

Σ -7-Series AC Servo Drive Rotary Servomotor Product Manual

Model: SGM7J/SGM7A/SGM7G

Basic Information on Se	rvomotors

Capacity Selection

Specifications, Ratings, and External Dimensions of SGM7A Servomotors

Specifications, Ratings, and External Dimensions of SGM7J Servomotors

Specifications, Ratings, and External Dimensions of SGM7G Servomotors

Servomotor Installation

Connections between Servomotors and SERVOPACKs

Maintenance and Inspection

Appendices

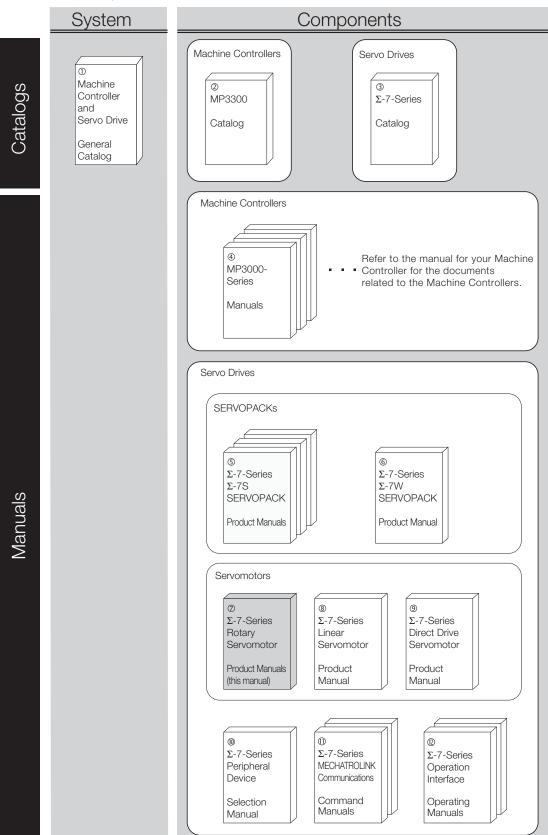
Occupials & 2014 MARKANA ELECTRIC CORROBATION
Copyright © 2014 YASKAWA ELECTRIC CORPORATION All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of
the information contained in this publication.

About this Manual

This manual provides information required to select, install, connect, and maintain Rotary Servomotors for Σ -7-Series AC Servo Drives.

Read and understand this manual to ensure correct usage of the Σ -7-Series AC Servo Drives.

Keep this manual in a safe place so that it can be referred to whenever necessary.


Outline of Manual

The contents of the chapters of this manual are described in the following table. Refer to these chapters as required.

Chapter	Chapter Title	Contents
1	Basic Information on Servomotors	Provides basic information on Rotary Servomotors, including Servomotor part names and combinations with SERVOPACKs.
2	Capacity Selection	Describes calculation methods to use when selecting Servomotor capacities.
3	Specifications, Ratings, and External Dimensions of SGM7A Servomotors	Describes how to interpret the model numbers of SGM7A Servomotors and gives their specifications, ratings, and external dimensions.
4	Specifications, Ratings, and External Dimensions of SGM7J Servomotors	Describes how to interpret the model numbers of SGM7J Servomotors and gives their specifications, ratings, and external dimensions.
5	Specifications, Ratings, and External Dimensions of SGM7G Servomotors	Describes how to interpret the model numbers of SGM7G Servomotors and gives their specifications, ratings, and external dimensions.
6	Servomotor Installation	Describes the installation conditions, procedures, and precautions for Servomotors.
7	Connections between Servomotors and SERVOPACKs	Describes the cables that are used to connect the Servomotors and SERVOPACKs and provides related precautions.
8	Maintenance and Inspection	Describes the maintenance, inspection, and disposal of a Servomotor.
9	Appendices	Provide additional information on Servomotors with Gears and reference information on selecting Servomotor capacity.

Related Documents

The relationships between the documents that are related to the Servo Drives are shown in the following figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer to these documents as required.

Classification	Document Name	Document No.	Description	
① Machine Controller and Servo Drive General Catalog	Machine Controller and Servo Drive Solutions Catalog	KAEP S800001 22	Provides detailed information required to select MP3000-Series Machine Controllers and Σ-7-Series AC Servo Drives.	
② MP3300 Catalog	Machine Controller MP3300	KAEP C880725 03	Provides detailed information on MP3300 Machine Controllers, including features and specifications.	
③ Σ-7-Series Catalog	AC Servo Drives Σ-7 Series	KAEP S800001 23	Provides detailed information on Σ -7-Series AC Servo Drives, including features and specifications.	
④ MP3000-Series Manuals	Machine Controller MP3000 Series MP3300 Product Manual	SIEP C880725 21	Describes the functions, specifications, operating methods, maintenance, inspections, and troubleshooting of the MP3000-series MP3300 Machine Controllers.	
	Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 28		
© Σ-7-Series Σ-7S SERVOPACK Product Manuals	Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with MECHATROLINK-II Communications References Product Manual	SIEP S800001 27	Provide detailed information on selecting Σ-7-Series SERVO-PACKs and information on install-	
	Σ-7-Series AC Servo Drive Σ-7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual	SIEP S800001 26	ing, connecting, setting, performing trial operation for, tuning, and monitoring the Servo Drives.	
© Σ-7-Series Σ-7W SERVOPACK Product Manual	Σ-7-Series AC Servo Drive Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 29		
⑦ Σ-7-Series Rotary Servomotor Product Manual	Σ-7-Series AC Servo Drive Rotary Servomotor Product Manual	This manual (SIEP S800001 36)		
® Σ-7-Series Linear Servomotor Product Manual	Σ-7-Series AC Servo Drive Linear Servomotor Product Manual	SIEP S800001 37	Provide detailed information on selecting, installing, and connecting the Σ -7-Series Servomotors.	
⑨Σ-7-SeriesDirect DriveServomotorProduct Manual	Σ-7-Series AC Servo Drive Direct Drive Servomotor Product Manual	SIEP \$800001 38		

Continued on next page.

Continued from previous page.

Classification	Document Name	Document No.	Description
ΦΣ-7-SeriesPeripheral DeviceSelection Manual	Σ-7-Series AC Servo Drive Peripheral Device Selection Manual	SIEP S800001 32	Describes the peripheral devices for a Σ -7-Series Servo System.
\mathfrak{D} Σ -7-Series	Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual	SIEP S800001 30	Provides detailed information on the MECHATROLINK-II communications commands that are used for a Σ-7-Series Servo System.
MECHATROLINK Communications Command Manuals	Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual	SIEP S800001 31	Provides detailed information on the MECHATROLINK-III communications standard servo profile commands that are used for a Σ -7-Series Servo System.
© Σ-7-Series	Σ-7-Series AC Servo Drive Digital Operator Operating Manual	SIEP S800001 33	Describes the operating procedures for a Digital Operator for a Σ-7-Series Servo System.
Operation Interface Operating Manuals	AC Servo Drives Engineering Tool SigmaWin+ Online Manual Σ-7 Component	SIEP S800001 48	Provides detailed operating procedures for the SigmaWin+ Engineering Tool for a Σ -7-Series Servo System.

Using This Manual

◆ Technical Terms Used in This Manual

The following terms are used in this manual.

Term	Meaning
Servomotor	A Σ-7-Series Rotary Servomotor, Direct Drive Servomotor, or Linear Servomotor.
SERVOPACK	A Σ -7-Series Σ -7S Servo Amplifier.
Servo Drive	The combination of a Servomotor and SERVOPACK.
Main Circuit Cable	One of the cables that connect to the main circuit terminals, including the Main Circuit Power Supply Cable, Control Power Supply Cable, and Servomotor Main Circuit Cable.

◆ Trademarks

- MECHATROLINK is a trademark of the MECHATROLINK Members Association.
- QR code is a trademark of Denso Wave Inc.
- Other product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ® mark do not appear with product or company names in this manual.

◆ Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Example Indicates operating or setting examples.

Information Indicates supplemental information to deepen understanding or useful information.

Safety Precautions

Safety Information

To prevent personal injury and equipment damage in advance, the following signal words are used to indicate safety precautions in this document. The signal words are used to classify the hazards and the degree of damage or injury that may occur if a product is used incorrectly. Information marked as shown below is important for safety. Always read this information and heed the precautions that are provided.

DANGER

• Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

WARNING

• Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

⚠ CAUTION

• Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in fire.

NOTICE

• Indicates precautions that, if not heeded, could result in property damage.

Safety Precautions That Must Always Be Observed

General Precautions

DANGER

- Read and understand this manual to ensure the safe usage of the product.
- Keep this manual in a safe, convenient place so that it can be referred to whenever necessary.
 Make sure that it is delivered to the final user of the product.
- Do not remove covers, cables, connectors, or optional devices while power is being supplied to the SERVOPACK.

There is a risk of electric shock, operational failure of the product, or burning.

⚠ WARNING

- Connect the ground terminals on the SERVOPACK and Servomotor to ground poles according to local electrical codes (100 Ω or less for a SERVOPACK with a 100-VAC or 200-VAC power supply, and 10 Ω or less for a SERVOPACK with a 400-VAC power supply). There is a risk of electric shock or fire.
- Do not attempt to disassemble, repair, or modify the product.
 There is a risk of fire or failure.
 The warranty is void for the product if you disassemble, repair, or modify it.

CAUTION

- The SERVOPACK heat sinks, regenerative resistors, Servomotors, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components. There is a risk of burn injury.
- Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of failure, damage, or electric shock.
- Do not use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials.

There is a risk of electric shock or fire.

NOTICE

- Do not attempt to use a SERVOPACK or Servomotor that is damaged or that has missing parts.
- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.
- Select the brake power supply for a Servomotor with a Holding Brake according to the power supply voltage and capacity required for the Servomotor model, as given in manuals and catalogs. Also confirm the input voltage to the holding brake.
- Always install a surge absorber as a protective device between the brake power supply and Servomotor.

There is a risk of damage to the Servomotor.

- The time required for a holding brake to operate depends on the types of protective devices. The time required for a holding brake to operate will also change if holding brakes are connected in parallel. Always check the time required for a holding brake to operate on the actual machine before you operate a Servomotor.
- Always use a Servomotor and SERVOPACK in one of the specified combinations.
- Do not touch a SERVOPACK or Servomotor with wet hands.
 There is a risk of product failure.

Storage Precautions

⚠ CAUTION

 Do not place an excessive load on the product during storage. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- Do not install or store the product in any of the following locations.
 - Locations that are subject to direct sunlight
 - · Locations that are subject to ambient temperatures that exceed product specifications
 - Locations that are subject to relative humidities that exceed product specifications
 - · Locations that are subject to condensation as the result of extreme changes in temperature
 - Locations that are subject to corrosive or flammable gases
 - · Locations that are near flammable materials
 - · Locations that are subject to dust, salts, or iron powder
 - Locations that are subject to water, oil, or chemicals
 - Locations that are subject to vibration or shock that exceeds product specifications
- Locations that are subject to radiation

If you store or install the product in any of the above locations, the product may fail or be damaged.

- Although machined surfaces are covered with an anticorrosive coating, rust can develop due to storage conditions or the length of storage. If you store the product for more than six months, reapply an anticorrosive coating to machined surfaces, particularly the motor shaft.
- Consult with your Yaskawa representative if you have stored products for an extended period of time.

Transportation Precautions

A CAUTION

- Transport the product in a way that is suitable to the mass of the product.
- Do not hold onto the cables or motor shaft when you move a Servomotor.
 There is a risk of disconnection, damage, or injury.
- Do not use the eyebolts on a SERVOPACK or Servomotor to move the machine.
 There is a risk of damage or injury.
- When you handle a SERVOPACK or Servomotor, be careful of sharp parts, such as the corners.
 There is a risk of injury.
- Do not place an excessive load on the product during transportation. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock.
 There is a risk of failure or damage.
- Do not subject connectors to shock.
 There is a risk of faulty connections or damage.
- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, plywood, or pallets, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more.

If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

• Do not overtighten the eyebolts on a SERVOPACK or Servomotor. If you use a tool to overtighten the eyebolts, the tapped holes may be damaged.

■ Installation Precautions

CAUTION

 Do not touch the key slot with your bare hands on the shaft end on a Servomotor with a Key Slot.

There is a risk of injury.

- Securely mount the Servomotor to the machine.
 If the Servomotor is not mounted securely, it may come off the machine during operation.
- Install the Servomotor or SERVOPACK in a way that will support the mass given in technical documents.
- Install SERVOPACKs, Servomotors, and regenerative resistors on nonflammable materials. Installation directly onto or near flammable materials may result in fire.
- Do not step on or place a heavy object on the product. There is a risk of failure, damage, or injury.
- Do not allow any foreign matter to enter the SERVOPACK or Servomotor.
 There is a risk of failure or fire.
- Implement safety measures, such as installing a cover so that the rotating part of the Servomotor cannot be touched accidentally during operation.

NOTICE

- Do not install or store the product in any of the following locations.
 - · Locations that are subject to direct sunlight
 - · Locations that are subject to ambient temperatures that exceed product specifications
 - · Locations that are subject to relative humidities that exceed product specifications
 - · Locations that are subject to condensation as the result of extreme changes in temperature
 - Locations that are subject to corrosive or flammable gases
 - · Locations that are near flammable materials
 - · Locations that are subject to dust, salts, or iron powder
 - · Locations that are subject to water, oil, or chemicals
 - · Locations that are subject to vibration or shock that exceeds product specifications
 - · Locations that are subject to radiation

If you store or install the product in any of the above locations, the product may fail or be damaged.

- Use the product in an environment that is appropriate for the product specifications. If you use the product in an environment that exceeds product specifications, the product may fail or be damaged.
- A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock.
 There is a risk of failure or damage.
- A Servomotor is a precision device. Do not subject the output shaft or the main body of the Servomotor to strong shock.
- Design the machine so that the thrust and radial loads on the motor shaft during operation do not exceed the allowable values given in the catalog.
- When you attach the key to the motor shaft, do not subject the key slot to direct shock.
- Do not allow any foreign matter to enter a SERVOPACK or a Servomotor with a Cooling Fan and do not cover the outlet from the Servomotor's cooling fan.
 There is a risk of failure.
- If you use oil as the gear lubricant, always inject the specified oil before starting operation.
- You can install the Servomotor either horizontally or vertically. However, if you install a Servomotor with an Oil Seal with the output shaft facing upward, oil may enter the Servomotor depending on the operating conditions. Confirm the operating conditions sufficiently if you install a Servomotor with the output shaft facing upward. Some Servomotors with Gears have restrictions on the installation orientation. Refer to the relevant technical documents.
- If an installation orientation is specified for a Servomotor with a Gear, install the Servomotor in the specified orientation.

There is a risk of failure due to oil leakage.

- For a Servomotor with an Oil Seal, use the Servomotor with the oil seal in a lubricated condition with only splashing of oil.
 - If the Servomotor is used with the oil seal under the surface of the oil, oil may enter the Servomotor, possibly resulting in failure.
- The shaft opening of a Servomotor is not waterproof or oilproof. Implement measures in the machine to prevent water or cutting oil from entering the Servomotor.
 There is a risk of failure.
- In an application where the Servomotor would be subjected to large quantities of water or oil, implement measures to protect the Servomotor from large quantities of liquid, such as installing covers to protect against water and oil.
- In an environment with high humidity or oil mist, face Servomotor lead wires and connectors downward and provide cable traps.

There is a risk of failure or fire due to insulation failure or accidents from short circuits.

■ Wiring Precautions

A DANGER

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

⚠ WARNING

- Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.
- Check all wiring and power supplies carefully.
 Incorrect wiring or incorrect voltage application to the output circuits may cause short-circuit failures. If a short-circuit failure occurs as a result of any of these causes, the holding brake will not work. This could damage the machine or cause an accident that may result in death or injury.

A CAUTION

- Observe the precautions and instructions for wiring and trial operation precisely as described in this document.
 - Failures caused by incorrect wiring or incorrect voltage application in the brake circuit may cause the SERVOPACK to fail, damage the equipment, or cause an accident resulting in death or injury.
- Check the wiring to be sure it has been performed correctly.
 Connectors and pin layouts are sometimes different for different models. Always confirm the pin layouts in technical documents for your model before operation.
 There is a risk of failure or malfunction.
- Connect wires to power supply terminals and motor connection terminals securely with the specified methods and tightening torque.
 Insufficient tightening may cause wires and terminal blocks to generate heat due to faulty contact, possibly resulting in fire.
- Use shielded twisted-pair cables or screened unshielded multi-twisted-pair cables for I/O Signal Cables and Encoder Cables.
- Observe the following precautions when wiring the SERVOPACK's main circuit terminals.
 - Turn ON the power supply to the SERVOPACK only after all wiring, including the main circuit terminals, has been completed.
 - If a connector is used for the main circuit terminals, remove the main circuit connector from the SER-VOPACK before you wire it.
 - Insert only one wire per insertion hole in the main circuit terminals.
 - When you insert a wire, make sure that the conductor wire (e.g., whiskers) does not come into contact with adjacent wires.

NOTICE

- Whenever possible, use the Cables specified by Yaskawa.
 If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials.
- Securely tighten cable connector screws and lock mechanisms.

 Insufficient tightening may result in cable connectors falling off during operation.
- Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Signal Cables or Encoder Cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm.
 If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines.
- For a motor with a cooling fan, check the rotation direction of the cooling fan after you wire the fan
- Install a battery at either the host controller or on the Encoder Cable.

 If you install batteries both at the host controller and on the Encoder Cable at the same time, you will create a loop circuit between the batteries, resulting in a risk of damage or burning.
- When connecting a battery, connect the polarity correctly.
 There is a risk of battery rupture or encoder failure.

Operation Precautions

WARNING

- Before starting operation with a machine connected, change the settings of the switches and parameters to match the machine.
 - Unexpected machine operation, failure, or personal injury may occur if operation is started before appropriate settings are made.
- Do not radically change the settings of the parameters.
 There is a risk of unstable operation, machine damage, or injury.
- Install limit switches or stoppers at the ends of the moving parts of the machine to prevent unexpected accidents.

There is a risk of machine damage or injury.

- For trial operation, securely mount the Servomotor and disconnect it from the machine. There is a risk of injury.
- Forcing the motor to stop for overtravel is disabled when the Jog (Fn002), Origin Search (Fn003), or Easy FFT (Fn206) utility function is executed. Take necessary precautions. There is a risk of machine damage or injury.
- When an alarm occurs, the motor will coast to a stop or stop with the dynamic brake according
 to a setting in the SERVOPACK. The coasting distance will change with the moment of inertia of
 the load. Check the coasting distance during trial operation and implement suitable safety measures on the machine.
- Do not enter the machine's range of motion during operation. There is a risk of injury.
- Do not touch the moving parts of the Servomotor or machine during operation.
 There is a risk of injury.

♠ CAUTION

- Do not use the holding brake built into a Servomotor to stop the Servomotor. The holding brake
 is designed to hold the motor shaft. It is not designed as a stopping device to ensure machine
 safety. Provide an appropriate stopping device on the machine to ensure safety.
 There is a risk of brake failure due to wear, damage to the machine, or injury.
- Before you operate a Servomotor, supply power to the holding brake to release the holding brake. Refer to the timing charts in your Servomotor manual for details.
- During trial operation, confirm that the holding brake works correctly.
- When overtravel occurs, the power supply to the motor is turned OFF and the brake is released.
 If you use the Servomotor to drive a vertical load, set the Servomotor to enter a zero-clamped state after the Servomotor stops. Also, install safety devices (such as an external brake or counterweight) to prevent the moving parts of the machine from falling.
- Always turn OFF the servo before you turn OFF the power supply. If you turn OFF the main circuit power supply or control power supply during operation before you turn OFF the servo, the Servomotor will stop as follows:
 - If you turn OFF the main circuit power supply during operation without turning OFF the servo, the Servomotor will stop abruptly with the dynamic brake.
 - If you turn OFF the control power supply without turning OFF the servo, the stopping method that is used by the Servomotor depends on the model of the SERVOPACK. For details, refer to the manual for the SERVOPACK.

NOTICE

- Always measure the vibration of the Servomotor with the Servomotor mounted to the machine and confirm that the vibration is within the allowable value.
 - If the vibration is too large, the Servomotor will be damage quickly and bolts may become loose.
- When you adjust the gain during system commissioning, use a measuring instrument to monitor the torque waveform and speed waveform and confirm that there is no vibration.
 If a high gain causes vibration, the Servomotor will be damaged quickly.
- An alarm or warning may occur if communications are performed with the host controller while the SigmaWin+ or Digital Operator is operating.

If an alarm or warning occurs, it may interrupt the current process and stop the system.

Maintenance and Inspection Precautions

▲ DANGER

Do not change any wiring while power is being supplied.
 There is a risk of electric shock or injury.

MARNING

- Wiring and inspections must be performed only by qualified engineers.
 There is a risk of electric shock or product failure.
- If you replace a Servomotor with a Holding Brake, secure the machine before you replace the Servomotor.

There is a risk of injury or equipment damage if the equipment falls.

CAUTION

 Wait for six minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the SERVOPACK.

There is a risk of electric shock.

 Replace the Battery according to the correct procedure.
 If you remove the Battery or disconnect the Encoder Cable while the control power supply to the SERVOPACK is OFF, the absolute encoder data will be lost and position deviation may occur.

■ Troubleshooting Precautions

⚠ WARNING

The product may suddenly start to operate when the power supply is recovered after a momentary power interruption. Design the machine to ensure human safety when operation restarts.
 There is a risk of injury.

⚠ CAUTION

- When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm or turn the power supply OFF and ON again to restart operation.
 There is a risk of injury or machine damage.
- If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the Servomotor may suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an alarm.

There is a risk of injury or machine damage.

• The holding brake on a Servomotor will not ensure safety if there is the possibility that an external force (including gravity) may move the current position and create a hazardous situation when power is interrupted or an error occurs. If an external force may cause movement, install an external braking mechanism that ensures safety.

■ Disposal Precautions

When disposing of the product, treat it as ordinary industrial waste. However, local ordinances
and national laws must be observed. Implement all labeling and warnings as a final product as
required.

■ General Precautions

- Figures provided in this document are typical examples or conceptual representations. There may be differences between them and actual wiring, circuits, and products.
- The products shown in illustrations in this document are sometimes shown without covers or
 protective guards. Always replace all covers and protective guards before you use the product.
- If you need a new copy of this document because it has been lost or damaged, contact your nearest Yaskawa representative or one of the offices listed on the back of this document.
- This document is subject to change without notice for product improvements, specifications changes, and improvements to the manual itself.
 We will update the document number of the document and issue revisions when changes are made.
- Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies
 the product in any way. Yaskawa disavows any responsibility for damages or losses that are
 caused by modified products.

Warranty

◆ Details of Warranty

■ Warranty Period

The warranty period for a product that was purchased (hereinafter called the "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

■ Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period.

This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- · Causes not attributable to the delivered product itself
- · Modifications or repairs not performed by Yaskawa
- Use of the delivered product in a manner in which it was not originally intended
- Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
- Events for which Yaskawa is not responsible, such as natural or human-made disasters

◆ Limitations of Liability

- Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
- Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

Suitability for Use

- It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - Other systems that require a similar high degree of safety
- Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

◆ Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Compliance with UL Standards, EU Directives, and Other Safety Standards

Certification marks for the standards for which the product has been certified by certification bodies are shown on nameplate. Products that do not have the marks are not certified for the standards.

North American Safety Standards (UL)

Product	Model	UL Standards (UL File No.)
SERVOPACKs*1	SGD7S	UL 61800-5-1
Rotary Servomotors*1	• SGM7A • SGM7J • SGM7P • SGM7G	UL 1004-1 UL 1004-6
Direct Drive Servomotors*1	• SGMCV	
Linear Servomotors	• SGLGW • SGLFW • SGLFW2*2 • SGLTW	UL 1004 (E165827)

^{*1.} Certification is scheduled for April 2014.

European Directives

Product	Model	European Directive	Harmonized Standards
SERVOPACKs*1		Machinery Directive 2006/42/EC	EN ISO13849-1: 2008 EN 954-1
	SGD7S	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3
		Low Voltage Directive 2006/95/EC	EN 50178 EN 61800-5-1
Rotary Servomotors*1	• SGM7A • SGM7J • SGM7P	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61800-3
	• SGM7F	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Direct Drive Servomotors	• SGMCS- B, DC, DD, DE	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61800-3*2
	(Small capacity, coreless) • SGMCV	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Linear Servomotors	• SGLG • SGLF • SGLFW2*3	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4
	• SGLT • SGLC	Low Voltage Directive 2006/95/EC	EN 60034-1

^{*1.} Certification is scheduled for April 2014.

^{*2.} Certification is scheduled for April 2015.

^{*2.} Only the SGMCV is certified.

^{*3.} Certification is scheduled for April 2015.

◆ Safety Standards

Product	Model	Safety Standards	Standards
SERVOPACKs	SGD7S	Safety of Machinery	EN ISO13849-1: 2008 EN 954-1 IEC 60204-1
		Functional Safety	IEC 61508 series IEC 62061 IEC 61800-5-2
		EMC	IEC 61326-3-1

Note: Certification is scheduled for April 2014.

