous peer-reviewed journal that features high-quality research from all areas of the mathematical sciences and is dedicated to supporting the flourishing of all mathematicians by adopting equitable practices in STEM publishing. The journal seeks to publish a variety of article types in all fields of mathematics (pure, applied, and computational) and considers full-length research articles and short communications that describe new theoretical results and innovative practical applications.

Interested in submitting? You can learn more about *La Matematica*'s scope and find out how to submit your research on the [journal site](#). For questions, please contact the journal's publisher representative, Anna Lombardo, at: anna.lombardo@springernature.com

Editors-in-Chief: Selenne Bañuelos, Donatella Danielli, Kathryn Leonard, Michelle Manes

2025–2026 Individual Membership Form

JOIN ONLINE at [awm-math.org!](http://awm-math.org)

Please fill in this information and return it along with your dues to:

AWM Membership, PO Box 40876, Providence, RI 02940

ASSOCIATION FOR
WOMEN IN MATHEMATICS

Last Name _____ First Name _____ M.I. _____

Address _____

City _____ State/Province _____

Zip/Postal Code _____ Country _____

AWM's membership year is from October 1 to September 30. Please fill in this information and return it along with your dues to: AWM Membership, PO Box 40876, Providence, RI 02940

The AWM Newsletter is published six times a year. If you have questions, contact AWM at awm@awm-math.org, 401.455.4042, or visit our website at: <https://awm-math.org>.

E-mail: _____ Home Phone: _____ WorkPhone: _____

PROFESSIONAL INFORMATION:

Position: _____

Institution/Company: _____

City: _____ State/Province: _____ Zip/Postal Code: _____

DEGREES EARNED: _____ Degree(s) _____ Institution(s) _____ Year(s) _____

Doctorate: _____

Masters: _____

Bachelors: _____

INDIVIDUAL DUES SCHEDULE

Please check the appropriate membership category below. Make check or money order payable to: Association for Women in Mathematics.

NOTE: All checks must be drawn on U.S. banks and be in U.S. funds.

<input type="checkbox"/> Regular individual membership (<i>new members only</i>).....	\$35
<input type="checkbox"/> Regular individual membership (<i>members earning <\$90,000</i>).....	\$70
<input type="checkbox"/> Regular individual membership (<i>members earning ≥\$90,000</i>).....	\$100
<input type="checkbox"/> Family membership, <i>please indicate family member who is a regular AWM member</i> : _____	\$40
<input type="checkbox"/> Contributing membership (<i>members earning <\$90,000</i>) (<i>includes designation of a free student membership</i>)	\$160
<input type="checkbox"/> Contributing membership (<i>3 year membership, members earning <\$90,000</i>)	\$480
<input type="checkbox"/> Contributing membership (<i>members earning ≥\$90,000</i>) (<i>includes designation of a free student membership</i>)	\$190
<input type="checkbox"/> Contributing membership (<i>3 year membership, members earning ≥\$90,000</i>)	\$570
<input type="checkbox"/> Part-time employed	\$35
<input type="checkbox"/> AWM-SIAM Reciprocity membership	\$35
<input type="checkbox"/> AWM-KWMS Affiliate membership	\$30
<input type="checkbox"/> Retired membership	\$40
<input type="checkbox"/> Student membership	\$25
<input type="checkbox"/> Unemployed membership	\$20
<input type="checkbox"/> Gift membership, <i>please indicate name and email of giftee</i> : _____	\$70
<input type="checkbox"/> Outreach membership	\$10
<input type="checkbox"/> Contribution to the AWM Endowment fund	\$_____
<input type="checkbox"/> Contribution to the AWM Annual Giving Campaign	\$_____
<input type="checkbox"/> I do not want my name to appear in annual lists of contributors to AWM's funds.	

Please note that all student, unemployed, outreach, family, gift membership, and KWMS affiliate members and members with non-US addresses receive only the electronic version of the newsletter.