◆ Safe Performance

Item	Standards	Performance Level
Safaty Integrity Loyal	IEC 61508	SIL3
Safety Integrity Level	IEC 62061	SILCL3
Performance Level	EN ISO 13849-1	PLe (Category 3)
Stop Category	IEC 60204-1	Stop category 0
Safety Function	IEC 61800-5-2	STO

Note: Certification is scheduled for April 2014.

Contents

	Outling Relate Using Safety Warra	this Manual
1	Basic I	nformation on Servomotors
f	I.1 Servo	omotor Part Names1-2
	1.1.1 1.1.2 1.1.3	SGM7J and SGM7A Servomotor Up to 1.0 kW
	I.2 Interp	oreting the Nameplates1-3
•	.3 Outli	ne of Model Designations1-4
	1.3.1 1.3.2	Servomotor
[.4 Coml	binations of Servomotors and SERVOPACKs1-5
2		ty Selection
2		cting the Servomotor Capacity
	2.1.1 2.1.2	For Speed Control
3	Specifica	ations, Ratings, and External Dimensions of SGM7A Servomotors
3	B.1 Mode	el Designations
	3.1.1 3.1.2	Without Gears3-3With Gears3-3
3	Spec	ifications and Ratings 3-4
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8	Specifications3-4Ratings of Servomotors without Gears3-5Torque-Motor Speed Characteristics3-6Servomotor Ratings3-7Torque-Motor Speed Characteristics for Three-phase, 200 V3-8Ratings of Servomotors with Gears3-9Servomotor Overload Protection Characteristics3-11Load Moment of Inertia3-12

		3.2.9 3.2.10 3.2.11 3.2.12	Allowable Load Moment of Inertia Scaling Factor for SERVOPACKS without Built-in Regenerative Resistors
	3.3	Exter	nal Dimensions
		3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Servomotors without Gears
4	Sp	pecifica	ations, Ratings, and External Dimensions of SGM7J Servomotors
	4.1	Mode	el Designations
		4.1.1 4.1.2	Without Gears.4-2With Gears.4-2
	4.2	Speci	ifications and Ratings 4-3
		4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9	Specifications
	4.3	Exter	nal Dimensions 4-14
		4.3.1 4.3.2 4.3.3	Servomotors without Gears

0	
5.1	Model Designations
5.2	Specifications and Ratings 5-3
	5.2.1Specifications5-35.2.2Servomotor Ratings5-45.2.3Torque-Motor Speed Characteristics for Three-phase, 200 V5-55.2.4Servomotor Overload Protection Characteristics5-65.2.5Load Moment of Inertia5-65.2.6Servomotor Heat Dissipation Conditions5-75.2.7Applications Where the Ambient Temperature of the Servomotor Exceeds 40°C5-7
	5.2.8 Applications Where the Altitude of the Servomotor Exceeds 1,000 m 5-8
5.3	External Dimensions
	5.3.1Servomotors without Holding Brakes5-95.3.2Servomotors with Holding Brakes5-105.3.3Shaft End Specifications5-115.3.4Connector Specifications5-12
6 s	ervomotor Installation
6.1	Installation Conditions 6-2
	6.1.1Installation Precautions6-26.1.2Installation Environment6-36.1.3Installation Orientation6-36.1.4Using Servomotors with Oil Seals6-36.1.5Using Servomotors with Holding Brakes6-4
6.2	Coupling to the Machine 6-5
	6.2.1 Using a Coupling
6.3	Oil and Water Countermeasures 6-8
6.4	Servomotor Temperature Increase 6-9
7	onnections between Servomotors and SERVOPACKs
7.1	Cables for the SGM7A and SGM7J Servomotors 7-2
	7.1.1 System Configurations 7-2 7.1.2 Servomotor Main Circuit Cables 7-3 7.1.3 Encoder Cables of 20 m or Less 7-7 7.1.4 Relay Encoder Cable of 30 m to 50 m 7-8

Specifications, Ratings, and External Dimensions of SGM7G Servomotors

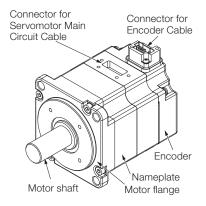
7	7.2 Cabl	les for the SGM7G Servomotors	. 7-9
	7.2.1 7.2.2 7.2.3 7.2.4	System Configurations	7-10 7-12
	7.3 Wirin	ng Servomotors and SERVOPACKs	7-13
	7.3.1 7.3.2	Wiring Precautions	
8	Mainte	enance and Inspection	
[8	B.1 Perio	odic Inspections	. 8-2
[8	3.2 Serv	rice Lives of Parts	. 8-3
[8	3.3 Disp	osing of Servomotors	. 8-4
9	Appen	dices	
9	9.1 Term	ninology and Data for Servomotors with Gears	. 9-2
	9.1.1 9.1.2 9.1.3	Terminology for Servomotors with Low-backlash Gears Noise Data	9-2
(9	9.2 Refe	erence Information for Servomotor Capacity Selection	. 9-4
	9.2.1 9.2.2 9.2.3 9.2.4	Formulas Required to Select the Servomotor Capacity GD ² for Simple Diagrams Conversions between Engineering Units and SI Units Application Examples by Type of Application	9-5 9-6

Revision History

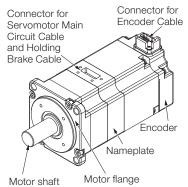
Basic Information on Servomotors

This chapter provides basic information on Rotary Servomotors, including Servomotor part names and combinations with SERVOPACKs.

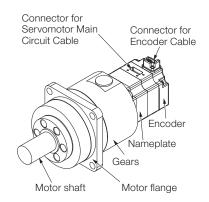
1.1	Servo	motor Part Names1-2
	1.1.1 1.1.2 1.1.3	SGM7J and SGM7A Servomotor Up to 1.0 kW 1-2 SGM7G Servomotors Up to 450 W 1-2 SGM7A Servomotors of 1.5 kW and Higher and SGM7G Servomotors of 850 W and Higher 1-2
1.2	Interp	preting the Nameplates1-3
1.3	Outlin	ne of Model Designations1-4
	1.3.1 1.3.2	Servomotor
1.4	Combi	nations of Servomotors and SERVOPACKs1-5


1.1.1 SGM7J and SGM7A Servomotor Up to 1.0 kW

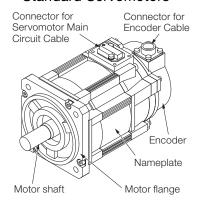
1.1


Servomotor Part Names

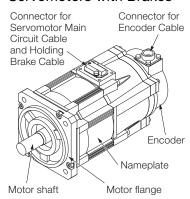
1.1.1 SGM7J and SGM7A Servomotor Up to 1.0 kW


Standard Servomotors

· Servomotors with Brakes

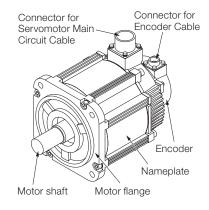


· Servomotors with Gears

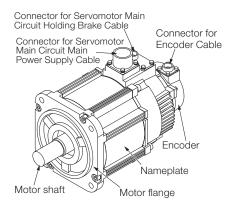


1.1.2 SGM7G Servomotors Up to 450 W

Standard Servomotors



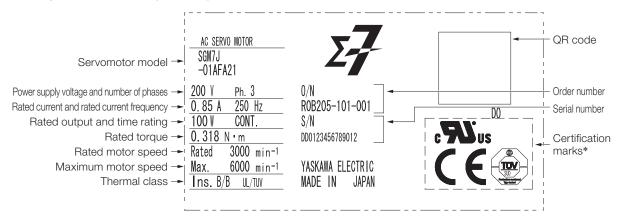
· Servomotors with Brakes



1.1.3 SGM7A Servomotors of 1.5 kW and Higher and SGM7G Servomotors of 850 W and Higher

· Standard Servomotors

· Servomotors with Brakes



1.2 Interpreting the Nameplates

The following basic information is provided on the nameplate.

The nameplate is printed on the Servomotor.

The layout of the nameplate depends somewhat on the model of the Servomotor.

^{*} Certification marks for the standards for which the Servomotor has been certified by certification bodies are shown on the product.

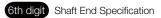
1.3.1 Servomotor

Outline of Model Designations

1.3.1 Servomotor

This section outlines the model numbers of Σ -7-Series Servomotors. For details, refer to the chapter for your type of Servomotor.

Code	Specifications	Reference
SGM7J	Medium inertia, high speed	Chapter 3
SGM7A Low inertia, high speed		Chapter 4
SGM7G	Medium inertia, low speed, high torque	Chapter 5



• 200 VAC

- 24-bit absolute encoder
- · 24-bit incremental encoder

5th digit Design Revision Order

- Straight
- With key and tap
- With two flat seats

- With 24-V holding brake
- With oil seal

SERVOPACKs 1.3.2

This section outlines the model numbers of Σ -7-Series SERVOPACKs. For details, refer to the manual for your SERVOPACK.

- \square Σ -7-Series Σ -7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual (Manual No.: SIEP S800001 26)
- Σ-7-Series Σ-7S SERVOPACK with MECHATROLINK-II Communications References Product Manual (Manual No.: SIEP S800001 27)
- $\Sigma\text{-7-Series }\Sigma\text{-7S SERVOPACK with MECHATROLINK-III Communications References Product Manual}$ (Manual No.: SIEP S800001 28)
- Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29)

Code	Specification
SGD7S	Single-axis SERVOPACKs
SGD7W	Two-axis SERVOPACKs

1st+2nd+3rd digits

Maximum Applicable Motor Capacity

0.05 kW to 1.5 kW

4th digit Power Supply Voltage

• 200 VAC

8th+9th+10th digits Options

7th digit Design Revision Order

- Rack-mounted installation
- Varnished

- Analog voltage/pulse train reference
- MECHATROLINK-II communications reference
- MECHATROLINK-III communications reference

1.4 Combinations of Servomotors and SERVOPACKs

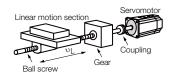
Rotary Servomotor Model		Canaaitu	SERVOPA	SERVOPACK Model	
		Capacity	SGD7S-□□□□	SGD7W-□□□□	
	SGM7A-A5A	50 W	R70A	1R6A	
	SGM7A-01A	100 W	R90A	THOA	
	SGM7A-C2A	150 W	4.5	:: :::::::::::::::::::::::::::::::::::	
	SGM7A-02A	200 W		IOA	
SGM7A Models	SGM7A-04A	400 W	2F	R8A	
(Low Inertia,	SGM7A-06A	600 W	5.	R5A	
High Speed),	SGM7A-08A	750 W		NOA	
3,000 min ⁻¹	SGM7A-10A	1.0 kW	120A		
	SGM7A-15A	1.5 kW	120A		
	SGM7A-20A	2.0 kW	180A	_	
	SGM7A-25A	2.5 kW	200A		
	SGM7A-30A	3.0 kW	200A		
	SGM7J-A5A	50 W	R70A	1R6A	
	SGM7J-01A	100 W	R90A	INUA	
SGM7J Models	SGM7J-C2A	150 W	1.0)	
(Medium Inertia, High Speed),	SGM7J-02A	200 W	1R6A		
3,000 min ⁻¹	SGM7J-04A	400 W	2R8A		
,	SGM7J-06A	600 W	5R5A		
	SGM7J-08A	750 W			
SGM7G Models	SGM7G-03A	300 W	3R8A	5R5A	
(Medium Inertia,	SGM7G-05A	450 W	SNOA	UNDA	
Low Speed,	SGM7G-09A	850 W	7F	R6A	
High Torque),	SGM7G-13A	1.3 kW	120A		
1,500 min ⁻¹	SGM7G-20A	1.8 kW	180A		

Capacity Selection

2

This chapter describes calculation methods to use when selecting Servomotor capacities.

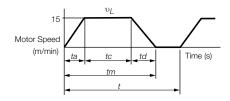
2.1	Selec	cting the Servomotor Capacity2-2
	2.1.1	Capacity Selection Example for a Rotary
		Servomotor: For Speed Control2-2
	2.1.2	Capacity Selection Example for a Rotary
		Servomotor: For Position Control 2-4


2.1 Selecting the Servomotor Capacity

Use Yaskawa's SigmaJunmaSize+, an AC servo drive capacity selection program, to select the Servomotor capacity. With the SigmaJunmaSize+, you can find the optimum Servomotor capacity by simply selecting and entering information according to instructions from a wizard.

Refer to the following selection examples to select Servomotor capacities with manual calculations rather than with the above software.

2.1.1 Capacity Selection Example for a Rotary Servomotor: For Speed Control


1. Mechanical Specifications

Item	Code	Value
Load Speed	$v_{\!\scriptscriptstyle L}$	15 m/min
Linear Motion Section Mass	m	250 kg
Ball Screw Length	ℓ_{B}	1.0 m
Ball Screw Diameter	d _B	0.02 m
Ball Screw Lead	P_B	0.01 m
Ball Screw Material Density	ρ	$7.87 \times 10^3 \text{ kg/m}^3$
Gear Ratio	R	2 (gear ratio: 1/2)
External Force on Linear Motion Section	F	0 N

Item	Code	Value
Gear and Coupling Moment of Inertia	J_{G}	$0.40 \times 10^{-4} \mathrm{kg} \cdot \mathrm{m}^2$
Number of Feeding Operations	n	40 rotations/min
Feeding Distance	ℓ	0.275 m
Feeding Time	tm	1.2 s max.
Friction Coefficient	μ	0.2
Mechanical Efficiency	η	0.9 (90%)

2. Operation Pattern

$$t = \frac{60}{n} = \frac{60}{40} = 1.5 \text{ (s)}$$
If ta = td,
$$ta = tm - \frac{60 \ell}{VL} = 1.2 - \frac{60 \times 0.275}{15} = 1.2 - 1.1 = 0.1 \text{ (s)}$$

$$tc = 1.2 - 0.1 \times 2 = 1.0 \text{ (s)}$$

Motor Speed

• Load shaft speed
$$n_L = \frac{v_L}{P_B} = \frac{15}{0.01} = 1,500 \text{ (min}^{-1}\text{)}$$

• Motor shaft speed $n_M = n_I \cdot R = 1,500 \times 2 = 3,000 \text{ (min}^{-1})$

4. Load Torque

$$T_L = \frac{(9.8 \cdot \mu \cdot m + F) \cdot P_B}{2\pi R \cdot n} = \frac{(9.8 \times 0.2 \times 250 + 0) \times 0.01}{2\pi \times 2 \times 0.9} = 0.43 \text{ (N·m)}$$

5. Load Moment of Inertia

· Linear motion section

$$J_{L1} = m \left(\frac{P_B}{2\pi R}\right)^2 = 250 \times \left(\frac{0.01}{2\pi \times 2}\right)^2 = 1.58 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$$

Ball screw

$$J_B = \frac{\pi}{32} \rho \cdot \ell_B \cdot d_B^4 \cdot \frac{1}{B^2} = \frac{\pi}{32} \times 7.87 \times 10^3 \times 1.0 \times (0.02)^4 \cdot \frac{1}{2^2} = 0.31 \times 10^{-4} \text{ (kg·m²)}$$

2.1.1 Capacity Selection Example for a Rotary Servomotor: For Speed Control

- Coupling $J_G = 0.40 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$
- · Load moment of inertia at motor shaft

$$J_1 = J_{1.1} + J_B + J_G = (1.58 + 0.31 + 0.40) \times 10^{-4} = 2.29 \times 10^{-4} \text{ (kg·m}^2)$$

6. Load Moving Power

$$P_O = \frac{2\pi n_M \cdot T_L}{60} = \frac{2\pi \times 3,000 \times 0.43}{60} = 135 \text{ (W)}$$

7. Load Acceleration Power

$$Pa = \left(\frac{2\pi}{60} n_{M}\right)^{2} \frac{J_{L}}{ta} = \left(\frac{2\pi}{60} \times 3,000\right)^{2} \times \frac{2.29 \times 10^{-4}}{0.1} = 226 \text{ (W)}$$

- 8. Servomotor Provisional Selection
 - ① Selection Conditions
 - $T_1 \leq \text{Motor rated torque}$
 - $\frac{(Po + Pa)}{2}$ < Provisionally selected Servomotor rated output < (Po + Pa)
 - $n_M \leq$ Rated motor speed
 - $J_L \leq$ Allowable load moment of inertia

The following Servomotor meets the selection conditions.

• SGM7J-02A Servomotor

torque:

torque:

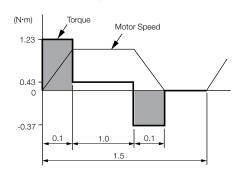
② Specifications of the Provisionally Selected Servomotor

Item	Value	
Rated Output	200 (W)	
Rated Motor Speed	3,000 (min ⁻¹)	
Rated Torque	0.637 (N·m)	
Instantaneous Maximum Torque	2.23 (N·m)	
Motor Moment of Inertia	$0.263 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$	
Allowable Load Moment of Inertia	$0.263 \times 10^{-4} \times 15 = 3.94 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$	

9. Verification of the Provisionally Selected Servomotor

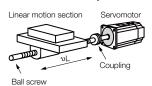
· Verification of required $T_P = \frac{2\pi n_M (J_M + J_L)}{60ta} + T_L = \frac{2\pi \times 3,000 \times (0.263 + 2.29) \times 10^{-4}}{60 \times 0.1} + 0.43$ acceleration ≈ 1.23 (N·m) < Maximum instantaneous torque...Satisfactory

 Verification of required $T_S = \frac{2\pi n_M (J_M + J_L)}{60td} - T_L = \frac{2\pi \times 3,000 \times (0.263 + 2.29) \times 10^{-4}}{60 \times 0.1} - 0.43$ deceleration ≈ 0.37 (N·m) < Maximum instantaneous torque...Satisfactory


2-3

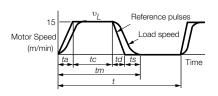
2.1.2 Capacity Selection Example for a Rotary Servomotor: For Position Control

• Verification of effective torque value:
$$Tms = \sqrt{\frac{T_P^2 \cdot ta + T_L^2 \cdot tc + Ts^2 \cdot td}{t}} = \sqrt{\frac{(1.23)^2 \times 0.1 + (0.43)^2 \times 1.0 + (0.37)^2 \times 0.1}{1.5}}$$


10. Result

It has been verified that the provisionally selected Servomotor is applicable. The torque diagram is shown below.

2.1.2 Capacity Selection Example for a Rotary Servomotor: For Position Control


1. Mechanical Specifications

Item	Code	Value
Load Speed	$v_{\!\scriptscriptstyle L}$	15 m/min
Linear Motion Section Mass	m	80 kg
Ball Screw Length	ℓ_B	0.8 m
Ball Screw Diameter	d_B	0.016 m
Ball Screw Lead	P_B	0.005 m
Ball Screw Material Density	ρ	$7.87 \times 10^3 \text{ kg/m}^3$
External Force on Linear Motion Section	F	0 N
Coupling Mass	m_C	0.3 kg

Item	Code	Value
Coupling Outer Diameter	d _C	0.03 m
Number of Feeding Operations	n	40 rotation/min
Feeding Distance	ℓ	0.25 m
Feeding Time	tm	1.2 s max.
Electrical Stopping Precision	δ	±0.01 mm
Friction Coefficient	μ	0.2
Mechanical Efficiency	η	0.9 (90%)

2. Speed Diagram

$$t = \frac{60}{n} = \frac{60}{40} = 1.5$$
 (s)

If ta = td and ts = 0.1 (s),

$$ta = tm - ts - \frac{60 \,\ell}{v_L} = 1.2 - 0.1 - \frac{60 \times 0.25}{15} = 0.1 \text{ (s)}$$

$$tc = 1.2 - 0.1 - 0.1 \times 2 = 0.9$$
 (s)

2.1.2 Capacity Selection Example for a Rotary Servomotor: For Position Control

3. Motor Speed

· Load shaft $n_L = \frac{v_L}{P_D} = \frac{15}{0.005} = 3,000 \text{ (min}^{-1})$ speed

 Motor shaft Direct coupling gear ratio 1/R = 1/1 speed Therefore, $n_M = n_I \cdot R = 3,000 \times 1 = 3,000 \text{ (min}^{-1})$

4. Load Torque

$$T_L = \frac{(9.8 \ \mu \cdot m + F) \cdot P_B}{2\pi R \cdot \eta} = \frac{(9.8 \times 0.2 \times 80 + 0) \times 0.005}{2\pi \times 1 \times 0.9} = 0.139 \ (\text{N} \cdot \text{m})$$

5. Load Moment of Inertia

· Linear motion section

$$J_{L1} = m \left(\frac{P_B}{2\pi R}\right)^2 = 80 \times \left(\frac{0.005}{2\pi \times 1}\right)^2 = 0.507 \times 10^{-4} \text{ (kg·m}^2\text{)}$$

• Ball screw
$$J_B = \frac{\pi}{32} \rho \cdot \ell_B \cdot d_B^4 = \frac{\pi}{32} \times 7.87 \times 10^3 \times 0.8 \times (0.016)^4 = 0.405 \times 10^{-4} \text{ (kg·m²)}$$

• Coupling
$$J_C = \frac{1}{8} m_C \cdot d_C^2 = \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.338 \times 10^{-4} \text{ (kg·m}^2\text{)}$$

• Load moment of inertia at motor shaft

$$J_I = J_{I,1} + J_B + J_C = 1.25 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$$

6. Load Moving Power

$$P_{O} = \frac{2\pi n_{M} \cdot T_{L}}{60} = \frac{2\pi \times 3,000 \times 0.139}{60} = 43.7 \text{ (W)}$$

7. Load Acceleration Power

$$Pa = \left(\frac{2\pi}{60} n_{M}\right)^{2} \frac{J_{L}}{ta} = \left(\frac{2\pi}{60} \times 3,000\right)^{2} \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4 \text{ (W)}$$

8. Servomotor Provisional Selection

① Selection Conditions

- T_I ≤ Motor rated torque
- $\frac{(Po + Pa)}{2}$ < Provisionally selected Servomotor rated output < (Po + Pa)
- n_M ≤ Rated motor speed
- $J_L \leq$ Allowable load moment of inertia

The following Servomotor meets the selection conditions.

SGM7J-01A Servomotor

② Specifications of the Provisionally Selected Servomotor

Item	Value
Rated Output	100 (W)
Rated Motor Speed	3,000 (min ⁻¹)
Rated Torque	0.318 (N·m)
Instantaneous Maximum Torque	1.11 (N·m)
Motor Moment of Inertia	$0.0659 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$
Allowable Load Moment of Inertia	$0.0659 \times 10^{-4} \times 35 = 2.31 \times 10^{-4} \text{ (kg·m}^2\text{)}$
Encoder Resolution	16,777,216 (pulses/rev) (24 bits)

2.1.2 Capacity Selection Example for a Rotary Servomotor: For Position Control

9. Verification of the Provisionally Selected Servomotor

• Verification of required acceleration of required acceleration torque:
$$T_P = \frac{2\pi n_M (J_M + J_L)}{60ta} + T_L = \frac{2\pi \times 3,000 \times (0.0659 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139$$

$$\approx 0.552 \text{ (N·m)} < \text{Maximum instantaneous torque...Satisfactory}$$
• Verification of required deceleration torque:
$$T_S = \frac{2\pi n_M (J_M + J_L)}{60td} - T_L = \frac{2\pi \times 3,000 \times (0.0659 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139$$

$$\approx 0.274 \text{ (N·m)} < \text{Maximum instantaneous torque...Satisfactory}$$
• Verification of effective torque
$$T_{ms} = \sqrt{\frac{T_P^2 \cdot ta + T_L^2 \cdot tc + Ts^2 \cdot td}{t}} = \sqrt{\frac{(0.552)^2 \times 0.1 + (0.139)^2 \times 0.9 + (0.274)^2 \times 0.1}{1.5}}$$

It has been verified that the provisionally selected Servomotor is applicable in terms of capacity. Position control is considered next.

≈ 0.192 (N·m) < Rated torque...Satisfactory

10. Positioning Resolution

value:

The electrical stopping precision δ is ± 0.01 mm, so the positioning resolution $\Delta \ell$ is 0.01 mm. The ball screw lead P_B is 0.005 m, so the number of pulses per motor rotation is calculated with the following formula.

Number of pulses per rotation (pulses) =
$$\frac{P_B}{\Delta^{\ell}} = \frac{5 \text{ mm/rev}}{0.01 \text{ mm}} = 500 \text{ (P/rev)} < \text{Encoder resolution (16,777,216 (pulses/rev))}$$

The number of pulses per motor rotation is less than the encoder resolution (pulses/rev), so the provisionally selected motor can be used.

11. Reference Pulse Frequency

The load speed vL is 1.5 m/min, or $1,000 \times 15/60$ mm/s and the positioning resolution (travel distance per pulse) is 0.01 mm/pulse, so the reference pulse frequency is calculated with the following formula.

$$vs = \frac{1,000 \text{ }^{\text{D}} L}{60 \times \Delta_{\ell}} = \frac{1,000 \times 15}{60 \times 0.01} = 25,000 \text{ (pps)}$$

The reference pulse frequency is less than the maximum input pulse frequency,* so the provisionally selected Servomotor can be used.

It has been verified that the provisionally selected Servomotor is applicable for position control.

^{*}Refer to the specifications in the SERVOPACK manual for the maximum input pulse frequency.

Specifications, Ratings, and External Dimensions of SGM7A Servomotors

3

This chapter describes how to interpret the model numbers of SGM7A Servomotors and gives their specifications, ratings, and external dimensions.

3.1	Model	Designations3-3
	3.1.1 3.1.2	Without Gears
3.2	Specif	fications and Ratings3-4
	3.2.1 3.2.2 3.2.3 3.2.4	Specifications
	3.2.5 3.2.6 3.2.7	Torque-Motor Speed Characteristics for Three-phase, 200 V
	3.2.8 3.2.9	Characteristics
	3.2.10 3.2.11	Regenerative Resistors
	3.2.12	Applications Where the Altitude of the Servomotor Exceeds 1,000 m 3-15
3.3	Extern	nal Dimensions
	3.3.1 3.3.2	Servomotors without Gears

3.3.3	Servomotors without Gears and without
	Holding Brakes
3.3.4	Servomotors without Gears and with
	Holding Brakes3-20
3.3.5	Shaft End Specifications for SGM7A-15 to -30 .3-21
3.3.6	Servomotors with Gears3-22
3.3.7	Connector Specifications

Model Designations

3.1.1 Without Gears

SGM7A

 Σ -7 Series Servomotors: SGM7A

1st+2nd digits Rated Output

Code	Specification
A5	50 W
01	100 W
C2	150 W
02	200 W
04	400 W
06	600 W
80	750 W
10	1.0 kW
15	1.5 kW
20	2.0 kW
25	2.5 kW
30	3.0 kW

3rd digit Power Supply Voltage

Code	Specification
Α	200 VAC

4th digit Serial Encoder

Code	Specification
7	24-bit absolute
F	24-bit incremental

5th digit Design Revision Order

6th digit Shaft End

Code	Specification
2	Straight without key
6	Straight with key and tap
B*	With two flat seats

* Code B is not supported for models with a rated output of 1.5 kW or higher.

7th digit Options

Code	Specification
1	Without options
С	With holding brake (24 VDC)
Е	With oil seal and holding brake (24 VDC)
S	With oil seal

3.1.2 With Gears

SGM7A

Σ-7 Series Servomotors: SGM7A

1st+2nd digits Rated Output

Code	Specification
A5	50 W
01	100 W
C2	150 W
02	200 W
04	400 W
06	600 W
08	750 W
10	1.0 kW

3rd digit Power Supply Voltage

Code	Specification
Α	200 VAC

4th digit Serial Encoder

Code	Specification
7	24-bit absolute
F	24-bit incremental

5th digit Design Revision Order

6th digit Gear Type

Code	Specification
Н	HDS planetary low-backlash gear

7th digit Gear Ratio

Code	Specification
В	1/11*1
С	1/21
1	1/5
2	1/9*2
7	1/33

- *1. This specification is not supported for models with a rated output of 50 W.
- *2. This specification is supported only for models with a rated output of 50 W.

8th digit Shaft End

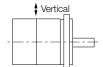
Code	Specification
0	Flange output
2	Straight without key
6	Straight with key and tap

9th digit Options

	Code	Specification			
1 Without options					
	C	With holding brake (24 VDC)			

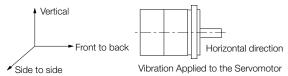
3.2.1 Specifications

3.2


Specifications and Ratings

3.2.1 Specifications

	Voltage	200 V				
N	lodel SGM7A-	A5A to 30A				
Time Rating		Continuous				
Thermal Class	3	B: A5A to 10A				
		F: 15A to 30A				
Insulation Res		500 VDC, 10 MΩ min.				
Withstand Vo	tage	1,500 VAC for 1 minute				
Excitation		Permanent magnet				
Mounting		Flange-mounted				
Drive Method		Direct drive				
Rotation Direct	ction	Counterclockwise (CCW) for forward reference when viewed from the load side				
Vibration Clas	ss*1	V15				
	Surrounding Air Temperature	0°C to 40°C (With derating, usage is possible between 40°C and 60°C.)*4				
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)				
Environmen- tal Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. (With derating, usage is possible between 1,000 m and 2,000 m.)*5 Must be free of strong magnetic fields. 				
	Storage Environment	Store the Servomotor in the following environment if you store it with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation)				
Shock	Impact Acceleration Rate at Flange	490 m/s ²				
Resistance*2	Number of Impacts	2 times				
Vibration Resistance*3	Vibration Acceleration Rate at Flange	49 m/s ² (Models 15A to 30A: 24.5 m/s ² front to back)				
Applicable SE	RVOPACKs	Refer to 1.4 Combinations of Servomotors and SERVOPACKs on page 1-5				


^{*1.} A vibration class of V15 indicates a vibration amplitude of 15 μ m maximum on the Servomotor without a load at the rated motor speed.

*2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servo-motor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

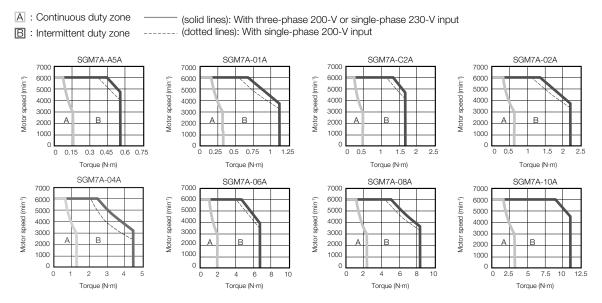
^{*4.} If the ambient temperature will exceed 40°C, refer to the following section.

 $[\]blacksquare$ 3.2.11 Applications Where the Ambient Temperature of the Servomotor Exceeds 40 $^{\circ}$ C on page 3-15

^{*5.} If the altitude will exceed 1,000 m, refer to the following section.

^{3.2.12} Applications Where the Altitude of the Servomotor Exceeds 1,000 m on page 3-15

3.2.2 Ratings of Servomotors without Gears


	200 V									
M	Voltage lodel SGM7A-		A5A	01A	C2A	02A	04A	06A	08A	10A
Rated Output*1		W	50	100	150	200	400	600	750	1000
Rated Torque*1, *2	N·m	0.159	0.318	0.477	0.637	1.27	1.91	2.39	3.18	
Instantaneous Ma	ximum Torque*1	N∙m	0.557	1.11	1.67	2.23	4.46	6.69	8.36	11.1
Rated Current*1		Arms	0.57	0.89	1.5	1.5	2.4	4.5	4.4	6.4
Instantaneous Ma	ximum Current*1	Arms	2.1	3.2	5.6	5.9	9.3	16.9	16.8	23.2
Rated Motor Spec	ed*1	min ⁻¹				30	00			
Maximum Motor S	Speed*1	min ⁻¹				60	000			
Torque Constant		N·m/Arms	0.304	0.384	0.332	0.458		0.456	0.584	0.541
Motor Moment of	Inertia	×10 ⁻⁴ kg⋅m ²	0.0217 (0.0297)	0.0337 (0.0417)	0.0458 (0.0538)	0.139 (0.209)	0.216 (0.286)	0.315 (0.385)	0.775 (0.955)	0.971 (1.15)
Rated Power Rate	5 *1	kW/s	11.7 (8.51)	30.0 (24.2)	49.7 (42.2)	29.2 (19.4)	74.7 (56.3)	115 (94.7)	73.7 (59.8)	104 (87.9)
Rated Angular Acceleration Rate*1		rad/s ²	73200 (53500)	94300 (76200)	104000 (88600)	45800 (30400)	58700 (44400)	60600 (49600)	30800 (25000)	32700 (27600)
Derating Rate for Servomotor with Oil Seal		%	80 90			95				
Heat Sink Size	mm	200 × 200 × 6 250) × 250	× 6	300×300 ×12*7	250×250 ×6	300×300 ×12		
Protective Structu	II.		To	tally en	closed,	self-co	oled, IP	67		
	Rated Voltage		24 VDC±10%							
	Capacity	W	5.5 6 6.			6.5				
	Holding Torque	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39	3.18
Holding Brake Specifications*4	Coil Resistance	Ω (at 20°C)	10	04.8±10)%	96±	10%	88.6±10%		
Specifications	Rated Current	A (at 20°C)		0.23		0.	25		0.27	
	Time Required to Release Brake	ms			60				80	
	Time Required to Brake	ms				1(00			
	Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			40 1	_	30	00.4		20 t	imes
With External Rege tor and Dynamic B			4	40 time:	S	times	20 t	imes	30 t	imes
	LF	mm		20		25			3	5
Allowable Shaft Loads*5	Allowable Radial Load	N		78			245		392	
Loads	Allowable Thrust Load	N		54		74		14	47	

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Refer to the following section for footnotes *1 to *7.

[♦] Notes for Ratings of Servomotor without Gears and Servomotor Ratings on page 3-8

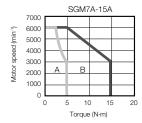
3.2.3 Torque-Motor Speed Characteristics

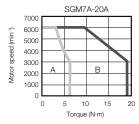
Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

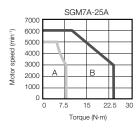
- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

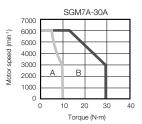
3.2.4 **Servomotor Ratings**

	Voltage	200 V				
	Model SGM7A-		15A	20A	25A	30A
Rated Output*6		kW	1.5	2.0	2.5	3.0
Rated Torque*2, *6		N∙m	4.90	6.36	7.96	9.80
Instantaneous Maximun	n Torque ^{*6}	N∙m	14.7	19.1	23.9	29.4
Rated Current*6		Arms	9.3	12.1	15.6	17.9
Instantaneous Maximur	n Current ^{*6}	Arms	28	42	51	56
Rated Motor Speed*6		min ⁻¹		30	000	
Maximum Motor Speed	*6	min ⁻¹		60	000	
Torque Constant		N·m/Arms	0.590	0.561	0.538	0.582
Motor Moment of Inertia	×10 ⁻⁴ kg·m ²	2.00 (2.25)	2.47 (2.72)	3.19 (3.44)	7.00 (9.20)	
Rated Power Rate*6	kW/s	120 (106)	164 (148)	199 (184)	137 (104)	
Rated Angular Accelera	rad/s ²	24500 (21700)	25700 (23300)	24900 (23100)	14000 (10600)	
Heat Sink Size		mm	30	400 × 400 × 20		
Protective Structure*3		ı	Totally enclosed, self-cooled, IP6			I, IP67
	Rated Voltage	V		24 VE	OC +10%	
	Capacity	W		12		10
	Holding Torque	N∙m	7.	84	10	20
Holding Brake	Coil Resistance	Ω (at 20°C)		48		59
Specifications*4	Rated Current	A (at 20°C)		0.5		0.41
	Time Required to Release Brake	ms		170		100
	Time Required to Brake	ms		8	80	
Allowable Load Moment of	of Inertia (Motor Moment of	of Inertia Ratio)		10 times		5 times
	erative Resistor Resistor	20 times			15 times	
Allowable Shaft	LF	mm		45		63
Loads*5	Allowable Radial Load	N	686			980
	Allowable Thrust Load	N	196			392

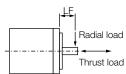

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.


^{2.} Refer to the following section for footnotes *2 to *6.


[♦] Notes for Ratings of Servomotor without Gears and Servomotor Ratings on page 3-8


3.2.5 Torque-Motor Speed Characteristics for Three-phase, 200 V

A : Continuous duty zone
B : Intermittent duty zone



Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.

- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Notes for Ratings of Servomotor without Gears and Servomotor Ratings

- *1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.
- *2. The rated torques are the continuous allowable torque values at 40°C with an aluminum heat sink of the dimensions given in the table.
- *3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is
- *4. Observe the following precautions if you use a Servomotor with a Holding Brake.
 - The holding brake cannot be used to stop the Servomotor.
 - The time required to release the brake and the time required to brake depend on which discharge circuit is used.
 - Confirm that the operation delay time is appropriate for the actual equipment.
 - The 24-VDC power supply is not provided by Yaskawa.
- *5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

- *6. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
- *7. If the heat sink is 250 mm × 250 mm × 6 mm, the rated output is 550 W and the rated torque is 1.75 N⋅m. Refer to the following section for details.
 - 3.2.10 Servomotor Heat Dissipation Conditions on page 3-14

Ratings of Servomotors with Gears

3.2.6

	Gear Mechanism	Protective Structure	Lost Motion [arc-min]
All Models	Planetary gear mechanism	Totally enclosed, self-cooled, IP55 (except for shaft opening)	3 max.

	Servomotor						Gear Output				
Servomotor Model SGM7A-	Rated Output [W]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	Rated Torque [N·m]	Instan- taneous Maxi- mum Torque [N·m]	Gear Ratio	Rated Torque/ Efficiency* ¹ [N·m/%]	Instanta- neous Maxi- mum Torque [N·m]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	
A5A□AH1□						1/5	0.433/64*2	2.37	600	1200	
A5A□AH2□	50	3000	6000	0.159	0.557	1/9	1.12/78	3.78*3	333	667	
A5A□AHC□	50	3000	0000		0.557	1/21	2.84/85	10.6	143	286	
A5A□AH7□						1/33	3.68/70	15.8	91	182	
01A□AH1□						1/5	1.06/78*2	4.96	600	1200	
01A□AHB□	100	3000	6000	0.318	1.11	1/11	2.52/72	10.7	273	545	
01A□AHC□	100	3000	0000	0.516	1.11	1/21	5.35/80	20.8	143	286	
01A□AH7□						1/33	7.35/70	32.7	91	182	
C2A□AH1□						1/5	1.68/83*2	7.80	600	1200	
С2АПАНВП	150	150	0000	0000	0.477	1.67	1/11	3.53/79 ^{*2}	16.9	273	545
C2ADAHCD			3000	6000			1/21	6.30/70*2	31.0	143	286
C2A□AH7□						1/33	11.2/79*2	49.7	91	182	
02A□AH1□	200					1/5	2.39/75	9.80	600	1200	
02A□AHB□		3000	6000	0.637	2.23	1/11	5.74/82	22.1	273	545	
02A□AHC□		3000				1/21	10.2/76	42.1	143	286	
02A□AH7□						1/33	17.0/81	67.6	91	182	
04A□AH1□						1/5	5.35/84	20.1	600	1200	
04A□AHB□	400	3000	6000	1.27	4.46	1/11	11.5/82	45.1	273	545	
04A□AHC□	400	3000	6000	1.21	4.40	1/21	23.0/86	87.0	143	286	
04A□AH7□						1/33	34.0/81	135	91	182	
06A□AH1□						1/5	7.54/79	30.5	600	1200	
06A□AHB□	600	3000	6000	1.91	6.69	1/11	18.1/86	68.6	273	545	
06A□AHC□	000	0000	0000		0.00	1/21	32.1/80	129	143	286	
06A□AH7□						1/33	53.6/85	206	91	182	
08A□AH1□						1/5	10.0/84	38.4	600	1200	
08A□AHB□	750	3000	6000	2.39	8.36	1/11	23.1/88	86.4	273	545	
08A□AHC□	730					1/21	42.1/84	163	143	286	
08A□AH7□						1/33	69.3/88	259	91	182	
10A□AH1□						1/5	13.7/86	52.5	600	1200	
10A□AHB□	1000	3000	6000	3.18	11.1	1/11	29.1/83	111	273	545	
10ADAHCD		3000				1/21	58.2/87	215	143	286	
10A□AH7□						1/33	94.5/90	296*3	91	182	

^{*1.} The gear output torque is expressed by the following formula.

Gear output torque = Servomotor output torque $\times \frac{1}{\text{Gear ratio}} \times \text{Efficiency}$

The gear efficiency depends on operating conditions such as the output torque, motor speed, and temperature. The values in the table are typical values for the rated torque, rated motor speed, and a surrounding air temperature of 25°C. They are reference values only.

^{*2.} When using an SGM7A-A5A, SGM7A-01A, or SGM7A-C2A Servomotor with a gear ratio of 1/5 or an SGM7A-C2A Servomotor with a gear ratio of 1/11, maintain an 85% maximum effective load ratio. For an SGM7A-C2A Servomotor with a gear ratio of 1/21 or 1/33, maintain a 90% maximum effective load ratio. The values in the table take the effective load ratio into consideration.

^{*3.} The instantaneous maximum torque is 300% of the rated torque.

3.2.6 Ratings of Servomotors with Gears

- Note: 1. The gears that are mounted to Yaskawa Servomotors have not been broken in.

 Break in the Servomotor if necessary. First, operate the Servomotor at low speed with no load. If no problems occur, gradually increase the speed and load.
 - 2. The no-load torque for a Servomotor with a Gear is high immediately after the Servomotor starts, and it then decreases and becomes stable after a few minutes. This is a common phenomenon caused by grease circulation in the gears and it does not indicate faulty gears.
 - 3. Contact your Yaskawa representative for information on Servomotor with Gears with a rated output of 1.5 kW or higher.
 - 4. Other specifications are the same as those for Servomotors without Gears.

The SERVOPACK speed control range is 5,000:1. If you use Servomotors at extremely low speeds (0.02 min⁻¹ or lower at the gear output shaft), if you use Servomotors with a one-pulse feed reference for extended periods, or under some other operating conditions, the gear bearing lubrication may be insufficient. That may cause deterioration of the bearing or increase the load ratio. Contact your Yaskawa representative if you use a Servomotor under these conditions.

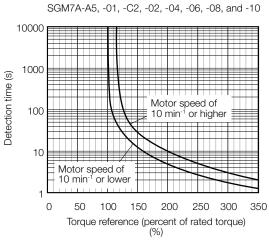
	Moment of Inertia [×10 ⁻⁴ kg·m ²] With Gears							
Servomotor Model	Shaft	Output	Flange	Output	Allowable	Allowable		Reference Diagram
SGM7A-	Motor* + Gear	Gear	Motor* + Gear	Gear	Radial Load [N]	Thrust Load [N]	LF [mm]	Helefelide Blagram
A5A□AH1□	0.0277	0.006	0.0267	0.005	95	431	37	
A5A□AH2□	0.0247	0.003	0.0247	0.003	113	514	37	
A5ADAHCD	0.0257	0.004	0.0257	0.004	146	663	37	
A5A□AH7□	0.0667	0.045	0.0667	0.045	267	1246	53	
01A□AH1□	0.0397	0.006	0.0387	0.005	95	431	37	
01A□AHB□	0.0937	0.060	0.0927	0.059	192	895	53	
01ADAHCD	0.0837	0.050	0.0837	0.050	233	1087	53	
01A□AH7□	0.0987	0.065	0.0977	0.064	605	2581	75	
C2A□AH1□	0.0518	0.006	0.0508	0.005	95	431	37	
C2A□AHB□	0.106	0.060	0.105	0.059	192	895	53	Shaft Output
C2A□AHC□	0.156	0.110	0.154	0.108	528	2254	75	-LF -
C2A□AH7□	0.111	0.065	0.110	0.064	605	2581	75	Dodielland
02A□AH1□	0.346	0.207	0.340	0.201	152	707	53	Radial load
02A□AHB□	0.332	0.193	0.331	0.192	192	895	53	Thrust load
02A□AHC□	0.629	0.490	0.627	0.488	528	2254	75	Thrust load
02A□AH7□	0.589	0.450	0.588	0.449	605	2581	75	
04A□AH1□	0.423	0.207	0.417	0.201	152	707	53	
04A□AHB□	0.786	0.570	0.776	0.560	435	1856	75	Flange Output
04A□AHC□	0.706	0.490	0.704	0.488	528	2254	75	l IF I
04A□AH7□	0.836	0.620	0.826	0.610	951	4992	128	
06A□AH1□	1.02	0.700	0.975	0.660	343	1465	75	Radial load
06A□AHB□	0.885	0.570	0.875	0.560	435	1856	75	│ │ ╌──├╫╫ ぜ ╌┷╍
06A□AHC□	1.16	0.840	1.14	0.820	830	4359	128	Thrust load
06A□AH7□	0.935	0.620	0.925	0.610	951	4992	128	
08A□AH1□	1.48	0.700	1.44	0.660	343	1465	75	
08A□AHB□	1.38	0.600	1.37	0.590	435	1856	75	
08A□AHC□	3.78	3.00	3.76	2.98	830	4359	128	
08A□AH7□	3.58	2.80	3.57	2.79	951	4992	128	
10A□AH1□	1.67	0.700	1.63	0.660	343	1465	75	
10A□AHB□	4.37	3.40	4.31	3.34	684	3590	128	
10A□AHC□	3.97	3.00	3.95	2.98	830	4359	128	
10A□AH7□	3.77	2.80	3.76	2.79	951	4992	128	

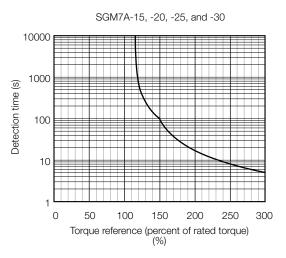
^{*} The moment of inertia for the Servomotor and gear is the value without a holding brake. You can calculate the moment of inertia for a Servomotor with a Gear and Holding Brake with the following formula.

Motor moment of inertia for a Servomotor with a Holding Brake from 3.2.2 Ratings of Servomotors without Gears on page 3-5 + Moment of inertia for the gear from the above table.

Specifications, Ratings, and External Dimensions of SGM7A Servomotors

During operation, the gear generates the loss at the gear mechanism and oil seal. The loss depends on the torque and motor speed conditions. The temperature rise depends on the loss and heat dissipation conditions. For the heat dissipation conditions, always refer to the following table and check the gear and motor temperatures with the actual equipment. If the temperature is too high, implement the following measures.


- · Decrease the load ratio.
- · Change the heat dissipation conditions.
- Use forced-air cooling for the motor with a cooling fan or other means.


Model	Heat Sink Size								
Model	1/5	1/9 or 1/11	1/21	1/33					
SGM7A-A5		А							
SGM7A-01									
SGM7A-C2		В							
SGM7A-02									
SGM7A-04									
SGM7A-06									
SGM7A-08		С							
SGM7A-10A									

- A: 250 mm × 250 mm × 6 mm, aluminum plate
- B: 300 mm × 300 mm × 12 mm, aluminum plate
- C: 350 mm × 350 mm × 12 mm, aluminum plate

3.2.7 Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in 3.2.3 Torque-Motor Speed Characteristics on page 3-6 or in 3.2.5 Torque-Motor Speed Characteristics for Three-phase, 200 V on page 3-8.

3.2.8 Load Moment of Inertia

The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

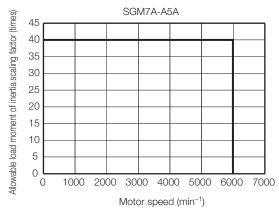
The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to 3.2.2 Ratings of Servomotors without Gears on page 3-5 or to 3.2.4 Servomotor Ratings on page 3-7. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on the SigmaJunmaSize+.

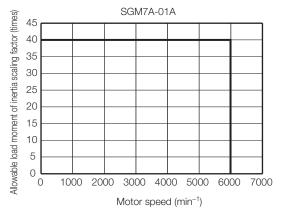
An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

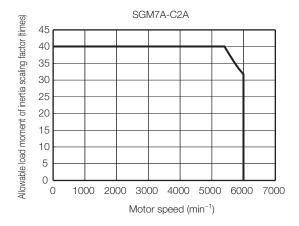
- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an external regenerative resistor if the alarm cannot be cleared using the above steps.

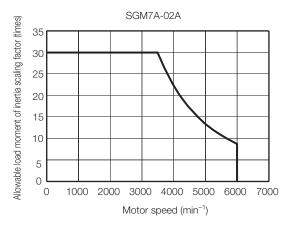
Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an external regenerative resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.

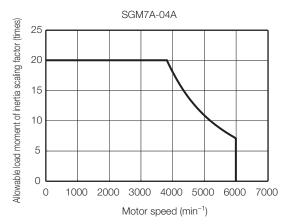

Allowable Load Moment of Inertia Scaling Factor for SERVOPACKs without Built-in Regenerative Resistors

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs* without built-in regenerative resistors when an External Regenerative Resistor is not connected.


3.2.9 Allowable Load Moment of Inertia Scaling Factor for SERVOPACKs without Built-in Regenerative Resistors

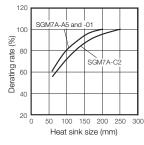

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

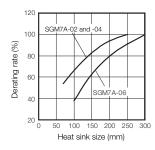

These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

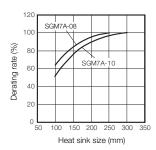


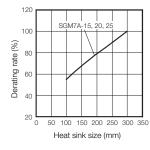
3.2.9

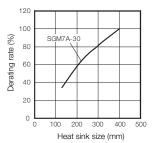
^{*} Applicable SERVOPACK models: SGD7S-R70A, -R90A, -1R6A, or -2R8A

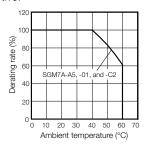

3.2.10 Servomotor Heat Dissipation Conditions

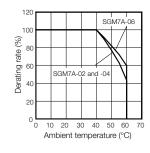

The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

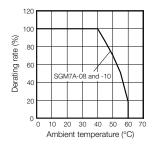

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative

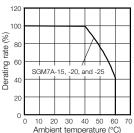


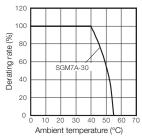

The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equipment.