If you wish to receive a print version, please check here

TOTAL ENCLOSED \$ _____

2025–2026 Institutional Membership Form

JOIN ONLINE at [awm-math.org!](http://awm-math.org)

There are many benefits of institutional membership for your students, faculty, and institution! Opportunities with AWM reach across the career spectrum and include Student Chapters for undergraduates, workshop at JMM and SIAM for graduate students, and research networks, conferences, and publishing opportunities for faculty and staff. As a department or institution, you can adopt or adapt our Welcoming Environment and Diversity and Inclusion statements and benefit from advertising to our population, thereby demonstrating your commitment to recruit and retain women.

Institutional Dues Schedule

Please check the appropriate membership category below

- Two year colleges and community colleges (\$200)
- Four year institutions with enrollment less than 10,000 without a PhD in mathematics (\$300)
- Four year institutions with enrollment less than 10,000 with a PhD in mathematics (\$350)
- Institutions with enrollment greater than 10,000 without a PhD in mathematics (\$450)
- Institutions with enrollment greater than 10,000 with a PhD in mathematics (\$500)
- Supporting Institutions (starting at \$750)
- Sponsoring Institutional Memberships (starting at \$3000)
- Student chapter membership/add-on (\$100)

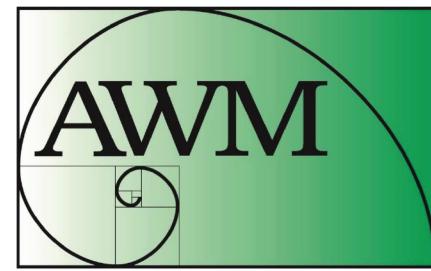
INSTITUTIONAL POINT OF CONTACT:

Name: _____

Position: _____

Institution/Company: _____

E-mail: _____ Phone: _____

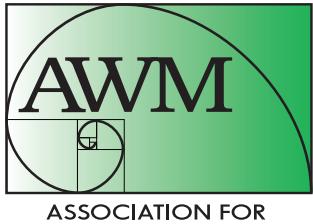

City: _____ State/Province: _____ Zip/Postal Code: _____ Country: _____

The Association for Women in Mathematics accepts the following forms of payment:

Check, money order, traveler's check, or cashier's check in U.S. dollars and drawn on a U.S. Bank

Credit Card: To pay with Visa or Mastercard, log into your AWM account at <https://ebus.awm-math.org>, click "Purchase History," and pay for the outstanding invoices you select. Please call (401) 455-4042 to pay over the phone or to request a secure email link to send your credit card information safely.

PayPal: Use PayPal online at <https://paypal.me/awmath> and let us know in the order detail which membership category you have chosen.


**ASSOCIATION FOR
WOMEN IN MATHEMATICS**

The AWM membership year is from October 1 to September 30. Please fill in the information requested below and return it along with your dues to: AWM Membership, PO Box 40876, Providence, RI 02940.

Questions? Please contact AWM at awm@awm-math.org or (401) 455-4042, or visit our website at <https://awm-math.org>.

AWM institutional membership benefits include:

- All AWM Institutional members are recognized on the AWM website;
- All AWM Institutional members are entitled to 15 student nominee memberships and 1 faculty nominee membership;
- All AWM Institutional members (except stand-alone Student Chapters) receive a 15% discount on advertising;
- All AWM Institutional members receive a subscription to the *AWM Newsletter* and their student nominees have access to the electronic versions. Stand-alone Student Chapters receive electronic-only access unless a newsletter subscription is purchased.

ASSOCIATION FOR
WOMEN IN MATHEMATICS

AWM
PO Box 40876
Providence, RI 02940

NONPROFIT ORG
U.S. POSTAGE PAID
MERRIFIELD, VA
PERMIT NO. 2333

Printed in the U.S.A.

ASSOCIATION FOR WOMEN IN MATHEMATICS

Volume 56, Number 1, January–February 2026

ADDRESS CORRECTION FORM

- Please change my address to:
- Please send membership information to my colleague listed below:
- No forwarding address known for the individual listed below (enclose copy of label):
(Please print)

MAIL TO:

Name _____

Address _____

City _____ State _____ Zip _____

Country (if not U.S.) _____ E-mail Address _____

Position _____ Institution/Org. _____

Telephone: Home _____ Work _____

or E-MAIL:

awm@awm-math.org