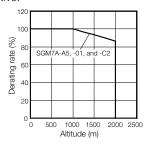


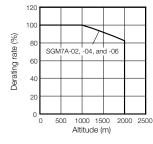


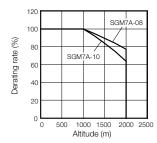

3.2.11 Applications Where the Ambient Temperature of the Servomotor Exceeds 40°C

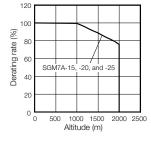

The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C. If you use a Servomotor at an ambient temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.

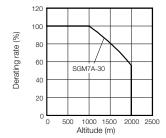

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

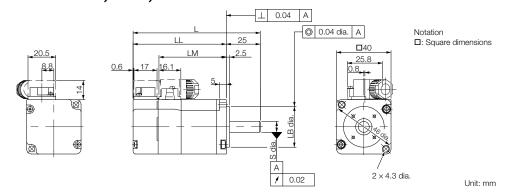





3.2.12 Applications Where the Altitude of the Servomotor Exceeds 1,000 m


The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative



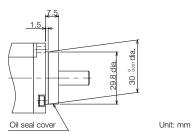
3.3.1 Servomotors without Gears

3.3 External Dimensions

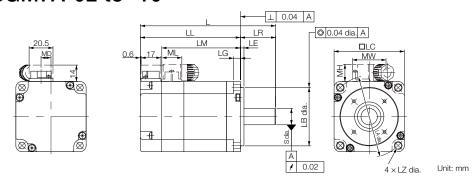
3.3.1 Servomotors without Gears

SGM7A-A5, -01, and -C2

Model SGM7A-	L	LL	LM	LB	S	Approx. Mass [kg]
A5A□A2□	81.5 (122)	56.5 (97)	37.9	30 -0.021	8 -0.009	0.3 (0.6)
01A□A2□	93.5 (134)	68.5 (109)	49.9	30 -0.021	8 -0.009	0.4 (0.7)
C2ADA2D	105.5 (153.5)	80.5 (128.5)	61.9	30 -0.021	8 -0.009	0.5 (0.8)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.


3.3.2 Shaft End Specifications for SGM7A-A5 to -10 on page 3-18

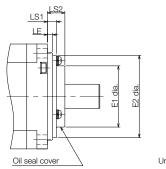
◆ Specifications of Options

Oil Seal

SGM7A-02 to -10

Model SGM7A-	L LL		LM	Flange Dimensions							S
Wodel Salvit A-	L	LL	LIVI	LR	LE	LG	LC	LA	LB	LZ	3
02A□A2□	99.5 (140)	69.5 (110)	51.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011
04A□A2□	115.5 (156)	85.5 (126)	67.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011
06A□A2□	137.5 (191.5)	107.5 (161.5)	89.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011
08A□A2□	137 (184)	97 (144)	78.5	40	3	8	80	90	70 -0.030	7	19 -0.013
10A□A2□	162 (209)	122 (169)	103.5	40	3	8	80	90	70 -0.030	7	19 -0.013

Model SGM7A-	MD	MW	MH	ML	Approx. Mass [kg]
02A□A2□	8.5	28.7	14.7	17.1	0.8 (1.4)
04A□A2□	8.5	28.7	14.7	17.1	1.2 (1.8)
06A□A2□	8.5	28.7	14.7	17.1	1.6 (2.2)
08A□A2□	13.6	38	14.7	19.3	2.3 (2.9)
10A□A2□	13.6	38	14.7	19.3	3.1 (3.7)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

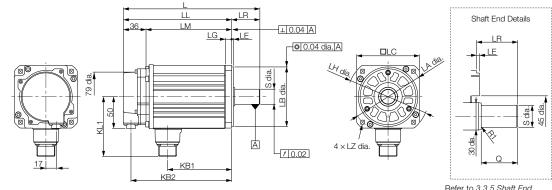
3.3.2 Shaft End Specifications for SGM7A-A5 to -10 on page 3-18

◆ Specifications of Options

• Oil Seal

Unit: mm

Model SGM7A-	Dimensions with Oil Seal							
Woder Salvit A-	E1	E2	LS1	LS2				
02A, 04A, 06A	35	47	5.2	10				
08A, 10A	47	61	5.5	11				

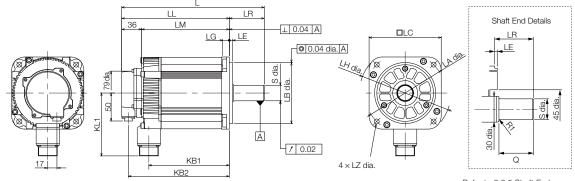

3.3.2 Shaft End Specifications for SGM7A-A5 to -10

B With two nat scats				_					
Shaft End Details					notor M	1odel S	GM7A	-	
Shart End Details		A5	01	C2	02	04	06	80	10
Code: 2 (Straight without Key)									
LR	LR		25			30		4	0
₩	S	8 0 -0.009			14 -0.011			19	0 -0.013
Code: 6 (Straight with Key and Tap)									
	LR		25			30			0
LR	QK		14		14			2	2
QK	S		8 -0.009		14 -0.011			19	0 -0.013
The same of the sa	W	3		5			6	3	
	Т		3		5			6	3
Y Ö T Cross section Y-Y	U		1.8			3		3.	.5
0.000 000.00.	Р		$M3 \times 61$	_		M5 × 8		M6 ×	10L
Code: B (with Two Flat Seats)	•								
LR .	LR		25			30		4	0
QH	QH		15			15		2	2
→ I Y I	S		8 -0.009			14 -0.011		19	0 -0.013
T H2	H1		7.5			13		1	8
Cross section Y-Y	H2		7.5			13		1	8

3.3.3 Servomotors without Gears and without Holding Brakes

SGM7A-15, -20, and -25

Refer to 3.3.5 Shaft End Specifications for SGM7A-15 to -30 on page 3-21 for details.


Unit: mm

Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
15A□A21	202	157	121	45	86	145	96
20A□A21	218	173	137	45	102	161	96
25A□A21	241	196	160	45	125	184	96

Model		Flange	Surfac	ce Dim	ensions	3		Shaft End Di	Approx.	
SGM7A-	LA	LB	LC	LE	LG	LH	LZ	S	Q	Mass [kg]
15A□A21	115	95 -0.035	100	3	10	130	7	24 -0.013	40	4.6
20A□A21	115	95 -0.035	100	3	10	130	7	24 -0.013	40	5.4
25A□A21	115	95 -0.035	100	3	10	130	7	24 -0.013	40	6.8

Note: Servomotors with Oil Seals have the same dimensions.

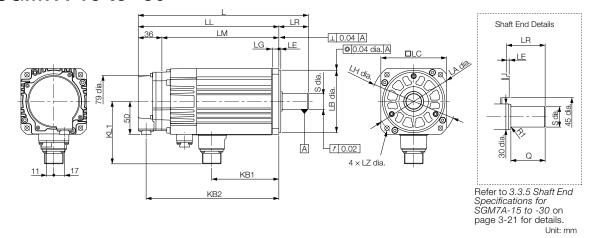
SGM7A-30

Refer to 3.3.5 Shaft End Specifications for SGM7A-15 to -30 on page 3-21 for details.

Unit: mm

Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
30A□A21	257	194	158	63	145	182	114

Model		Flang	e Surfa	ce Dim	ensions	3		Shaft End Di	Approx.	
SGM7A-	LA	LB	LC LE LG LH LZ S Q							Mass [kg]
30A□A21	145	110 -0.035	130	6	12	165	9	28 -0.013	55	10.5


Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

SGM7A-15 to -30 without Holding Brakes on page 3-28

3.3.4 Servomotors without Gears and with Holding Brakes

SGM7A-15 to -30

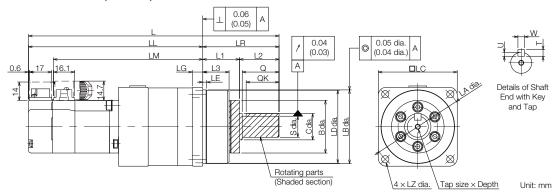
Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
15A□A2C	243	198	162	45	77	186	102
20A□A2C	259	214	178	45	93	202	102
25A□A2C	292	247	211	45	116	225	102
30A□A2C	295	232	196	63	114	220	119

Model		Flange	e Surfac	ce Dim	ensions	3		Shaft End Di	Approx.	
SGM7A-	LA	LB	LC	LE	LG	LH	LZ	S	Q	Mass [kg]
15A□A2C	115	95 -0.035	100	3	10	130	7	24 -0.013	40	6.0
20A□A2C	115	95 -0.035	100	3	10	130	7	24 -0.013	40	6.8
25A□A2C	115	95 -0.035	100	3	10	130	7	24 -0.013	40	8.7
30A□A2C	145	110 -0.035	130	6	12	165	9	28 -0.013	55	13

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

SGM7A-15 to -30 with Holding Brakes on page 3-28


3.3.5 Shaft End Specifications for SGM7A-15 to -30

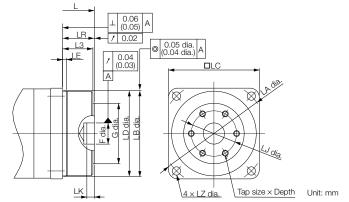
SGM	17A-0000 <u>0</u> 0									
Code	Specification									
2	Straight without key									
6	Straight with key and tap for one location (Key slot is JIS B1301-1996 fastening type.)									

Shaft End Details			Servomotor M	odel SGM7A-	
Shart End Details		15	20	25	30
Code: 2 (Straight without K	ey)				
LR	LR		45		63
	Q		40		55
Sda	S		28 -0.013		
Code: 6 (Straight with Key a	and Tap)				
LR	LR			63	
Q	Q		40		55
QK	QK		32		50
	S		24 -0.013		28 -0.013
	W		8		
——————————————————————————————————————	Т		7	,	
	U		4		
	Р		M8 screw,	Depth: 16	

3.3.6 Servomotors with Gears

SGM7A-A5, -01, and -C2

Model SGM7A-	Gear	1	LL LM				Flan	ge Sı	ırface	Dimensi	ons		
Model SGIM/A-	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ
A5A□AH1 🗷 🗆	1/5	138	96	77.4									
A5A□AH2▮□	1/9	(178.5)	(136.5)	77.4	42	2.2	5	29	39.5	40 -0.025	40	46	3.4
A5A□AHC�□	1/21	147 (187.5)	105 (145.5)	86.4						- 0.020			
A5A□AH7 🗷 🗆	1/33	178.5 (219)	120.5 (161)	101.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
01A□AH1 🗷 🗆	1/5	150 (190.5)	108 (148.5)	89.4	42	2.2	5	29	39.5	40 -0.025	40	46	3.4
01A□AHB�□	1/11	190.5	132.5	113.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
01A□AHC 🗷 🗆	1/21	(231)	(173)	110.9	50	2.0	0	40	55.5	JU -0.030	00	70	0.0
01A□AH7᠍□	1/33	215 (255.5)	135 (175.5)	116.4	80	7.5	10	59	84	85 -0.035	90	105	9
C2A□AH1團□	1/5	162 (210)	120 (168)	101.4	42	2.2	5	29	39.5	40 -0.025	40	46	3.4
C2A□AHB�□	1/11	202.5 (250.5)	144.5 (192.5)	125.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
C2A□AHC ▮□	1/21	227	147	128.4	80	7.5	10	59	84	85 -0.035	90	105	9
C2A□AH7▮□	1/33	(275)	(195)	120.4	30	1.0	2	5	04	OO -0.035	30	100	<i>3</i>


Model SGM7A-	Flange S	urface Dir	mensions	Q	С	S	Tap Size ×	Ke	ey Dim	ensio	ns	Approx.
Wodel Salvi7A-	L1	L2	L3	Q		3	Depth	QK	U	W	Т	Mass [kg]
A5A□AH1 🗷 🗆												0.6
A5A□AH2⊠□	22	20	14.6	_	_	10 0	$M3 \times 6L$	15	2.5	4	4	(0.9)
A5A□AHC⊠□						- 0.010						0.7 (1.0)
A5A□AH7團□	28	30	20	28	20	16 -0.018	$M4 \times 8L$	25	3	5	5	1.3 (1.6)
01A□AH1 🗷 🗆	22	20	14.6	_	_	10 -0.015	$M3 \times 6L$	15	2.5	4	4	0.7 (1.0)
01A□AHB ® □	28	30	20	28	20	16 0 -0.018	M4 × 8L	25	3	5	5	1.4
01A□AHC ▮ □	20	00	20	20	20	10 -0.018	WIT X OL	0	O		0	(1.7)
01A□AH7᠍□	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	2.8 (3.1)
C2A□AH1 🗷 🗆	22	20	14.6	_	_	10 -0.015	$M3 \times 6L$	15	2.5	4	4	0.8 (1.1)
C2A□AHB�□	28	30	20	28	20	16 -0.018	$M4 \times 8L$	25	3	5	5	1.5 (1.8)
C2A□AHC ▮□	36	44	26	42	32	25 0 -0.021	M6 × 12L	36	4	8	7	2.9
C2A□AH7᠍□	00	77	20	72	02	∠∪ -0.021	IVIO X IZL	50	7	0	,	(3.2)

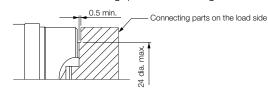
^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the Σ , Σ -II, and Σ -III Series.

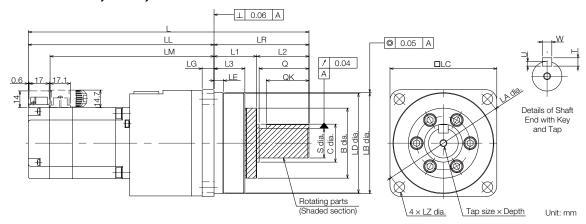
◆ Flange Output Face

Note: The geometric tolerance in parentheses is the value for LC = 40.


Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
A5A□AH10□	1/5	111							
A5A□AH20□	1/9	(151.5)	15	18	5 ^{+0.012}	24	3	$3 \times M4 \times 6L$	0.6
A5A□AHC0□	1/21	120 (160.5)	10	10	0 0	21		O X WIT X OL	(0.9)
A5A□AH70□	1/33	141.5 (182)	21	30	14 +0.018	40	5	6 × M4 × 7L	1.2 (1.5)
01A□AH10□	1/5	123 (163.5)	15	18	5 +0.012	24	3	3 × M4 × 6L	0.7 (1.0)
01A□AHB0□	1/11	153.5	21	30	14 +0.018	40		3 × M4 × 7L	1.3
01A□AHC0□	1/21	(194)	۷ ا	00	14 0	40	5	0 × WI4 × 7 L	(1.6)
01A□AH70□	1/33	162 (202.5)	27	45	24 +0.021	59		6 × M6 × 10L	2.4 (2.7)
02A□AH10□	1/5	135 (183)	15	18	5 +0.012	24	3	3 × M4 × 6L	0.8 (1.1)
02A□AHB0□	1/11	165.5 (213.5)	21	30	14 +0.018	40	5	6 × M4 × 7L	1.4 (1.7)
02A□AHC0□	1/21	174	27	45	24 +0.021	59	5	6 × M6 × 10L	2.5
02A□AH70□	1/33	(222)	۷.	70	Z4 0	09	J	U X IVIU X TUL	(2.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

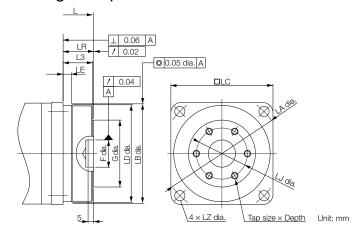


For a Servomotor with a flange output that has square gear flange dimensions (\square LC) of 40 mm, we recommend that you design the Servomotor with the dimensions shown in the following figure in order to secure a gap between the gear oil seal and the connecting parts on the load side.

3.3.6 Servomotors with Gears

SGM7A-02, -04, and -06

Model SGM7A-	Gear	1	LL	LM			F	lange	Surface	Dimension	ns		
Wodel Saw/A-	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ
02A□AH1 ▮ □	1/5	191.5	133.5	115.2	58	2.5	8	40	55.5	56 _{-0.030}	60	70	5.5
02A□AH2 🗷 🗆	1/11	(232)	(174)	110.2	30	2.0	0	40	55.5	OU -0.030	00	70	0.0
02A□AHC 🗷 🗆	1/21	220.5	140.5	122.2	80	7.5	10	59	84	85 ⁰ -0.035	90	105	9
02A□AH7 🗷 🗆	1/33	(261)	(181)	122.2	00	7.5	10	39	04	OO _{-0.035}	90	105	9
04A□AH1 🗷 🗆	1/5	207.5 (248)	149.5 (190)	131.2	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
04A□AHB☀□	1/11	236.5	156.5	138.2	80	7.5	10	59	84	85 -0.035	90	105	9
04A□AHC 🗷 🗆	1/21	(277)	(197)	100.2	00	7.5	10	39	04	OO -0.035	30	100	9
04A□AH7 🗷 🗆	1/33	322.5 (363)	189.5 (230)	171.2	133	12.5	13	84	114	115 -0.035	120	135	11
06A□AH1 🗷 🗆	1/5	258.5	178.5	160.2	80	7.5	10	59	84	85 ⁰ -0.035	90	105	9
06A□AHB��□	1/11	(312.5)	(232.5)	100.2	00	1.5	10	Ja	04	OO -0.035	90	103	Э
06A□AHC圕□	1/21	344.5	211.5	102.2	133	12.5	13	84	114	115 -0.035	120	135	11
06A□AH7 🗷 🗆	1/33	(398.5)	(265.5)	193.2	133	12.0	13	04	114	113 -0.035	120	133	11


Model SGM7A-	Flange S	Surface Dir	mensions	Q	С	S	Tap Size ×	K	ey Din	nensior	าร	Approx.
Model SGM/A-	L1	L2	L3	Q	C	3	Depth	QK	U	W	Т	Mass [kg]
02A□AH1 🗷 🗆	- 28	30	20	28	20	16 -0.018	M4 × 8I	25	3	5	5	1.8 (2.4)
02A□AH2 ▮ □	20	00	20	20	20	10 -0.018		20	0	3	0	1.9 (2.5)
02A□AHC᠍□	- 36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	3.7
02A□AH7 🗷 🗆			20		02	20 -0.021	WIO X TEE			0	,	(4.3)
04A□AH1 🗷 🗆	28	30	20	28	20	16 -0.018	M4 × 8L	25	3	5	5	2.1 (2.7)
04A□AHB ▮ □	- 36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	4.0
04A□AHC᠍□	00	77	20		02	20 -0.021	1110 / 122	00	·	0	,	(4.6)
04A□AH7 🗷 🗆	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	8.6 (9.2)
06A□AH1 🗷 🗆	- 36	44	26	42	32	25 ⁰ -0.021	M6 × 12L	36	4	8	7	4.3 (4.9)
06A□AHB▮□	30	74	20	42	02	∠J _{-0.021}	IVIO A TZL	30	Ť	5	,	4.5 (5.1)
06A□AHC▮□	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	9.1
06A□AH7 🗷 🗆	40	00	00	02	74	4U -0.025	WITO X ZUL	, 0	0	12	J	(9.7)

^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

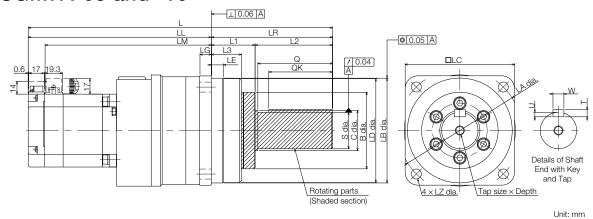
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the $\Sigma,\,\Sigma\textsc{-II},$ and $\Sigma\textsc{-III}$ Series.

◆ Flange Output Face

Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
02A□AH10□	1/5	154.5	21	30	14 +0.018	40	6 × M4 × 7L	1.7 (2.3)
02A□AH20□	1/11	(195)	21		14 0	40	0 × 1V14 × 7 L	1.8 (2.4)
02A□AHC0□	1/21	167.5	27	45	24 +0.021	59	6 × M6 × 10L	3.3
02A□AH70□	1/33	(208)	21	40	24 0	39	O X IVIO X TOL	(3.9)
04A□AH10□	1/5	170.5 (211)	21	30	14 +0.018	40	6 × M4 × 7L	2.0 (2.6)
04A□AHB0□	1/11	183.5	27	45	24 +0.021	59	6 × M6 × 10L	3.6
04A□AHC0□	1/21	(224)	21	10	Z4 ₀		O X IVIO X TOE	(4.2)
04A□AH70□	1/33	224.5 (265)	35	60	32 +0.025	84	6 × M8 × 12L	7.2 (7.8)
06A□AH10□	1/5	205.5	27	45	24 +0.021	59	6 × M6 × 10L	3.9 (4.5)
06A□AHB0□	1/11	(259.5)	21	45	24 ₀	09	6 × IVI6 × TUL	4.1 (4.7)
06A□AHC0□	1/21	246.5	35	60	32 +0.025	84	6 × M8 × 12L	7.7
06A□AH70□	1/33	(300.5)	00	00	J∠ ₀	04	U A IVIU A TZL	(8.3)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.


^{2.} Dimensions not found in the above table are the same as those in the table on the previous page.

3.3.6 Servomotors with Gears

10A□AHCা□

10A□AH7 🗷 🗆

SGM7A-08 and -10

Model SGM7A-	Gear	1	LL	LM	Flange Surface Dimensions									
Woder odwrz	Ratio	_	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ	
08A□AH1 🗷 🗆	1/5	255	175	156.5	80	7.5	10	59	84	85 -0.035	90	105	9	
08A□AHB�□	1/11	(302)	(222)	130.3	00	7.0	10		0 1	00 -0.035	50	100	3	
08A□AHC�□	1/21	334	201	182.5	133	12.5	13	84	114	115 0	120	135	11	
08A□AH7 ▮ □	1/33	(381)	(248)	102.5	100	12.0	10	04	114	110 -0.035	120	100	' '	
10A□AH1 🗷 🗆	1/5	280 (327)	200 (247)	181.5	80	7.5	10	59	84	85 -0.035	90	105	9	
10A□AHB᠍□	1/11													

12.5

133

13

84

114

115 -0.035

120

135

11

Model SGM7A-	Flange Surface Dimensions		Q C		S	Tap Size ×	Ke	ey Din	nensio	ns	Approx.	
Woder SawitA-	L1	L2	L3	3	O	3	Depth	QK	J	W	Т	Mass [kg]
08A□AH1 🗷 🗆	- 36	44	26	42	32	25 0 -0.021	M6 × 12L	36	4	8	7	4.9 (5.8)
08A□AHB�□	30	44	20	42	02	20 -0.021	WOX TZE	00	7		,	5.1 (6.0)
08A□AHC▮□	48	85	33	82	44	40 0 -0.025	M10 × 20L	70	5	12	8	9.8
08A□AH7 🗷 🗆	40	00	00	02	44	40 -0.025	IVITO X ZOL	70	5	12	0	(10.7)
10A□AH1 🗷 🗆	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	6.0 (6.6)
10A□AHB�□												10.0
10A□AHC⊞□	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	10.9 (11.5)
10A□AH7 🗷 🗆												()

^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

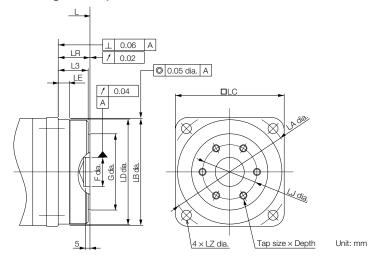
359

(406)

1/21

1/33

226


(273)

207.5

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the Σ , Σ -II, and Σ -III Series.

◆ Flange Output Face

Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
08A□AH10□	1/5	202	27	45	24 +0.021	59	6 × M6 × 10L	4.7 (5.3)
08A□AHB0□	1/11	(249)					0 X IVIO X TOL	4.9 (5.5)
08A□AHC0□	1/21	236	35	60	32 +0.025	84	6 × M8 × 12I	8.6
08A□AH70□	1/33	(283)	33	00	02 0	0+	O X IVIO X 12L	(9.2)
10A□AH10□	1/5	227 (274)	27	45	24 +0.021	59	6 × M6 × 10L	5.6 (6.3)
10A□AHB0□	1/11	001						0.5
10A□AHC0□	1/21	261 (308)	35	60	32 +0.025	84	6 × M8 × 12L	9.5 (10.1)
10A□AH70□	1/33	(000)						(10.1)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Dimensions not found in the above table are the same as those in the table on the previous page.

3.3.7 Connector Specifications

SGM7A-15 to -30 without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D

Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug

CM10-SP10S-□-D for Straight Plug

(□ depends on the applicable cable

Manufacturer: DDK Ltd.

size.)

1	PS	6*	BAT (+)
2	/PS	7	_
3	_	8	_
4	PG5V	9	PG0V
5*	BAT (-)	10	FG (frame ground)

* A battery is required only for an absolute encoder.

• Servomotor Connector Specifications

Manufacturer: DDK Ltd.

Α	Phase U
В	Phase V
С	Phase W
D	FG (frame ground)

SGM7A-15 to -30 with Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D

Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug

CM10-SP10S-□-D for Straight Plug

(□ depends on the applicable cable size.)

Manufacturer: DDK Ltd.

1	PS	6*	BAT (+)		
2	/PS	S 7 -			
3	-	8	_		
4	PG5V	9	PG0V		
5*	BAT (-)	10	FG (frame ground)		

* A battery is required only for an absolute encoder.

• Servomotor Connector Specifications

Manufacturer: Japan Aviation Electronics Industry, Ltd.

А	Phase U
В	Phase V
С	Phase W
D	FG (frame ground)
Е	Brake terminal
F	Brake terminal
G	_

Note: There is no voltage polarity for the brake terminals.

Specifications, Ratings, and External Dimensions of SGM7J Servomotors

4

This chapter describes how to interpret the model numbers of SGM7J Servomotors and gives their specifications, ratings, and external dimensions.

4.1	Mode	Designations4-2
	4.1.1 4.1.2	Without Gears
4.2	Speci	fications and Ratings4-3
	4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10	Specifications
4.3	Extern	nal Dimensions4-14
	4.3.1 4.3.2 4.3.3	Servomotors without Gears

4.1.1 Without Gears

4.1

Model Designations

4.1.1 Without Gears

SGM7J

 Σ -7 Series Servomotors: SGM7J 01

A 3rd

1

A 5th

6th

1 7#

7th digit

1st+2nd digits Rated Output

	Code	;	Specification
ı	A5	50 W	
	01	100 W	
	C2	150 W	
	02	200 W	
	04	400 W	
	06	600 W	
	08	750 W	

3rd digit Power Supply Voltage

Code	Specification
Α	200 VAC

4th digit Serial Encoder

Code	Specification			
7	24-bit absolute			
F	24-bit incremental			

5th digit Design Revision Order

6th digit Shaft End

Code	Specification					
2	Straight without key					
6	Straight with key and tap					
В	With two flat seats					

7th digit Options

Code	Specification
1	Without options
С	With holding brake (24 VDC)
Е	With oil seal and holding brake (24 VDC)
S	With oil seal

4.1.2 With Gears

SGM7J

 Σ -7 Series Servomotors: SGM7J - () 1 1st+2nd A 3rd digit

4th digit

Α

5th digit

6th

it (

8th digit 9th digit

1st+2nd digits Rated Output

Code	Specification
A5	50 W
01	100 W
C2	150 W
02	200 W
04	400 W
06	600 W
08	750 W

3rd digit Power Supply Voltage

_	<u> </u>
Code	Specification
Α	200 VAC

4th digit Serial Encoder

Code	Specification
7	24-bit absolute
F	24-bit incremental

5th digit Design Revision Order

6th digit Gear Type

Α

Code Specification

H HDS planetary low-backlash gear

7th digit Gear Ratio

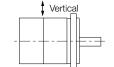
Code	Specification
В	1/11*1
С	1/21
1	1/5
2	1/9*2
7	1/33

- *1. This specification is not supported for models with a rated output of 50 W.
- *2. This specification is supported only for models with a rated output of 50 W.

8th digit Shaft End

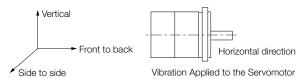
Code	Specification
0	Flange output
2	Straight without key
6	Straight with key and tap

9th digit Options


Code	Specification					
1	Without options					
С	With holding brake (24 VDC)					

4.2 Specifications and Ratings

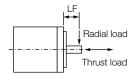
4.2.1 Specifications


	200 V									
N	A5A 01A C2A 02A 04A 06A 08A									
Time Rating					Continuou	S				
Thermal Class	3				В					
Insulation Res	sistance			500 VI	OC, 10 M	Ω min.				
Withstand Vol	tage			1,500 \	VAC for 1	minute				
Excitation				Perm	nanent ma	agnet				
Mounting				Flar	nge-mour	nted				
Drive Method					Direct driv	е				
Rotation Direct	ction	Counterclo	ockwise (CC	CW) for forwa	ard referenc	e when viev	ved from the	e load side		
Vibration Clas	s*1				V15					
	Surrounding Air Temperature	0°C to 40	0°C to 40°C (With derating, usage is possible between 40°C and 60°C.)*4							
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)								
Environmen- tal Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. (With derating, usage is possible between 1,000 m and 2,000 m.)*5 Must be free of strong magnetic fields. 								
	Storage Environment	Store the Servomotor in the following environment if you store it with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation)								
Shock	Impact Acceleration Rate at Flange				490 m/s ²					
Resistance*2 Number of Impacts 2 times										
Vibration Resistance*3	Vibration Acceleration Rate at Flange	49 m/s ²								
Applicable SERVOPACKs		Refer to 1.4 Combinations of Servomotors and SERVOPACKs on page 1-5.								

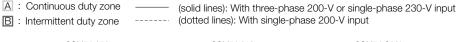
- *1. A vibration class of V15 indicates a vibration amplitude of 15 μ m maximum on the Servomotor without a load at the rated motor speed.
- *2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

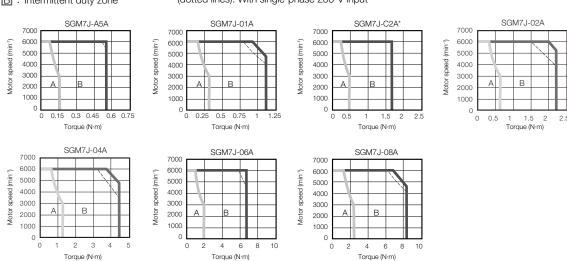
Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servo-motor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.


- *4. If the ambient temperature will exceed 40°C, refer to the following section.
 - \blacksquare 4.2.9 Applications Where the Ambient Temperature of the Servomotor Exceeds 40 $^{\circ}$ C on page 4-12
- *5. If the altitude will exceed 1,000 m, refer to the following section.
 - 4.2.10 Applications Where the Altitude of the Servomotor Exceeds 1,000 m on page 4-13

4.2.2 Ratings of Servomotors without Gears


Voltage			200 V						
Model SGM7J-			A5A	01A	C2A	02A	04A	06A	08A
Rated Output*1		W	50	100	150	200	400	600	750
Rated Torque*1, *	2	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39
Instantaneous M	aximum Torque*1	N∙m	0.557	1.11	1.67	2.23	4.46	6.69	8.36
Rated Current*1		Arms	0.55	0.85	1.6	1.6	2.5	4.2	4.4
Instantaneous M	aximum Current*1	Arms	2.0	3.1	5.7	5.8	9.3	15.3	16.9
Rated Motor Spe	eed*1	min ⁻¹		l .	I	3000	I .	I	
Maximum Motor	Speed*1	min ⁻¹				6000			
Torque Constant		N·m/Arms	0.316	0.413	0.321	0.444	0.544	0.493	0.584
Motor Moment o	f Inertia	×10 ⁻⁴ kg·m ²	0.0395 (0.0475)	0.0659 (0.0739)	0.0915 (0.0995)	0.263 (0.333)	0.486 (0.556)	0.800 (0.870)	1.59 (1.77)
Rated Power Rate*1		kW/s	6.40 (5.32)	15.3 (13.6)	24.8 (22.8)	15.4 (12.1)	33.1 (29.0)	45.6 (41.9)	35.9 (32.2)
Rated Angular A	Rated Angular Acceleration Rate*1		40200 (33400)	48200 (43000)	52100 (47900)	24200 (19100)	26100 (22800)	23800 (21900)	15000 (13500)
Derating Rate for Serv	omotor with Oil Seal	%	80	80 90			95		
Heat Sink Size		mm	200 × 200 × 6 250 × 250 × 6						
Protective Struct	ure*3		Totally enclosed, self-cooled, IP67						
	Rated Voltage	V			24	VDC±10	O%		
	Capacity	W		5.5					.5
	Holding Torque	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39
Holding Brake	Coil Resistance	Ω (at 20°C)	1	04.8±10	%		10%	88.6	
Specifications*4	Rated Current	A (at 20°C)		0.23		0.	25	0.:	27
	Time Required to Release Brake	ms	60 80					0	
	Time Required to Brake	ms				100			
	Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			15 10 times times			20	12 times	
	With External Regener and Dynamic Brake R		35 times			25 times		times	15 times
Allowable Cheff	LF	mm		20		25		•	35
Allowable Shaft Loads*5	Allowable Radial Load	N		78		245			392
	Allowable Thrust Load	N		54		74		147	
Note: The values in r	Note: The values in parentheses are for Servomotors with Holding Brakes								


Note: The values in parentheses are for Servomotors with Holding Brakes.

- *1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.
- *2. The rated torques are the continuous allowable torque values at 40°C with an aluminum heat sink of the dimensions given in the table.
- *3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.
- *4. Observe the following precautions if you use a Servomotor with a Holding Brake.
 - The holding brake cannot be used to stop the Servomotor.
 - The time required to release the brake and the time required to brake depend on which discharge circuit is used. Confirm that the operation delay time is appropriate for the actual equipment.
 - The 24-VDC power supply is not provided by Yaskawa.
- *5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

4.2.3 Torque-Motor Speed Characteristics

- * The characteristics are the same for three-phase 200 V and single-phase 200 V.
- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

4.2.4 Ratings of Servomotors with Gears

	Gear Mechanism	Protective Structure	Lost Motion [arc-min]	
All Models	Planetary gear mechanism	Totally enclosed, self-cooled, IP55 (except for shaft opening)	3 max.	

	Servomotor					Gear Output				
Servomotor Model SGM7J-	Rated Output [W]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	Rated Torque [N·m]	Instanta- neous Maxi- mum Torque [N·m]	Gear Ratio	Rated Torque/ Efficiency*1 [N·m/%]	Instanta- neous Maxi- mum Torque [N·m]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]
A5A□AH1□		3000	6000	0.159	0.557	1/5	0.433/64*2	2.37	600	1200
A5A□AH2□	50					1/9	1.12/78	3.78*3	333	667
A5A□AHC□	50					1/21	2.84/85	10.6	143	286
A5A□AH7□						1/33	3.68/70	15.8	91	182
01A□AH1□		3000	6000	0.318	1.11	1/5	1.06/78*2	4.96	600	1200
01A□AHB□	100					1/11	2.52/72	10.7	273	545
01A□AHC□	100					1/21	5.35/80	20.8	143	286
01A□AH7□						1/33	7.35/70	32.7	91	182
C2A□AH1□			6000	0.477	1.67	1/5	1.68/83*2	7.80	600	1200
С2А□АНВ□	150	3000				1/11	3.53/79*2	16.9	273	545
C2A□AHC□	150					1/21	6.30/70*2	31.0	143	286
C2A□AH7□						1/33	11.2/79*2	49.7	91	182
02A□AH1□		3000	6000	0.637	2.23	1/5	2.39/75	9.80	600	1200
02A□AHB□	200					1/11	5.74/82	22.1	273	545
02A□AHC□	200					1/21	10.2/76	42.1	143	286
02A□AH7□						1/33	17.0/81	67.6	91	182
04A□AH1□		3000	6000	1.27	4.46	1/5	5.35/84	20.1	600	1200
04A□AHB□	400					1/11	11.5/82	45.1	273	545
04A□AHC□	400					1/21	23.0/86	87.0	143	286
04A□AH7□	1					1/33	34.0/81	135	91	182
06A□AH1□	- 600	3000	6000	1.91	6.69	1/5	7.54/79	30.5	600	1200
06A□AHB□						1/11	18.1/86	68.6	273	545
06A□AHC□						1/21	32.1/80	129	143	286
06A□AH7□						1/33	53.6/85	206	91	182
08A□AH1□	750	3000	6000			1/5	10.0/84	38.4	600	1200
08A□AHB□				2.39	8.36	1/11	23.1/88	86.4	273	545
08A□AHC□						1/21	42.1/84	163	143	286
08A□AH7□						1/33	69.3/88	259	91	182

st 1. The gear output torque is expressed by the following formula.

Gear output torque = Servomotor output torque $\times \frac{1}{\text{Gear ratio}} \times \text{Efficiency}$

The gear efficiency depends on operating conditions such as the output torque, motor speed, and temperature. The values in the table are typical values for the rated torque, rated motor speed, and a surrounding air temperature of 25°C. They are reference values only.

- *2. When using an SGM7J-A5A, SGM7J-01A, or SGM7J-C2A Servomotor with a gear ratio of 1/5 or an SGM7J-C2A Servomotor with a gear ratio of 1/11, maintain an 85% maximum effective load ratio. For an SGM7J-C2A Servomotor with a gear ratio of 1/21 or 1/33, maintain a 90% maximum effective load ratio. The values in the table take the effective load ratio into consideration.
- *3. The instantaneous maximum torque is 300% of the rated torque.

Note: 1. The gears that are mounted to Yaskawa Servomotors have not been broken in.

Break in the Servomotor if necessary. First, operate the Servomotor at low speed with no load. If no problems occur, gradually increase the speed and load.

- The no-load torque for a Servomotor with a Gear is high immediately after the Servomotor starts, and it then decreases and becomes stable after a few minutes.
 This is a common phenomenon caused by grease circulation in the gears and it does not indicate faulty
- 3. Other specifications are the same as those for Servomotors without Gears.

The SERVOPACK speed control range is 5,000:1. If you use Servomotors at extremely low speeds (0.02 min⁻¹ or lower at the gear output shaft), if you use Servomotors with a one-pulse feed reference for extended periods, or under some other operating conditions, the gear bearing lubrication may be insufficient. That may cause deterioration of the bearing or increase the load ratio. Contact your Yaskawa representative if you use a Servomotor under these conditions.

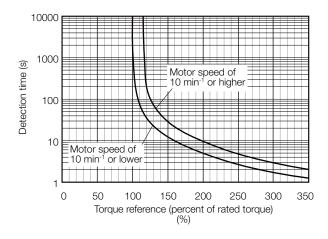
	Mome	ent of Iner	tia [×10 ⁻⁴ kg·	m ²]	With Gears					
Servomotor Model	Shaft Output		Flange Output		Allowable	Allowable		Reference Diagram		
SGM7J-	Motor* + Gear	Gear	Motor* + Gear	Gear	Radial Load [N]	Thrust Load [N]	LF [mm]	helefelice Diagram		
A5A□AH1□	0.0455	0.006	0.0445	0.005	95	431	37			
A5A□AH2□	0.0425	0.003	0.0425	0.003	113	514	37			
A5A□AHC□	0.0435	0.004	0.0435	0.004	146	663	37			
A5A□AH7□	0.0845	0.045	0.0845	0.045	267	1246	53			
01A□AH1□	0.0719	0.006	0.0709	0.005	95	431	37			
01A□AHB□	0.126	0.060	0.125	0.059	192	895	53			
01A□AHC□	0.116	0.050	0.116	0.050	233	1087	53			
01A□AH7□	0.131	0.065	0.130	0.064	605	2581	75			
C2A□AH1□	0.0975	0.006	0.0965	0.005	95	431	37	Shaft Output		
C2A□AHB□	0.152	0.060	0.151	0.059	192	895	53	 - - 		
C2A□AHC□	0.202	0.110	0.200	0.108	528	2254	75	Radial load		
C2A□AH7□	0.157	0.065	0.156	0.064	605	2581	75	│ ├├ ├		
02A□AH1□	0.470	0.207	0.464	0.201	152	707	53	Thrust load		
02A□AHB□	0.456	0.193	0.455	0.192	192	895	53			
02A□AHC□	0.753	0.490	0.751	0.488	528	2254	75	Flange Output		
02A□AH7□	0.713	0.450	0.712	0.449	605	2581	75	riange Output		
04A□AH1□	0.693	0.207	0.687	0.201	152	707	53	 LF 		
04A□AHB□	1.06	0.570	1.05	0.560	435	1856	75			
04A□AHC□	0.976	0.490	0.974	0.488	528	2254	75	Radial load		
04A□AH7□	1.11	0.620	1.10	0.610	951	4992	128	Thrust load		
06A□AH1□	1.50	0.700	1.46	0.660	343	1465	75			
06A□AHB□	1.37	0.570	1.36	0.560	435	1856	75			
06A□AHC□	1.64	0.840	1.62	0.820	830	4359	128			
06A□AH7□	1.42	0.620	1.41	0.610	951	4992	128			
08A□AH1□	2.29	0.700	2.25	0.660	343	1465	75			
08A□AHB□	2.19	0.600	2.18	0.590	435	1856	75			
08A□AHC□	4.59	3.00	4.57	2.98	830	4359	128			
08A□AH7□	4.39	2.80	4.37	2.78	951	4992	128			

^{*} The moment of inertia for the Servomotor and gear is the value without a holding brake. You can calculate the moment of inertia for a Servomotor with a Gear and Holding Brake with the following formula.

Motor moment of inertia for a Servomotor with a Holding Brake from 4.2.2 Ratings of Servomotors without Gears on page 4-4 + Moment of inertia for the gear from the above table.

4.2.4 Ratings of Servomotors with Gears

During operation, the gear generates the loss at the gear mechanism and oil seal. The loss depends on the torque and motor speed conditions. The temperature rise depends on the loss and heat dissipation conditions. For the heat dissipation conditions, always refer to the following table and check the gear and motor temperatures with the actual equipment. If the temperature is too high, implement the following measures.


- Decrease the load ratio.
- · Change the heat dissipation conditions.
- Use forced-air cooling for the motor with a cooling fan or other means.

Model	Heat Sink Size								
Model	1/5	1/9 or 1/11	1/21	1/33					
SGM7J-A5	A								
SGM7J-01									
SGM7J-C2		В							
SGM7J-02									
SGM7J-04									
SGM7J-06		С							
SGM7J-08		O							

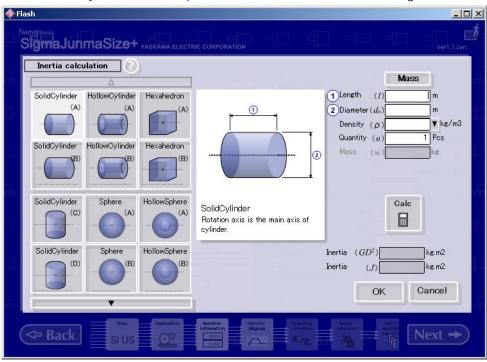
- A: 250 mm × 250 mm × 6 mm, aluminum plate
- B: 300 mm \times 300 mm \times 12 mm, aluminum plate
- C: 350 mm × 350 mm × 12 mm, aluminum plate

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

Use the Servomotor so that the effective torque remains within the continuous duty zone given in 4.2.3 Torque-Motor Speed Characteristics on page 4-5.


4.2.6 Load Moment of Inertia

4.2.5

The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to 4.2.2 Ratings of Servomotors without Gears on page 4-4. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

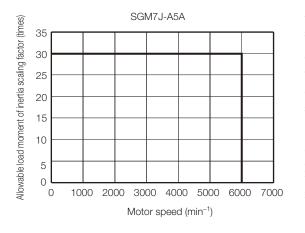
Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on the SigmaJunmaSize+.

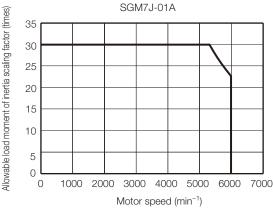
4.2.6 Load Moment of Inertia

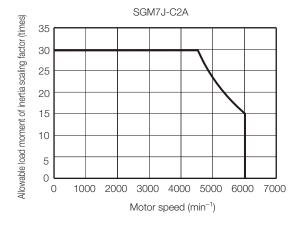
An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

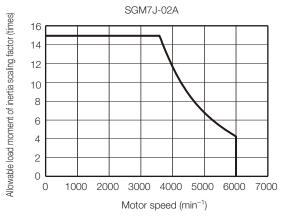
- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an external regenerative resistor if the alarm cannot be cleared using the above steps.

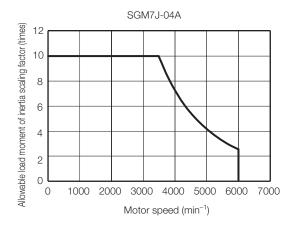
Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an external regenerative resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.


4.2.7 Allowable Load Moment of Inertia Scaling Factor for SERVOPACKs without Built-in Regenerative Resistors

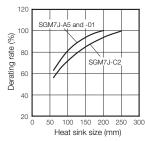

4.2.7 Allowable Load Moment of Inertia Scaling Factor for SERVOPACKs without Built-in Regenerative Resistors

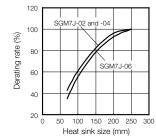

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs* without built-in regenerative resistors when an External Regenerative Resistor is not connected.

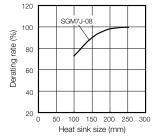

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.


These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

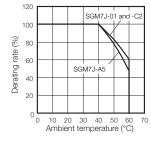
^{*} Applicable SERVOPACK models: SGD7S-R70A, -R90A, -1R6A, or -2R8A

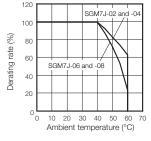

4.2.8 Servomotor Heat Dissipation Conditions


The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative

The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equipment.

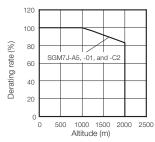


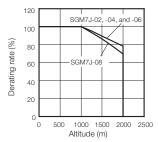


4.2.9 Applications Where the Ambient Temperature of the Servomotor Exceeds 40°C

The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C. If you use a Servomotor at an ambient temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

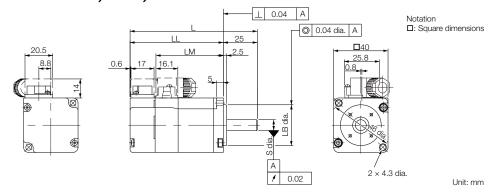



Specifications, Ratings, and External Dimensions of SGM7J Servomotors

4.2.10 Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

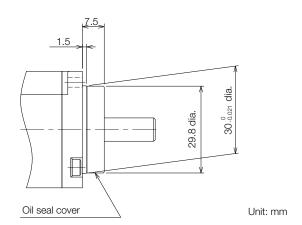


4.3.1 Servomotors without Gears

4.3 External Dimensions

4.3.1 Servomotors without Gears

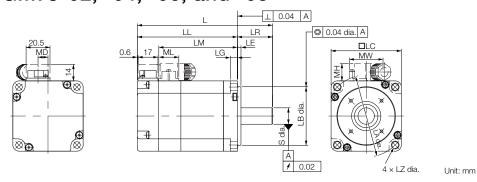
SGM7J-A5, -01, and -C2



Model SGM7J-	L	LL	LM	LB	S	Approx. Mass [kg]
A5A□A2□	81.5 (122)	56.5 (97)	37.9	30 -0.021	8 -0.009	0.3 (0.6)
01A □ A2 □	93.5 (134)	68.5 (109)	49.9	30 -0.021	8 -0.009	0.4 (0.7)
C2ADA2D	105.5 (153.5)	80.5 (128.5)	61.9	30 -0.021	8 -0.009	0.5 (0.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

◆ Specifications of Options


• Oil Seal

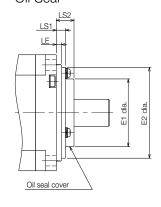
^{2.} Refer to the following section for detailed shaft end specifications.

^{■ 4.3.2} Shaft End Specifications on page 4-16

SGM7J-02, -04, -06, and -08

Model SGM7J-	1	LL	LM	Flange Dimensions									
Wodel Salvi75-		LL	LIVI	LR	LE	LG	LC	LA	LB	LZ	S		
02A □ A2 □	99.5 (140)	69.5 (110)	51.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011		
04A□A2□	115.5 (156)	85.5 (126)	67.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011		
06A□A2□	137.5 (191.5)	107.5 (161.5)	89.2	30	3	6	60	70	50 -0.025	5.5	14 -0.011		
08A□A2□	137 (184)	97 (144)	78.5	40	3	8	80	90	70 -0.030	7	19 -0.013		

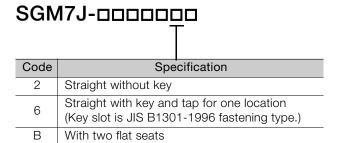
Model SGM7J-	MD	MW	МН	ML	Approx. Mass [kg]
02A □ A2 □	8.5	28.7	14.7	17.1	0.8 (1.4)
04A□A2□	8.5	28.7	14.7	17.1	1.1 (1.7)
06A□A2□	8.5	28.7	14.7	17.1	1.6 (2.2)
08A□A2□	13.6	38	14.7	19.3	2.2 (2.8)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

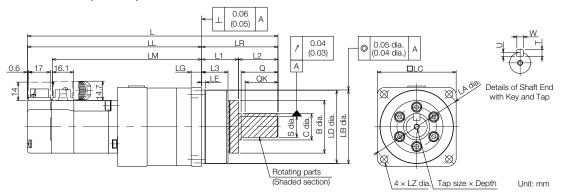
4.3.2 Shaft End Specifications on page 4-16

◆ Specifications of Options


Oil Seal

Unit: mm

Model SGM7J-		Dimensions	with Oil Seal	
Woder Galvir 0-	E1	E2	LS1	LS2
02A, 04A, 06A	35	47	5.2	10
08A	47	61	5.5	11


4.3.2 Shaft End Specifications

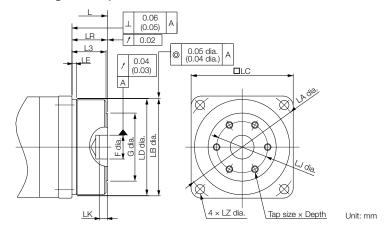
01.05.15.13				Servor	notor N	/lodel S	GM7J	-
Shaft End Details		A5	01	C2	02	04	06	08
Code: 2 (Straight without Key)								
LR	LR	25 8 ⁰ -0.009				30	40	
S de la companya de l	S					14 -0.011	19 -0.013	
Code: 6 (Straight with Key and Tap)								
LR .	LR		25			30		40
QK.	QK	14				14	22	
	S	8 -0.009				14 -0.011		19 -0.013
T Y N	W	3		5			6	
	Т		3			5		6
Y g T L Cross section Y-Y	U		1.8			3		3.5
	Р	ľ	$M3 \times 61$	-		$M5 \times 81$	_	M6 × 10L
Code: B (with Two Flat Seats)	1				T			
LR 	LR		25			30		40
QH	QH		15			15		22
	S		8 -0.009			14 -0.011		19 -0.013
T Y d H2	H1		7.5			13		18
Y de Cross section Y-Y	H2		7.5			13		18

4.3.3 Servomotors with Gears

SGM7J-A5, -01, and -C2

Model SGM7J-	Gear	1	LL	LM			Flan	ge Su	ırface	Dimens	ions		
Wodel Saw73-	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ
A5A□AH1 🗷 🗆	1/5	138	96	77.4									
A5A□AH2⊠□	1/9	(178.5)	(136.5)	77.4	42	2.2	5	29	39.5	40 0	40	46	3.4
A5A□AHC ® □	1/21	147 (187.5)	105 (145.5)	86.4						0.020			
A5A□AH7᠍□	1/33	178.5 (219)	120.5 (161)	101.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
01A□AH1 🗷 🗆	1/5	150 (190.5)	108 (148.5)	89.4	42	2.2	5	29	39.5	40 -0.025	40	46	3.4
01A□AHB�□	1/11	190.5	132.5	113.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
01A□AHCা□	1/21	(231)	(173)	110.9	30	2.0		40	00.0	JU -0.030	00	70	0.0
01A□AH7 ® □	1/33	215 (255.5)	135 (175.5)	116.4	80	7.5	10	59	84	85 -0.035	90	105	9
C2A□AH1 🗷 🗆	1/5	162 (210)	120 (168)	101.4	42	2.2	5	29	39.5	40 -0.025	40	46	3.4
C2A□AHB�□	1/11	202.5 (250.5)	144.5 (192.5)	125.9	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
C2A□AHC�□	1/21	227	147	128.4	80	7.5	10	59	84	85 -0.035	90	105	9
C2A□AH7᠍□	1/33	(275)	(195)	120.4	50	7.0	10		04	OO -0.035		100	

Model SGM7J-	Flange S	Surface Din	nensions	0			Tap Size ×	y Dim	nensio	ons	Approx.	
Woder Salvi75-	L1	L2	L3	Ų.		3	Depth	QK	U	W	Т	Mass [kg]
A5A□AH1 🗷 🗆												0.6
A5A□AH2▮□	22	20	14.6	_	_	10 -0.015	M3 × 6L	15	2.5	4	4	(0.9)
A5A□AHC�□						0.010						0.7 (1.0)
A5A□AH7᠍□	28	30	20	28	20	16 -0.018	M4 × 8L	25	3	5	5	1.3 (1.6)
01A□AH1 🗷 🗆	22	20	14.6	_	_	10 -0.015	M3 × 6L	15	2.5	4	4	0.7 (1.0)
01A□AHB��□	28	30	20	28	20	16 -0.018	M4 × 8L	25	3	5	5	1.4
01A□AHC᠍□	20	00	20	20	20	10 -0.018	WIT A OL	20	O	O	O	(1.7)
01A□AH7 ® □	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	2.8 (3.1)
C2A□AH1 🗷 🗆	22	20	14.6	_	_	10 -0.015	M3 × 6L	15	2.5	4	4	0.8 (1.1)
C2A□AHB�□	28	30	20	28	20	16 -0.018	M4 × 8L	25	3	5	5	1.5 (1.8)
C2A□AHC ▮ □	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	2.9
C2A□AH7᠍□	30	74	20	72	02	∠∪ -0.021	IVIO A IZL	50	+	J	,	(3.2)
. TI				o / .				a		. –		


^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

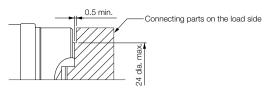
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the Σ , Σ -II, and Σ -III Series.

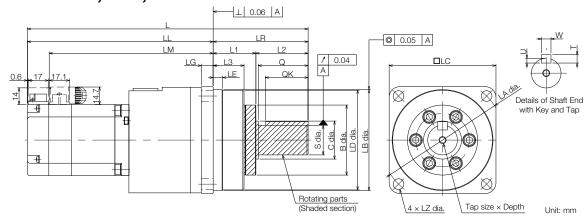
4.3.3 Servomotors with Gears

◆ Flange Output Face

Note: The geometric tolerance in parentheses is the value for LC = 40.


Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
A5A□AH10□	1/5	111							
A5A□AH20□	1/9	(151.5)	15	18	5 ^{+0.012}	24	3	$3 \times M4 \times 6L$	0.6
A5A□AHC0□	1/21	120 (160.5)	10	10	0 0	2 1		O X WIT X OL	(0.9)
A5A□AH70□	1/33	141.5 (182)	21	30	14 +0.018	40	5	6 × M4 × 7L	1.2 (1.5)
01A□AH10□	1/5	123 (163.5)	15	18	5 +0.012	24	3	3 × M4 × 6L	0.7 (1.0)
01A□AHB0□	1/11	153.5	21	30	14 +0.018	40		3 × M4 × 7L	1.3
01A□AHC0□	1/21	(194)	21	30	14 0	40	5	3 × WI4 × 7 L	(1.6)
01A□AH70□	1/33	162 (202.5)	27	45	24 +0.021	59		6 × M6 × 10L	2.4 (2.7)
C2ADAH10D	1/5	135 (183)	15	18	5 +0.012	24	3	3 × M4 × 6L	0.8 (1.1)
C2A□AHB0□	1/11	165.5 (213.5)	21	30	14 +0.018	40	5	6 × M4 × 7L	1.4 (1.7)
C2A□AHC0□	1/21	174	27	45	24 +0.021	59	5	6 × M6 × 10L	2.5
C2A□AH70□	1/33	(222)	<u> </u>	40	Z4 0	59	3	U A IVIO X TOL	(2.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

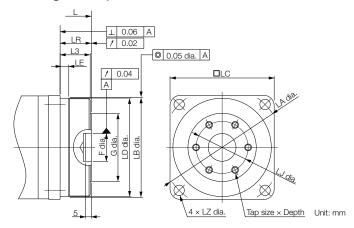

^{2.} Dimensions not found in the above table are the same as those in the table on the previous page.

For a Servomotor with a flange output that has square gear flange dimensions (\square LC) of 40 mm, we recommend that you design the Servomotor with the dimensions shown in the following figure in order to secure a gap between the gear oil seal and the connecting parts on the load side.

SGM7J-02, -04, and -06

Model SGM7J-	Gear	L	LL	LM			FI	ange S	Surface	Dimensio	ns		
Model SGM75-	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ
02A□AH1 🗷 🗆	1/5	191.5	133.5	115.2	58	2.5	8	40	55.5	56 _{-0.030}	60	70	5.5
02A□AH2 🗷 🗆	1/11	(232)	(174)	110.2	50	2.0	O	40	55.5	OO -0.030	00	10	0.0
02A□AHC▮□	1/21	220.5	140.5	122.2	80	7.5	10	59	84	85 -0.035	90	105	9
02A□AH7 🗷 🗆	1/33	(261)	(181)	122.2	00	7.5	10	39	04	OO _{-0.035}	90	103	9
04A□AH1 🗷 🗆	1/5	207.5 (248)	149.5 (190)	131.2	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
04A□AHB�□	1/11	236.5	156.5	138.2	80	7.5	10	59	84	85 ⁰ -0.035	90	105	9
04A□AHC�□	1/21	(277)	(197)	100.2	00	7.5	10	39	04	OO -0.035	30	100	9
04A□AH7 🗷 🗆	1/33	322.5 (363)	189.5 (230)	171.2	133	12.5	13	84	114	115 -0.035	120	135	11
06A□AH1 🗷 🗆	1/5	258.5	178.5	160.2	80	7.5	10	59	84	85 -0.035	90	105	9
06A□AHB�□	1/11	(312.5)	(232.5)	100.2	00	7.5	10	59	04	OO -0.035	90	103	9
06A□AHC᠍□	1/21	344.5	211.5	193.2	133	12.5	13	84	114	115 -0.035	120	135	11
06A□AH7 🗷 🗆	1/33	(398.5)	(265.5)	190.2	133	12.0	13	04	114	110 -0.035	120	133	11

Model SGM7J-	Flange S	Surface Din	nensions	Q	С	S	Tap Size ×	K	ey Dim	nensio	ns	Approx.
Woder Salvi75-	L1	L2	L3	3		3	Depth	QK	U	W	Т	Mass [kg]
02A□AH1 🗷 🗆	28	30	20	28	20	16 ⁰ -0.018	M4 × 8L	25	3	5	5	1.8 (2.4)
02A□AH2▮□	20	00	20	20	20	IO -0.018	IVI4 X OL	20	O	0	0	1.9 (2.5)
02A□AHC᠍□	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	3.7
02A□AH7᠍□	00	44	20	42	02	ZO -0.021	IVIO X IZL	00	7	O	,	(4.3)
04A□AH1 🗷 🗆	28	30	20	28	20	16 -0.018	M4 × 8L	25	3	5	5	2.1 (2.7)
04A□AHB�□	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	4.0
04A□AHC᠍□	00	7-7	20	72	02	ZJ -0.021	WIO X 12L	00	7	O	,	(4.6)
04A□AH7া□	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	8.6 (9.2)
06A□AH1 🗷 🗆	00	4.4	00	4.0	00	0	N40	00	4	(-	4.3 (4.9)
06A□AHB᠍□	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	4.5 (5.1)
06A□AHC▮□	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	9.1
06A□AH7 ▮ □	70	00	00	02	74	4U -0.025	WITO X ZOL	, 0	<u> </u>	12	J	(9.7)

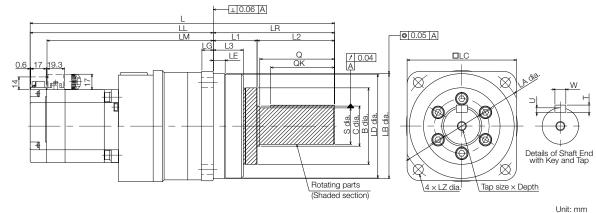

^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the $\Sigma,\, \Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

4.3.3 Servomotors with Gears

◆ Flange Output Face



Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
02A□AH10□	1/5	154.5	21	30	14 +0.018	40	6 × M4 × 7L	1.7 (2.3)
02A□AH20□	1/11	(195)	21	30	14 0	40	U X IVI4 X 7 L	1.8 (2.4)
02A□AHC0□	1/21	167.5	27	45	24 +0.021	59	6 × M6 × 10L	3.3
02A□AH70□	1/33	(208)	21	40	Z4 ₀	39	O X IVIO X TOL	(3.9)
04A□AH10□	1/5	170.5 (211)	21	30	14 +0.018	40	6 × M4 × 7L	2.0 (2.6)
04A□AHB0□	1/11	183.5	27	45	24 +0.021	59	6 × M6 × 10L	3.6
04A□AHC0□	1/21	(224)	21	40	Z4 ₀	59	O X IVIO X TOL	(4.2)
04A□AH70□	1/33	224.5 (265)	35	60	32 +0.025	84	6 × M8 × 12L	7.2 (7.8)
06A□AH10□	1/5	205.5	27	45	24 +0.021	59	6 × M6 × 10L	3.9 (4.5)
06A□AHB0□	1/11	(259.5)	21	40	Z4 0	09	O A IVIO A TOL	4.1 (4.7)
06A□AHC0□	1/21	246.5	35	60	32 +0.025	84	6 × M8 × 12L	7.7
06A□AH70□	1/33	(300.5)	35	00	S∠ ₀	04	U X IVIO X IZL	(8.3)

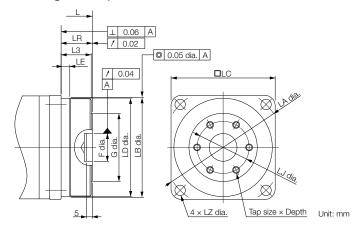
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Dimensions not found in the above table are the same as those in the table on the previous page.

SGM7J-08

Model SGM7J- Gear L		1	LL	LL LM		Flange Surface Dimensions									
Model 3GM73-	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ		
08A□AH1 🗷 🗆	1/5	255	175	156.5	80	7.5	10	59	84	85 -0.035	90	105	9		
08A□AHB�□	1/11	(302)	(222)	130.3	00	7.5	10	39	04	00 -0.035	90	100	9		
08A□AHC�□	1/21	334	201	182.5	133	12.5	13	84	114	115 0	120	135	11		
08A□AH7 🗷 🗆	1/33	(381)	(248)	102.5	100	12.0	10	04	114	113 -0.035	120	100	11		

Model SGM7J-	Flange Surface Dimensions			0 C		S	Tap Size ×	Key Dimensions				Approx.	
	L1	L2	L3	Q O		3	Depth	QK U		W	Т	Mass [kg]	
08A□AH1 🗷 🗆	36	44	26	42	32	25 -0.021	M6 × 12L	36	4	8	7	5.1 (5.7)	
08A□AHB�□	30	44						30	7	0	1	5.3 (5.9)	
08A□AHC 🗷 🗆	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	10	
08A□AH7 🗷 🗆	40	00	33	02	44	4U _{-0.025}	IVITO X ZUL	10		12	0	(10.6)	


^{*} The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Gear dimensions are different from those of the $\Sigma,\,\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

4.3.3 Servomotors with Gears

◆ Flange Output Face

Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
08A□AH101	1/5	202	27	45	24 +0.021	59	6 × M6 × 10L	4.7 (5.3)
08A□AHB01	1/11	(249)					O X IVIO X TOL	4.9 (5.5)
08A□AHC01	1/21	236	35	60	32 +0.025	84	6 × M8 × 12L	8.6
08A□AH701	1/33	(283)	33			04	O X IVIO X 12L	(9.2)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

^{2.} Dimensions not found in the above table are the same as those in the table on the previous page.

Specifications, Ratings, and External Dimensions of SGM7G Servomotors

5

This chapter describes how to interpret the model numbers of SGM7G Servomotors and gives their specifications, ratings, and external dimensions.

5.1	Mode	Designations5-2
5.2	Speci	fications and Ratings5-3
	5.2.1 5.2.2 5.2.3	Specifications
	5.2.4	Three-phase, 200 V
	5.2.5	Load Moment of Inertia 5-6
	5.2.6 5.2.7	Servomotor Heat Dissipation Conditions 5-7 Applications Where the Ambient Temperature
	5.2.8	of the Servomotor Exceeds 40°C
		the Servomotor Exceeds 1,000 m 5-8
5.3	Exter	nal Dimensions5-9
	5.3.1 5.3.2 5.3.3 5.3.4	Servomotors without Holding Brakes 5-9 Servomotors with Holding Brakes 5-10 Shaft End Specifications

Model Designations

SGM7G

 Σ -7 Series Servomotors: SGM7G

1st+2nd digits Rated Output

Code	Specification
03	300 W
05	450 W
09	850 W
13	1.3 kW
20	1.8 kW

3rd digit Power Supply Voltage

Code	Specification
Α	200 VAC

4th digit Serial Encoder

Code	Specification
7	24-bit absolute
F	24-bit incremental

Design Revision Order

Α

6th digit Shaft End

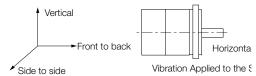
Code	Specification
2	Straight without key
6	Straight with key and tap

7th digit Options

Code	Specification
1	Without options
С	With holding brake (24 VDC)
Е	With oil seal and holding brake (24 VDC)
S	With oil seal

5.2 Specifications and Ratings

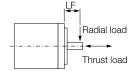
5.2.1 Specifications


	Voltage	200 V									
M	odel SGM7G-	03A	05A	09A	13A	20A					
Time Rating				Continuous							
Thermal Class	3	F									
Insulation Res	istance		500	VDC, 10 MΩ	min.						
Withstand Vol	tage		1,500	VAC for 1 m	inute						
Excitation			Pei	rmanent mag	net						
Mounting			FI	ange-mounte	ed						
Drive Method				Direct drive							
Rotation Direct	tion	Counterclockw	ise (CCW) for for	ward reference	when viewed fro	m the load side					
Vibration Clas	s*1			V15							
	Surrounding Air Temperature	0°C to 40°C	(With derating, u	ısage is possibl	e between 40°C	and 60°C.)*4					
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)									
Environmen- tal Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. (With derating, usage is possible between 1,000 m and 2,000 m.)*5 Must be free of strong magnetic fields. 									
	Storage Environment	Store the Servomotor in the following environment if you store it with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation)									
Shock	Impact Acceleration Rate at Flange	490 m/s ²									
Resistance*2	Number of Impacts			2 times		and explosive gases. It and moisture. It is: (With derating, usage 0 m.)*5 In ment if you store it with the no freezing) In idity					
Vibration Resistance*3	Vibration Acceleration Rate at Flange		49 m/s ² (2	24.5 m/s ² fror	nt to back)						
Applicable SE	RVOPACKs	Refer to 1.4 C	combinations of	Servomotors ar	nd SERVOPACK	(s on page 1-5.					

- *1. A vibration class of V15 indicates a vibration amplitude of 15 μ m maximum on the Servomotor without a load at the rated motor speed.
- *2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

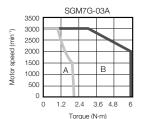
Shock Applied to the Servomotor

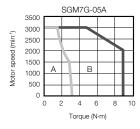
*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servo-motor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

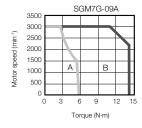

- *4. If the ambient temperature will exceed 40°C, refer to the following section.
 - ∑ 5.2.7 Applications Where the Ambient Temperature of the Servomotor Exceeds 40 ℃ on page 5-7
- *5. If the altitude will exceed 1,000 m, refer to the following section.
 - 5.2.8 Applications Where the Altitude of the Servomotor Exceeds 1,000 m on page 5-8

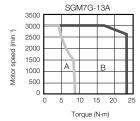
5.2.2 Servomotor Ratings

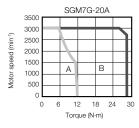
	Voltage		200 V							
	Model SGM7G-		03A	05A	09A	13A	20A			
Rated Output*1		kW	0.3	0.45	0.85	1.3	1.8			
Rated Torque*1, *	2	N∙m	1.96	2.86	5.39	8.34	11.5			
Instantaneous M	aximum Torque*1	N∙m	5.88	8.92	14.2	23.3	28.7			
Rated Current*1		Arms	2.8	3.8	6.9	10.7	16.7			
Instantaneous M	aximum Current*1	Arms	8.0	11	17	28	42			
Rated Motor Spe	eed*1	min ⁻¹	1500							
Maximum Motor	Speed*1	min ⁻¹			3000					
Torque Constant		N·m/Arms	0.776	0.854	0.859	0.891 0.748				
Motor Moment o	f Inertia	×10 ⁻⁴ kg·m ²	2.48 (2.73)	3.33 (3.58)	13.9 (16.0)	19.9 (22.0)	26.0 (28.1)			
Rated Power Ra	te*1	kW/s	15.5 (14.1)	24.6 (22.8)	20.9 (18.2)	35.0 (31.6)	50.9 (47.1)			
Rated Angular A	cceleration Rate*1	rad/s ²	7900 (7180)	8590 (7990)	3880 (3370)	4190 (3790)	4420 (4090)			
Heat Sink Size		mm	250 × 2 (alum	250 × 6 inum)	$400 \times 400 \times 20$ (steel)					
Protective Struct	:ure ^{*3}		Totally enclosed, self-cooled, IP67							
	Rated Voltage	V	24 VDC +10%							
	Capacity	W	10							
	Holding Torque	N∙m	4	.5	12.7 19.6		0.6			
Holding Brake	Coil Resistance	Ω (at 20°C)	5	6		59				
Specifications*4	Rated Current	A (at 20°C)	0.	43		0.41				
	Time Required to Release Brake	ms	100							
	Time Required to Brake	ms			80					
Allowable Load N (Motor Moment of			15 times	15 times		5 times				
	With External Regener and Dynamic Brake Re		10 tillies	10 til 1163	10 times					
Allowable Shaft	LF	mm	4	0	58					
Loads ^{*5}	Allowable Radial Load	N		490		686	980			
	Allowable Thrust Load	N		98		343	392			

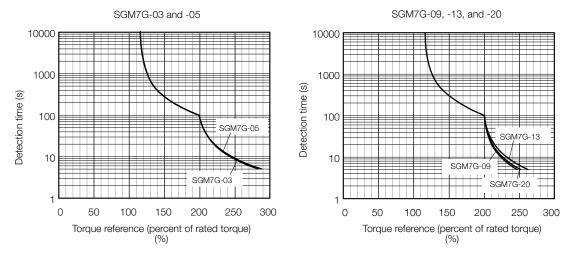

Note: The values in parentheses are for Servomotors with Holding Brakes.


- *1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
- *2. The rated torques are the continuous allowable torque values at 40°C with an aluminum or steel heat sink of the dimensions given in the table.
- *3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.
- *4. Observe the following precautions if you use a Servomotor with a Holding Brake.
 - The holding brake cannot be used to stop the Servomotor.
 - The time required to release the brake and the time required to brake depend on which discharge circuit is used. Confirm that the operation delay time is appropriate for the actual equipment.
 - The 24-VDC power supply is not provided by Yaskawa.
- *5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.




5.2.3 Torque-Motor Speed Characteristics for Three-phase, 200 V

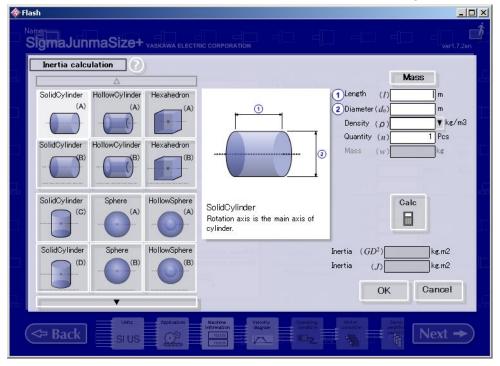

A : Continuous duty zone
B : Intermittent duty zone



- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

5.2.4 Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in 5.2.3 Torque-Motor Speed Characteristics for Three-phase, 200 V on page 5-5.

5.2.5 Load Moment of Inertia

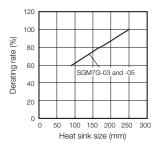
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

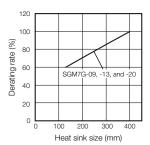
The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to 5.2.2 Servomotor Ratings on page 5-4. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on the SigmaJunmaSize+.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

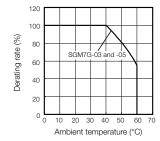
- · Reduce the torque limit.
- · Reduce the deceleration rate.
- · Reduce the maximum motor speed.
- Install an external regenerative resistor if the alarm cannot be cleared using the above steps.

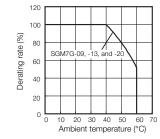

5.2.6 Servomotor Heat Dissipation Conditions


The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equipment.

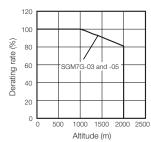


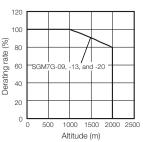


5.2.7 Applications Where the Ambient Temperature of the Servomotor Exceeds 40°C

The Servomotor ratings are the continuous allowable values at an ambient temperature of 40°C. If you use a Servomotor at an ambient temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

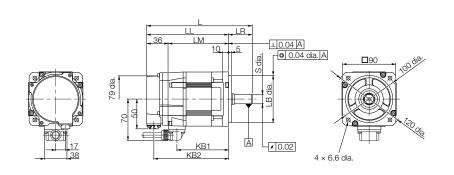


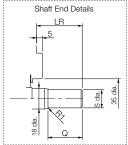


5.2.8 Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.



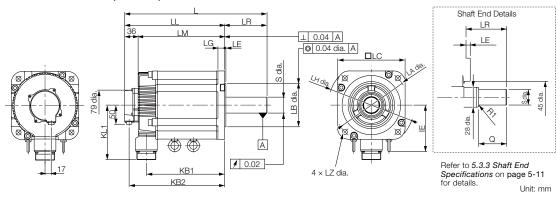

External Dimensions

Servomotors without Holding Brakes 5.3.1

SGM7G-03 and -05

Notation □: Square dimensions

Refer to 5.3.3 Shaft End Specifications on page 5-11 for details. Unit: mm


Model	Model L LL LM LR KB1 KB2 LB		I D	Shaft End Di	mensions	Approx.				
SGM7G-	_	LL	LIVI	LN	KBI	ND2	LB	S	Q	Mass [kg]
03A□A21	166*	126	90	40*	75	114	80 -0.030	16 -0.011*	30*	2.6
05A□A21	179	139	103	40	88	127	80 -0.030	16 -0.011	30	3.2

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

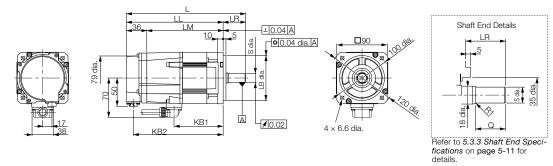
SGM7G-03 and -05 without Holding Brakes on page 5-12

SGM7G-09, -13, and -20

Model SGM7G-	L	LL	LM	LR	KB1	KB2	ΙE	KL1	Flange Surface Dimensions							Shaft E Dimensi		Approx . Mass
Jaivi7 a-								•	LA	LB	LC	LE	LG	LH	LZ	S	Q	[kg]
09A□A21	195	137	101	58	83	125	1	104	145	110 -0.035	130	6	12	165	9	24 -0.013*	40	5.5
13A□A21	211	153	117	58	99	141	1	104	145	110 -0.035	130	6	12	165	9	24 -0.013*	40	7.1
20A□A21	229	171	135	58	117	159	ı	104	145	110 -0.035	130	6	12	165	9	24 -0.013	40	8.6

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.


SGM7G-09, -13, and -20 without Holding Brakes on page 5-12

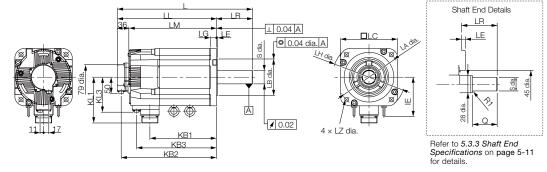
^{*} The L, LR, S, and Q dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

^{*} The S dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

5.3.2 Servomotors with Holding Brakes

SGM7G-03 and -05

Unit: mm


Model		1.1	LM	LR	KB1	KB2	LB	Shaft End Di	mensions	Approx.
SGM7G-	L	LL	LIVI	LN	KBI	NB2	LD	S	Q	Mass [kg]
03A□A2C	199*	159	123	40*	75	147	80 -0.030	16 -0.011*	30*	3.6
05A□A2C	212	172	136	40	88	160	80 -0.030	16 -0.011	30	4.2

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

SGM7G-03 and -05 with Holding Brakes on page 5-13

SGM7G-09, -13, and -20

Unit: mm

Model SGM7G-	L	LL	LM	LR	KB1	KB2	KB3	ΙE	KL1	KL3	ı	Flange S	Surfa	ce Di	imen	sions	3	Shaft E		Approx. Mass [kg]
SGIWI7G-											LA	LB	LC	LE	LG	LH	LZ	S	Q	iviass [ky]
09A□A2C	231	173	137	58	83	161	115	-	104	80	145	110 -0.035	130	6	12	165	9	24 -0.013*	40	7.5
13A□A2C	247	189	153	58	99	177	131	-	104	80	145	110 -0.035	130	6	12	165	9	24 -0.013*	40	9.0
20A□A2C	265	207	171	58	117	195	149	-	104	80	145	110 -0.035	130	6	12	165	9	24 -0.013	40	11.0

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

SGM7G-09, -13, and -20 with Holding Brakes on page 5-13

^{*} The L, LR, S, and Q dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

^{*} The S dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

5.3.3 Shaft End Specifications

SGM7G-000000

Code	Specification
2	Straight without key
6	Straight with key and tap for one location (Key slot is JIS B1301-1996 fastening type.)

Shaft End Details		Servomotor Model SGM7G-							
Shart End Details	03	05	09	13	20				
Code: 2 (Straight without	Key)								
_ LR	LR	40*	40	58	58	58			
	Q	30*	30	40	40	40			
s dia.	S	16 -0.011*	16 -0.011	24 -0.013*	24 -0.013*	24 -0.013			
Code: 2 (Straight without	Key)								
	LR	40*	40	58	58	58			
LR O	Q	30*	30	40	40	40			
QK	QK	20*	20	25	25	25			
	S	16 -0.011*	16 -0.011	24 -0.013*	24 -0.013*	24 -0.013			
	W	5	5	8*	8*	8			
S eip s	Т	5	5	7*	7*	7			
ĭ, j ö,	U	3	3	4*	4*	4			
	Р	M5 screw, Depth: 12							

^{*} The shaft end dimensions of these Servomotors are different from those of the Σ -V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

5.3.4 Connector Specifications

SGM7G-03 and -05 without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D

Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug

CM10-SP10S-□-D for Straight Plug

(□ depends on the applicable cable

Manufacturer: DDK Ltd.

1	PS	6*	BAT(+)
2	/PS	7	-
3	-	8	-
4	PG5V	9	PG0V
5*	BAT(-)	10	FG (frame ground)

* A battery is required only for an absolute encoder.

• Servomotor Connector Specifications

Manufacturer: Japan Aviation Electronics Industry, Ltd.

PE	FG (frame ground)
5	-
4	-
3	Phase U
2	Phase V
1	Phase W

SGM7G-09, -13, and -20 without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable

size.)

Manufacturer: DDK Ltd.

1	PS	6*	BAT(+)
2	/PS	7	_
3	_	8	-
4	PG5V	9	PG0V
5*	BAT(-)	10	FG (frame ground)

* A battery is required only for an absolute encoder.

· Servomotor Connector Specifications

Manufacturer: DDK Ltd.

Α	Phase U
В	Phase V
С	Phase W
D	FG (frame ground)

SGM7G-03 and -05 with Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D

Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug

CM10-SP10S-□-D for Straight Plug

(□ depends on the applicable cable

size.)

Manufacturer: DDK Ltd.

1	PS	6*	BAT(+)
2	/PS	7	-
3	-	8	-
4	PG5V	9	PG0V
5*	BAT(-)	10	FG (frame ground)

^{*} A battery is required only for an absolute encoder.

Servomotor Connector Specifications

Manufacturer: Japan Aviation Electronics Industry, Ltd.

PE	FG (frame ground)
5	Brake terminal
4	Brake terminal
3	Phase U
2	Phase V
1	Phase W

SGM7G-09, -13, and -20 with Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D

Applicable plug: Not provided by Yaskawa.

Plug: CM10-AP10S-□-D for Right-angle Plug
CM10-SP10S-□-D for Straight Plug
(□ depends on the applicable cable

size.)

Manufacturer: DDK Ltd.

1	PS	6*	BAT(+)
2	/PS	7	_
3	_	8	_
4	PG5V	9	PG0V
5*	BAT(-)	10	FG (frame ground)

^{*} A battery is required only for an absolute encoder.

Servomotor Connector Specifications

Manufacturer: DDK Ltd.

А	Phase U
В	Phase V
С	Phase W
D	FG (frame ground)

Brake Connector Specifications

Receptacle: CM10-R2P-D

Applicable plug: Not provided by Yaskawa.
Plug: CM10-AP2S-□-D for Right-angle Plug
CM10-SP2S-□-D for Straight Plug

(□ depends on the applicable cable

size.)

Manufacturer: DDK Ltd.

1	Brake terminal
2	Brake terminal

Note: The is no voltage polarity for the brake terminals.

Servomotor Installation

This chapter describes the installation conditions, procedures, and precautions for Servomotors.

6.1	Installation Conditions6-2			
	6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	Installation Precautions6-2Installation Environment6-3Installation Orientation6-3Using Servomotors with Oil Seals6-3Using Servomotors with Holding Brakes6-4		
6.2	Coupling to the Machine6-5			
	6.2.1 6.2.2	Using a Coupling 6-5 Using a Belt		
6.3	Oil an	d Water Countermeasures6-8		
	-			
6.4	Servo	omotor Temperature Increase6-9		

6.1.1 Installation Precautions

6.1

Installation Conditions

The service life of a Servomotor will be shortened or unexpected problems will occur if the Servomotor is installed incorrectly or in an inappropriate environment or location. Always observe the following installation instructions.

6.1.1 Installation Precautions

- Use the lifting bolts on the Servomotor to move only the Servomotor. Never use the lifting bolts on the Servomotor to move the Servomotor while it is installed on the machine. There is a risk of damage to the Servomotor or injury.
- Do not over-tighten the lifting bolts. If you use a tool to over-tighten the lifting bolts, the tapped holes may be damaged.
- Do not hold onto the cables or motor shaft when you move the Servomotor. Doing so may result in injury or damage.
- Do not install the Servomotor in the following locations. Doing so may result in fire, electric shock, or damage.

Outdoors or in locations subject to direct sunlight

Locations subject to condensation as the result of extreme changes in temperature

Locations subject to corrosive or flammable gases or near flammable objects

Locations subject to dust, salts, or iron dust

Locations subject to oil drops or chemicals

Locations subject to shock or vibration

Locations that would make it difficult to inspect or clean the Servomotor

- Mount the Servomotor to the machine so that the cables and connectors are not subjected to stress.
- Implement suitable countermeasures, such as attaching a cover, if the Servomotor is used in an application where it is subject to excessive water or oil drops. We recommend that you keep the connectors facing downward.
- Do not connect a Servomotor with an Absolute Encoder in a location where there is a magnetic field with a magnetic flux density of 0.01 tesla (100 gauss) or higher.
- Mount the Servomotor securely to the machine. If the Servomotor is not mounted securely, the machine may be damaged or injury may occur.
- Do not step on or place a heavy object on the Servomotor. Doing so may result in injury.
- Do not allow any foreign matter to enter the Servomotor.
- For a Servomotor with a Cooling Fan, provide at least 200 mm of space around the fan inlet.
- To prevent electric shock, ground the Servomotor securely.
- Servomotors are precision devices. Never drop the Servomotor or subject it to strong shock.
- Implement safety measures, such as installing a cover, so that the motor shaft and other rotating parts of the Servomotor cannot be touched during operation.
- Continuous operation in one direction, such as for a fan, may damage the bearings due to electrolytic corrosion. Contact your Yaskawa representative if you use a Servomotor for this type of application.
- A Servomotor that has been stored for a long period of time must be inspected before it is used. Contact your Yaskawa representative for more information.
- Using a Servomotor for oscillating rotation may reduce the service life of the bearings. (Oscillating rotation is defined as a continuous forward-reverse operation within a 150° rotation angle of the motor shaft.) Rotate the Servomotor one full turn or more at least once a day.
- Never attempt to disassemble or modify a Servomotor.

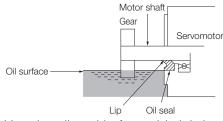
6.1.2 Installation Environment

Refer to the specifications for each type of Servomotor for the mechanical specifications, protective structure, and environmental conditions related to Servomotor installation.

6.1.3 Installation Orientation

You can install the Servomotor either horizontally or vertically.

Installation Orientation		Figure	Precautions
Horizontal			If you are using a Servomotor with an Oil Seal, refer to the following section as well. 6.1.4 Using Servomotors with Oil Seals on page 6-3
Vertical	Shaft end up	Cable trap	 You cannot use a Servomotor with an Oil Seal in this orientation. Provide a cable trap so that water drops will not run into the Servomotor. Implement countermeasures in the machine so that oil, e.g., from a gear box, does not enter the Servomotor.
	Shaft end down		If you are using a Servomotor with an Oil Seal, refer to the following section as well. 6.1.4 Using Servomotors with Oil Seals on page 6-3


Information

If you attach a gear to the Servomotor, observe the installation orientation specified by the manufacturer of the gear.

6.1.4 Using Servomotors with Oil Seals

This section gives the operating conditions for using Servomotors with Oil Seals.

• Keep the oil surface below the oil seal lip.

- Use the oil seal in favorably lubricated condition with only splashing of oil.
- Do not allow oil to collect in the oil seal lip.
- Do not use the Servomotor where the oil seal would be below the oil surface. If you do, oil will enter the Servomotor, which may damage the Servomotor.

6.1.5 Using Servomotors with Holding Brakes

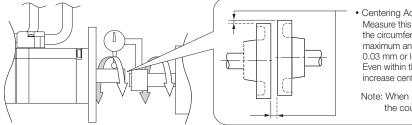
This section gives precautions for using Servomotors with Holding Brakes

- The holding brakes have a limited service life. Although the quality and reliability of a holding brake has been sufficiently confirmed, stress factors, such as emergency braking, can results in problems in the holding operation. In applications in which safety is a concern, such as for a load falling on a vertical axis, determine if safety measures are required on the machine, such as adding a redundant fall-prevention mechanism.
- For a Servomotor with a Holding Brake, there is a small amount of rotational play in the motor shaft (1.5° max. initially) because of the backlash in the holding brake, even when the brake power is OFF.
- For a Servomotor with a Holding Brake, the brake's rotating disc may sometimes generate murmur from friction during acceleration, stopping, and low-speed operation.

Coupling to the Machine

You can couple the Servomotor to the machine with either a coupling or a belt. Use the following procedures.

Using a Coupling 6.2.1


- · Use a flexible coupling that is designed for Servomotors. We recommend that you use a double-spring coupling, which provides some tolerance in eccentricity and deflection.
- Select a suitable size of coupling for the operating conditions. An inappropriate coupling may cause damage.
- 1. Wipe off all of the anticorrosive coating from the motor shaft.
- 2. If you are using a Servomotor with a Key, attach the key enclosed with the Servomotor or the specified size of key to the shaft.

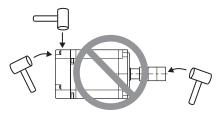
When you attach the key to the motor shaft, do not subject the key groove or shaft to direct shock.

3. Confirm that the centering accuracy is within the specified range using a dial gauge or other means.

If a dial gauge is not available, slide the coupling along both shafts and make adjustments so that it does not catch.

- Centering Accuracy
- Measure this distance at four different positions on the circumference. The difference between the maximum and minimum measurements must be 0.03 mm or less.

Even within this range, make adjustments to increase centering accuracy as much as possible.


Note: When making the measurements, turn the coupling and motor shaft together.

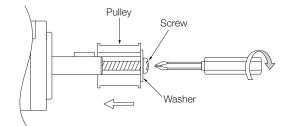
6.2.2 Using a Belt

4. Align the shaft of the Servomotor with the shaft of the machine, and then connect the shafts with the coupling.

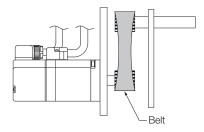
- When you couple the shafts, make sure that the required centering accuracy is achieved.
 Vibration will damage the bearings and encoders if the shafts are not properly centered.
- When you attach the coupling, do not subject the shaft to direct shock. Also, do not subject the area around the encoder to shock. Shock may damage the encoder.

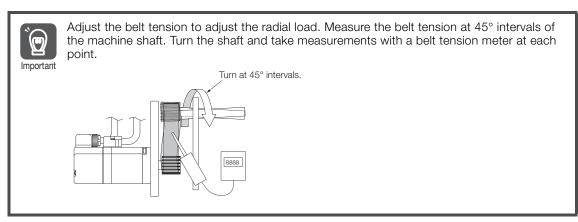
- If the coupling makes any abnormal noise, center the shafts again until the noise is eliminated.
- Make sure that the thrust load and radial load are within specifications. Refer to the specifications for each type of Servomotor for the thrust load and radial load.

6.2.2 Using a Belt


Select a coupling belt that is suitable for the allowable radial load of the Servomotor and the Servomotor output. When the Servomotor accelerates or decelerates, the counterforce from the acceleration/deceleration torque adds tension to the initial belt tension. Take this additional tension into consideration when you select the coupling belt.

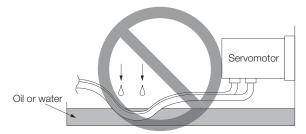
- 1. Wipe off all of the anticorrosive coating from the motor shaft.
- 2. If you are using a Servomotor with a Key, attach the key enclosed with the Servomotor or the specified size of key to the shaft.


When you attach the key to the motor shaft, do not subject the key groove or shaft to direct shock.


3. If you need to attach a pulley to the Servomotor with a Key, use a screwdriver to tighten the screw in the end of the motor shaft to press in and attach the pulley.

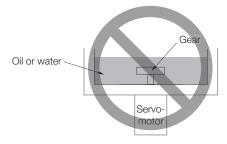
4. Couple the Servomotor to the machine with a belt.

When you attach the belt, adjust the belt tension so that the allowable radial load given in the Servo-motor specifications is not exceeded. For details, refer to the catalog of the belt manufacturer.



6.3

Oil and Water Countermeasures


Observe the following instructions so that water, oil, or other foreign matter will not enter the Servomotor.

• Do not allow the cables to be in oil or water.

If contact with oil or water is unavoidable, use oil-resistant cables. Oil-resistant cables are not provided by Yaskawa.

• If you install the Servomotor with the end of the shaft facing up, do not use the Servomotor where oil or water from the machine, a gear box, or other source would come into contact with the Servomotor.

If contact with oil or water is unavoidable, implement countermeasures in the machine so that oil from the gear box does not enter the Servomotor.

- Do not use the Servomotor where it would come into contact with cutting fluids. Depending on the type of cutting fluid, sealing materials, packing, cables, or other parts may be adversely affected.
- Do not use the Servomotor where it would be continuously in contact with oil mist, water vapor, oil, water, or grease.
 - If usage under the above conditions is unavoidable, implement countermeasures in the machine to protect against dirt and water.

6.4 Servomotor Temperature Increase

This section describes measures to suppress temperature increases in the Servomotor.

- When you install the Servomotor, observe the cooling conditions (heat sink sizes) that are given in the specifications for each type of Servomotor.

 The Servomotor generates heat when it operates. The heat generated by the Servomotor radiates to the heat sink through the motor mounting surface. Therefore, if the surface area of the heat sink is too small, the temperature of the Servomotor may increase abnormally.
- If the operating environment makes it difficult to use a large heat sink, or if the surrounding air temperature or altitude given in the specifications is exceeded, implement the following measures.
 - Derate the Servomotor.
 Refer to the specifications for each type of Servomotor for information on derating.
 Consider derating when you select the capacity of the Servomotor.
 - Use external forced-air cooling for the Servomotor with a cooling fan or other means.

Do not place packing or any other insulating material between the Servomotor and heat sink. Doing so will cause the motor temperature to increase, affect resistance to noise, and may cause motor failure.

Connections between Servomotors and SERVOPACKs

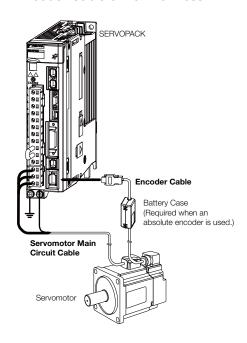
7

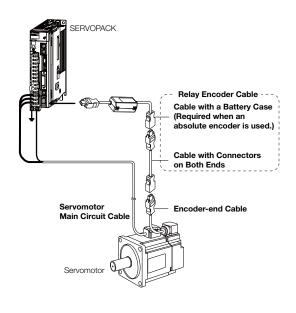
This chapter describes the cables that are used to connect the Servomotors and SERVOPACKs and provides related precautions.

7.1	Cables	s for the SGM7A and SGM7J Servomotors 7-2	
	7.1.1 7.1.2 7.1.3 7.1.4	System Configurations	
7.2	Cables for the SGM7G Servomotors 7-9		
	7.2.1 7.2.2 7.2.3 7.2.4	System Configurations	
7.3	Wirin	g Servomotors and SERVOPACKs7-13	
	7.3.1 7.3.2	Wiring Precautions	

7.1.1 System Configurations

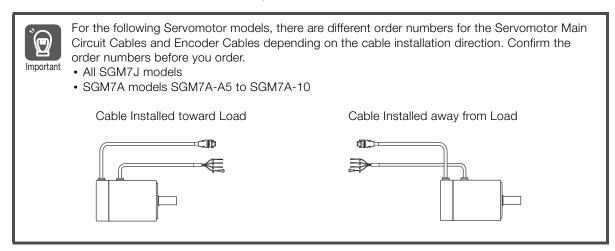
7.1


Cables for the SGM7A and SGM7J Servomotors


7.1.1 System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

Encoder Cable of 20 m or Less


Encoder Cable of 30 m to 50 m (Relay Cable)

Note: 1. Cables with connectors on both ends that are compliant with an IP67 protective structure and European Safety Standards are not available from Yaskawa for the SGM7A-15A to SGM7A-30A Servomotors. You must make such a cable yourself. Use the Connectors specified by Yaskawa for these Servomotors. (These Connectors are compliant with the standards.) Yaskawa does not specify what wiring materials to use.

- 2. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.
- 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
- 4. Refer to the *Σ-7-Series Peripheral Device Selection Manual* (Manual No.: SIEP S800001 32) for the following information.
- Cable dimensional drawings and cable connection specifications
- Order numbers and specifications of individual connectors for cables
- Order numbers and specifications for wiring materials

7.1.2 Servomotor Main Circuit Cables

Servomotor	Name -	Length	Order N	Number	A
Model Name		Length	Standard Cable	Flexible Cable*	Appearance
		3 m	JZSP-C7M10F-03-E	JZSP-C7M12F-03-E	
		5 m	JZSP-C7M10F-05-E	JZSP-C7M12F-05-E	
SGM7J-A5 to -C2		10 m	JZSP-C7M10F-10-E	JZSP-C7M12F-10-E	
SGM7A-A5 to -C2		15 m	JZSP-C7M10F-15-E	JZSP-C7M12F-15-E	
		20 m	JZSP-C7M10F-20-E	JZSP-C7M12F-20-E	
50 W to 150 W		30 m	JZSP-C7M10F-30-E	JZSP-C7M12F-30-E	
		40 m	JZSP-C7M10F-40-E	JZSP-C7M12F-40-E	
		50 m	JZSP-C7M10F-50-E	JZSP-C7M12F-50-E	
	For Servo-	3 m	JZSP-C7M20F-03-E	JZSP-C7M22F-03-E	
	motors with-	5 m	JZSP-C7M20F-05-E	JZSP-C7M22F-05-E	
SGM7J-02 to -06	out Holding	10 m	JZSP-C7M20F-10-E	JZSP-C7M22F-10-E	Motor end SERVOPACK end
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M20F-15-E	JZSP-C7M22F-15-E	
		20 m	JZSP-C7M20F-20-E	JZSP-C7M22F-20-E	
200 W to 600 W	Cable	30 m	JZSP-C7M20F-30-E	JZSP-C7M22F-30-E	
	installed toward load	40 m	JZSP-C7M20F-40-E	JZSP-C7M22F-40-E	
	loward load	50 m	JZSP-C7M20F-50-E	JZSP-C7M22F-50-E	
		3 m	JZSP-C7M30F-03-E	JZSP-C7M32F-03-E	
		5 m	JZSP-C7M30F-05-E	JZSP-C7M32F-05-E	
SGM7J-08		10 m	JZSP-C7M30F-10-E	JZSP-C7M32F-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M30F-15-E	JZSP-C7M32F-15-E	
		20 m	JZSP-C7M30F-20-E	JZSP-C7M32F-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M30F-30-E	JZSP-C7M32F-30-E	
		40 m	JZSP-C7M30F-40-E	JZSP-C7M32F-40-E	
		50 m	JZSP-C7M30F-50-E	JZSP-C7M32F-50-E	
		3 m	JZSP-C7M10G-03-E	JZSP-C7M12G-03-E	
		5 m	JZSP-C7M10G-05-E	JZSP-C7M12G-05-E	
SGM7J-A5 to -C2		10 m	JZSP-C7M10G-10-E	JZSP-C7M12G-10-E	
SGM7A-A5 to -C2		15 m	JZSP-C7M10G-15-E	JZSP-C7M12G-15-E	
FO W += 1FO W		20 m	JZSP-C7M10G-20-E	JZSP-C7M12G-20-E	
50 W to 150 W		30 m	JZSP-C7M10G-30-E	JZSP-C7M12G-30-E	
		40 m	JZSP-C7M10G-40-E	JZSP-C7M12G-40-E	
		50 m	JZSP-C7M10G-50-E	JZSP-C7M12G-50-E	
	For Servo-	3 m	JZSP-C7M20G-03-E	JZSP-C7M22G-03-E	
	motors with-	5 m	JZSP-C7M20G-05-E	JZSP-C7M22G-05-E	
SGM7J-02 to -06	out Holding Brakes	10 m	JZSP-C7M20G-10-E	JZSP-C7M22G-10-E	SERVOPACK end Motor end
SGM7A-02 to -06	Dianes	15 m	JZSP-C7M20G-15-E	JZSP-C7M22G-15-E	
000 W += 000 W	Cable	20 m	JZSP-C7M20G-20-E	JZSP-C7M22G-20-E	
200 W to 600 W	installed	30 m	JZSP-C7M20G-30-E	JZSP-C7M22G-30-E	
	away from	40 m	JZSP-C7M20G-40-E	JZSP-C7M22G-40-E	
	load	50 m	JZSP-C7M20G-50-E	JZSP-C7M22G-50-E	
		3 m	JZSP-C7M30G-03-E	JZSP-C7M32G-03-E	
		5 m	JZSP-C7M30G-05-E	JZSP-C7M32G-05-E	
SGM7J-08		10 m	JZSP-C7M30G-10-E	JZSP-C7M32G-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M30G-15-E	JZSP-C7M32G-15-E	
750 \ \ \ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		20 m	JZSP-C7M30G-20-E	JZSP-C7M32G-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M30G-30-E	JZSP-C7M32G-30-E	
		40 m	JZSP-C7M30G-40-E	JZSP-C7M32G-40-E	
		50 m	JZSP-C7M30G-50-E	JZSP-C7M32G-50-E	

^{*} Use Flexible Cables for moving parts of machines, such as robots.

7.1.2 Servomotor Main Circuit Cables

Continued from previous page.

Servomotor	Continued from previous page				
Model	Name	Length	Standard Cable	Number Flexible Cable*	Appearance
Wiodoi		3 m	JZSP-C7M13F-03-E	JZSP-C7M14F-03-E	
		5 m	JZSP-C7M13F-05-E	JZSP-C7M14F-05-E	
COM7 AF + 00		10 m	JZSP-C7M13F-10-E	JZSP-C7M14F-10-E	
SGM7J-A5 to -C2 SGM7A-A5 to -C2		15 m	JZSP-C7M13F-15-E	JZSP-C7M14F-15-E	
30IVI7 A-A3 10 -02		20 m	JZSP-C7M13F-20-E	JZSP-C7M14F-20-E	
50 W to 150 W		30 m	JZSP-C7M13F-30-E	JZSP-C7M14F-30-E	
		40 m	JZSP-C7M13F-40-E	JZSP-C7M14F-40-E	
		50 m	JZSP-C7M13F-50-E	JZSP-C7M14F-50-E	
	-	3 m	JZSP-C7M23F-03-E	JZSP-C7M24F-03-E	
	For Servo-	5 m	JZSP-C7M23F-05-E	JZSP-C7M24F-05-E	
SGM7J-02 to -06	motors with Holding	10 m	JZSP-C7M23F-10-E	JZSP-C7M24F-10-E	Motor end SERVOPACK en
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M23F-15-E	JZSP-C7M24F-15-E	
00	210.100	20 m	JZSP-C7M23F-20-E	JZSP-C7M24F-20-E	
200 W to 600 W	Cable	30 m	JZSP-C7M23F-30-E	JZSP-C7M24F-30-E	
	installed	40 m	JZSP-C7M23F-40-E	JZSP-C7M24F-40-E	
	toward load	50 m	JZSP-C7M23F-50-E	JZSP-C7M24F-50-E	
	-	3 m	JZSP-C7M33F-03-E	JZSP-C7M34F-03-E	
		5 m	JZSP-C7M33F-05-E	JZSP-C7M34F-05-E	
SGM7J-08		10 m	JZSP-C7M33F-10-E	JZSP-C7M34F-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M33F-15-E	JZSP-C7M34F-15-E	
		20 m	JZSP-C7M33F-20-E	JZSP-C7M34F-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M33F-30-E	JZSP-C7M34F-30-E	
		40 m	JZSP-C7M33F-40-E	JZSP-C7M34F-40-E	
		50 m	JZSP-C7M33F-50-E	JZSP-C7M34F-50-E	
		3 m	JZSP-C7M13G-03-E	JZSP-C7M14G-03-E	
		5 m	JZSP-C7M13G-05-E	JZSP-C7M14G-05-E	
SGM7J-A5 to -C2		10 m	JZSP-C7M13G-10-E	JZSP-C7M14G-10-E	
SGM7A-A5 to -C2		15 m	JZSP-C7M13G-15-E	JZSP-C7M14G-15-E	
		20 m	JZSP-C7M13G-20-E	JZSP-C7M14G-20-E	
50 W to 150 W		30 m	JZSP-C7M13G-30-E	JZSP-C7M14G-30-E	
		40 m	JZSP-C7M13G-40-E	JZSP-C7M14G-40-E	
		50 m	JZSP-C7M13G-50-E	JZSP-C7M14G-50-E	
	For Servo-	3 m	JZSP-C7M23G-03-E	JZSP-C7M24G-03-E	
	motors with	5 m	JZSP-C7M23G-05-E	JZSP-C7M24G-05-E	
SGM7J-02 to -06	Holding	10 m	JZSP-C7M23G-10-E	JZSP-C7M24G-10-E	SERVOPACK end Motor end
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M23G-15-E	JZSP-C7M24G-15-E	
000 14/1 000 14/	Cable	20 m	JZSP-C7M23G-20-E	JZSP-C7M24G-20-E	
200 W to 600 W	installed away from	30 m	JZSP-C7M23G-30-E	JZSP-C7M24G-30-E	
		40 m	JZSP-C7M23G-40-E	JZSP-C7M24G-40-E	
	load	50 m	JZSP-C7M23G-50-E	JZSP-C7M24G-50-E	
		3 m	JZSP-C7M33G-03-E	JZSP-C7M34G-03-E	
		5 m	JZSP-C7M33G-05-E	JZSP-C7M34G-05-E	
SGM7J-08		10 m	JZSP-C7M33G-10-E	JZSP-C7M34G-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M33G-15-E	JZSP-C7M34G-15-E	
750 W 4 0 LW		20 m	JZSP-C7M33G-20-E	JZSP-C7M34G-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M33G-30-E	JZSP-C7M34G-30-E	
		40 m	JZSP-C7M33G-40-E	JZSP-C7M34G-40-E	
		50 m	JZSP-C7M33G-50-E	JZSP-C7M34G-50-E	

^{*} Use Flexible Cables for moving parts of machines, such as robots.

\sim	ontinued	£		
	annini idan	Tr()(f)	TITAVIOLIS	nana

Servo-		Connector		Order N	Number	lued from previous page.			
motor Model	Name	Specifica- tions	Length	Standard Cable	Flexible Cable*	Appearance			
			3 m	JZSP-UVA101-03-E	JZSP-UVA121-03-E				
			5 m	JZSP-UVA101-05-E	JZSP-UVA121-05-E	SERVOPACK Motor end			
		Straight	10 m	JZSP-UVA101-10-E	JZSP-UVA121-10-E	end L			
	For Servo-		15 m	JZSP-UVA101-15-E	JZSP-UVA121-15-E				
	motors without		20 m	JZSP-UVA101-20-E	JZSP-UVA121-20-E				
	Holding		3 m	JZSP-UVA102-03-E	JZSP-UVA122-03-E				
	Brakes		5 m	JZSP-UVA102-05-E	JZSP-UVA122-05-E	SERVOPACK Motor end end			
		Right-angle	10 m	JZSP-UVA102-10-E	JZSP-UVA122-10-E				
001474			15 m	JZSP-UVA102-15-E	JZSP-UVA122-15-E				
SGM7A- 15A			20 m	JZSP-UVA102-20-E	JZSP-UVA122-20-E	_			
			3 m	JZSP-UVA151-03-E	JZSP-UVA161-03-E				
1.5 kW			5 m	JZSP-UVA151-05-E	JZSP-UVA161-05-E	SERVOPACK Motor end			
		Straight	10 m	JZSP-UVA151-10-E	JZSP-UVA161-10-E				
	F O		15 m	JZSP-UVA151-15-E	JZSP-UVA161-15-E				
	For Servo- motors with		20 m	JZSP-UVA151-20-E	JZSP-UVA161-20-E				
	Holding		3 m	JZSP-UVA152-03-E	JZSP-UVA162-03-E				
	Brakes		5 m	JZSP-UVA152-05-E	JZSP-UVA162-05-E	SERVOPACK Motor end end			
		Right-angle	10 m	JZSP-UVA152-10-E	JZSP-UVA162-10-E				
			15 m	JZSP-UVA152-15-E	JZSP-UVA162-15-E				
			20 m	JZSP-UVA152-20-E	JZSP-UVA162-20-E				
			3 m	JZSP-UVA301-03-E	JZSP-UVA321-03-E				
							5 m	JZSP-UVA301-05-E	JZSP-UVA321-05-E
		Straight	10 m	JZSP-UVA301-10-E	JZSP-UVA321-10-E				
	For Servo-		15 m	JZSP-UVA301-15-E	JZSP-UVA321-15-E				
	motors without		20 m	JZSP-UVA301-20-E	JZSP-UVA321-20-E				
	Holding		3 m	JZSP-UVA302-03-E	JZSP-UVA322-03-E				
	Brakes		5 m	JZSP-UVA302-05-E	JZSP-UVA322-05-E	SERVOPACK Motor end end			
		Right-angle	10 m	JZSP-UVA302-10-E	JZSP-UVA322-10-E				
SGM7A-			15 m	JZSP-UVA302-15-E	JZSP-UVA322-15-E	ST UH			
20A			20 m	JZSP-UVA302-20-E	JZSP-UVA322-20-E				
2.0 kW			3 m	JZSP-UVA351-03-E	JZSP-UVA361-03-E				
2.0 KVV			5 m	JZSP-UVA351-05-E	JZSP-UVA361-05-E	SERVOPACK Motor end end			
		Straight	10 m	JZSP-UVA351-10-E	JZSP-UVA361-10-E	9211			
	For Servo-		15 m	JZSP-UVA351-15-E	JZSP-UVA361-15-E				
	motors with		20 m	JZSP-UVA351-20-E	JZSP-UVA361-20-E				
	Holding Brakes		3 m	JZSP-UVA352-03-E	JZSP-UVA362-03-E				
	DIAKES		5 m	JZSP-UVA352-05-E	JZSP-UVA362-05-E	SERVOPACK Motor end			
		Right-angle	10 m	JZSP-UVA352-10-E	JZSP-UVA362-10-E				
			15 m	JZSP-UVA352-15-E	JZSP-UVA362-15-E				
			20 m	JZSP-UVA352-20-E	JZSP-UVA362-20-E				

^{*} Use Flexible Cables for moving parts of machines, such as robots.

Continuedonnextpage.

7.1.2 Servomotor Main Circuit Cables

Continued from previous page.

Servo-		Connector		Order N	Number	lided from previous page.	
motor Model	Name	Specifica- tions	Length	Standard Cable	Flexible Cable*	Appearance	
			3 m	JZSP-UVA501-03-E	JZSP-UVA521-03-E		
			5 m	JZSP-UVA501-05-E	JZSP-UVA521-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA501-10-E	JZSP-UVA521-10-E	end	
	For Servo-		15 m	JZSP-UVA501-15-E	JZSP-UVA521-15-E		
	motors		20 m	JZSP-UVA501-20-E	JZSP-UVA521-20-E		
	without Holding		3 m	JZSP-UVA502-03-E	JZSP-UVA522-03-E		
	Brakes		5 m	JZSP-UVA502-05-E	JZSP-UVA522-05-E	SERVOPACK Motor end end	
		Right-angle	10 m	JZSP-UVA502-10-E	JZSP-UVA522-10-E		
SGM7A-			15 m	JZSP-UVA502-15-E	JZSP-UVA522-15-E		
25A			20 m	JZSP-UVA502-20-E	JZSP-UVA522-20-E	-	
			3 m	JZSP-UVA551-03-E	JZSP-UVA561-03-E		
2.5 kW			5 m	JZSP-UVA551-05-E	JZSP-UVA561-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA551-10-E	JZSP-UVA561-10-E	end L	
	For Servo-		15 m	JZSP-UVA551-15-E	JZSP-UVA561-15-E		
	motors with		20 m	JZSP-UVA551-20-E	JZSP-UVA561-20-E		
	Holding		3 m	JZSP-UVA552-03-E	JZSP-UVA562-03-E		
	Brakes	Right-angle	5 m	JZSP-UVA552-05-E	JZSP-UVA562-05-E	SERVOPACK Motor end	
			10 m	JZSP-UVA552-10-E	JZSP-UVA562-10-E	end	
			15 m	JZSP-UVA552-15-E	JZSP-UVA562-15-E		
			20 m	JZSP-UVA552-20-E	JZSP-UVA562-20-E	_	
			3 m	JZSP-UVA601-03-E	JZSP-UVA621-03-E		
			5 m	JZSP-UVA601-05-E	JZSP-UVA621-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA601-10-E	JZSP-UVA621-10-E	end	
	For Servo-		15 m	JZSP-UVA601-15-E	JZSP-UVA621-15-E		
	motors		20 m	JZSP-UVA601-20-E	JZSP-UVA621-20-E	-	
	without Holding		3 m	JZSP-UVA602-03-E	JZSP-UVA622-03-E		
	Brakes		5 m	JZSP-UVA602-05-E	JZSP-UVA622-05-E	SERVOPACK Motor end end	
		Right-angle	10 m	JZSP-UVA602-10-E	JZSP-UVA622-10-E		
SGM7A-			15 m	JZSP-UVA602-15-E	JZSP-UVA622-15-E		
30A			20 m	JZSP-UVA602-20-E	JZSP-UVA622-20-E	-	
			3 m	JZSP-UVA651-03-E	JZSP-UVA661-03-E		
3.0 kW			5 m	JZSP-UVA651-05-E	JZSP-UVA661-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA651-10-E	JZSP-UVA661-10-E	end L	
	For Servo-		15 m	JZSP-UVA651-15-E	JZSP-UVA661-15-E		
	motors with		20 m	JZSP-UVA651-20-E	JZSP-UVA661-20-E	_	
	Holding		3 m	JZSP-UVA652-03-E	JZSP-UVA662-03-E		
	Brakes		5 m	JZSP-UVA652-05-E	JZSP-UVA662-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA652-10-E	JZSP-UVA662-10-E	end L	
			15 m	JZSP-UVA652-15-E	JZSP-UVA662-15-E		
			20 m	JZSP-UVA652-20-E	JZSP-UVA662-20-E		
	1	1	1		1	1	

^{*} Use Flexible Cables for moving parts of machines, such as robots.

7.1.3 Encoder Cables of 20 m or Less

Conversed	ryomotor Order Number				
Model	Name	Length	Standard Cable	Flexible Cable*1	Appearance
	Fauir augus autal	3 m	JZSP-C7PI0D-03-E	JZSP-C7PI2D-03-E	
	For incremental encoder	5 m	JZSP-C7PI0D-05-E	JZSP-C7PI2D-05-E	Encoder end SERVOPACK
	onoodor	10 m	JZSP-C7PI0D-10-E	JZSP-C7PI2D-10-E	L end
	Cable installed	15 m	JZSP-C7PI0D-15-E	JZSP-C7PI2D-15-E	
	toward load	20 m	JZSP-C7PI0D-20-E	JZSP-C7PI2D-20-E	
	For incremental	3 m	JZSP-C7PI0E-03-E	JZSP-C7PI2E-03-E	
	encoder	5 m	JZSP-C7PI0E-05-E	JZSP-C7PI2E-05-E	SERVOPACK Encoder end end L
		10 m	JZSP-C7PI0E-10-E	JZSP-C7Pl2E-10-E	
COM7 AF to 00	Cable installed	15 m	JZSP-C7PI0E-15-E	JZSP-C7Pl2E-15-E	
SGM7J-A5 to -08 50 W to 750 W	away from load	20 m	JZSP-C7PI0E-20-E	JZSP-C7PI2E-20-E	
00 11 10 100 11	For absolute	3 m	JZSP-C7PA0D-03-E	JZSP-C7PA2D-03-E	
SGM7A-A5 to -10	encoder: With	5 m	JZSP-C7PA0D-05-E	JZSP-C7PA2D-05-E	SERVOPACK Encoder end end L
50 W to 1.0 kW	Battery Case*2	10 m	JZSP-C7PA0D-10-E	JZSP-C7PA2D-10-E	
	Cable installed	15 m	JZSP-C7PA0D-15-E	JZSP-C7PA2D-15-E	Battery Case (battery included)
	toward load	20 m	JZSP-C7PA0D-20-E	JZSP-C7PA2D-20-E	(battery included)
	For absolute	3 m	JZSP-C7PA0E-03-E	JZSP-C7PA2E-03-E	
	encoder: With Battery Case*2 Cable installed	5 m	JZSP-C7PA0E-05-E	JZSP-C7PA2E-05-E	SERVOPACK Encoder end end
		10 m	JZSP-C7PA0E-10-E	JZSP-C7PA2E-10-E	
		15 m	JZSP-C7PA0E-15-E	JZSP-C7PA2E-15-E	Battery Case (battery included)
	away from load	20 m	JZSP-C7PA0E-20-E	JZSP-C7PA2E-20-E	(battery moladed)
		3 m	JZSP-CVP01-03-E	JZSP-CVP11-03-E	
		5 m	JZSP-CVP01-05-E	JZSP-CVP11-05-E	SERVOPACK Encoder end
		10 m	JZSP-CVP01-10-E	JZSP-CVP11-10-E	end
		15 m	JZSP-CVP01-15-E	JZSP-CVP11-15-E	
	For incremental	20 m	JZSP-CVP01-20-E	JZSP-CVP11-20-E	
	encoder	3 m	JZSP-CVP02-03-E	JZSP-CVP12-03-E	
		5 m	JZSP-CVP02-05-E	JZSP-CVP12-05-E	SERVOPACK Encoder end
		10 m	JZSP-CVP02-10-E	JZSP-CVP12-10-E	
		15 m	JZSP-CVP02-15-E	JZSP-CVP12-15-E	
SGM7A-15 to -30		20 m	JZSP-CVP02-20-E	JZSP-CVP12-20-E	
1.5 kW to 3.0 kW		3 m	JZSP-CVP06-03-E	JZSP-CVP26-03-E	SERVOPACK , Encoder end
		5 m	JZSP-CVP06-05-E	JZSP-CVP26-05-E	end Lincode end
		10 m	JZSP-CVP06-10-E	JZSP-CVP26-10-E	
	For absolute	15 m	JZSP-CVP06-15-E	JZSP-CVP26-15-E	Battery Case (battery included)
	encoder: With	20 m	JZSP-CVP06-20-E	JZSP-CVP26-20-E	
	Battery Case*2	3 m	JZSP-CVP07-03-E	JZSP-CVP27-03-E	
		5 m	JZSP-CVP07-05-E	JZSP-CVP27-05-E	SERVOPACK Encoder end end
		10 m	JZSP-CVP07-10-E	JZSP-CVP27-10-E	
		15 m	JZSP-CVP07-15-E	JZSP-CVP27-15-E	Battery Case (battery included)
		20 m	JZSP-CVP07-20-E	JZSP-CVP27-20-E	

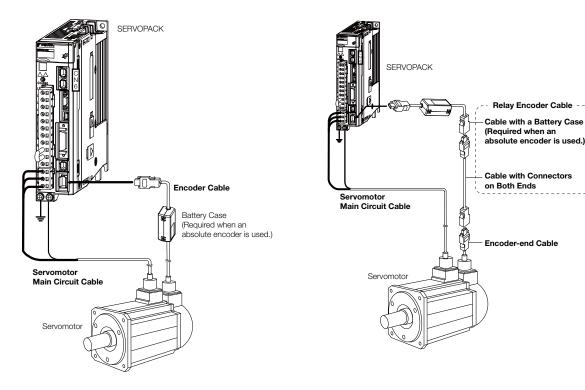
^{*1.} Use Flexible Cables for moving parts of machines, such as robots.

^{*2.} If a battery is connected to the host controller, the Battery Case is not required. If so, use a cable for incremental encoders.

7.1.4 Relay Encoder Cable of 30 m to 50 m

Servomotor Model	Name	Length	Order Number	Appearance
	Encoder-end Cable (for incremental or absolute encoder) Cable installed toward load	0.3 m	JZSP-C7PRCD-E	Encoder end SERVOPACK end
SGM7J-A5 to -08 50 W to 750 W	Encoder-end Cable (for incremental or absolute encoder) Cable installed away from load	0.3 m	JZSP-C7PRCE-E	SERVOPACK end Encoder end
SGM7A-A5 to -10	Cables with Connectors on	30 m	JZSP-UCMP00-30-E	SERVOPACK end Encoder end
50 W to 1.0 kW	Both Ends (for incremental	40 m	JZSP-UCMP00-40-E	
	or absolute encoder)	50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.*)	0.3 m	JZSP-CSP12-E	SERVOPACK end Encoder end Battery Case (battery included)
	Encoder-end Cable		JZSP-CVP01-E	SERVOPACK end Encoder end
	(for incremental or absolute encoder)	0.3 m	JZSP-CVP02-E	SERVOPACK end Encoder end
SGM7A-15 to -30	Cables with Connectors on	30 m	JZSP-UCMP00-30-E	SERVOPACK end Encoder end L
1.5 kW to 3.0 kW	Both Ends (for incremental	40 m	JZSP-UCMP00-40-E	
	or absolute encoder)	50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.*)	0.3 m	JZSP-CSP12-E	SERVOPACK end Encoder end Battery Case (battery included)

^{*} This Cable is not required if a battery is connected to the host controller.


Cables for the SGM7G Servomotors

7.2.1 System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

Encoder Cable of 20 m or Less

Encoder Cable of 30 m to 50 m (Relay Cable)

Note: 1. Cables with connectors on both ends that are compliant with an IP67 protective structure and European Safety Standards are not available from Yaskawa for the SGM7G Servomotors. You must make such a cable yourself. Use the Connectors specified by Yaskawa for these Servomotors. (These Connectors are compliant with the standards.) Yaskawa does not specify what wiring materials to use.

- 2. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.
- 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
- 4. Refer to the *Σ-7-Series Peripheral Device Selection Manual* (Manual No.: SIEP S800001 32) for the following information.
- Cable dimensional drawings and cable connection specifications
- · Order numbers and specifications of individual connectors for cables
- Order numbers and specifications for wiring materials

7.2.2 Servomotor Main Circuit Cables

Servomotor Model	Name	Length	Order Number*	Appearance
		3 m	JZSP-CVM21-03-E	
		5 m	JZSP-CVM21-05-E	
		10 m	JZSP-CVM21-10-E	SERVOPACK end Motor end
	For Servomotors	15 m	JZSP-CVM21-15-E	
	without Holding Brakes	20 m	JZSP-CVM21-20-E	
	Brancs	30 m	JZSP-CVM21-30-E	
SGM7G-03		40 m	JZSP-CVM21-40-E	
to -05		50 m	JZSP-CVM21-50-E	
0.3 kW		3 m	JZSP-CVM41-03-E	
0.45 kW		5 m	JZSP-CVM41-05-E	
		10 m	JZSP-CVM41-10-E	SERVOPACK end Motor end
	For Servomotors	15 m	JZSP-CVM41-15-E	
	with Holding Brakes	20 m	JZSP-CVM41-20-E	
		30 m	JZSP-CVM41-30-E	
		40 m	JZSP-CVM41-40-E	
		50 m	JZSP-CVM41-50-E	

^{*} Flexible cables are provided as a standard feature.

Servo-		Connec-	Length	Order N	Number	
motor Model	Name	Name tor Spec- ifications		Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVA101-03-E	JZSP-UVA121-03-E	
			5 m	JZSP-UVA101-05-E	JZSP-UVA121-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA101-10-E	JZSP-UVA121-10-E	end L
			15 m	JZSP-UVA101-15-E	JZSP-UVA121-15-E	
	For Servomotors without Holding		20 m	JZSP-UVA101-20-E	JZSP-UVA121-20-E	
	Brakes		3 m	JZSP-UVA102-03-E	JZSP-UVA122-03-E	
			5 m	JZSP-UVA102-05-E	JZSP-UVA122-05-E	SERVOPACK Motor end end L
		Right-angle	10 m	JZSP-UVA102-10-E	JZSP-UVA122-10-E	
001470			15 m	JZSP-UVA102-15-E	JZSP-UVA122-15-E	
SGM7G- 09, -13			20 m	JZSP-UVA102-20-E	JZSP-UVA122-20-E	
00, 10			3 m	JZSP-UVA131-03-E	JZSP-UVA141-03-E	SERVOPACK Motor end
850 W,			5 m	JZSP-UVA131-05-E	JZSP-UVA141-05-E	677 71660
1.3 kW	For Servomotors	Straight*1	10 m	JZSP-UVA131-10-E	JZSP-UVA141-10-E	
	with Holding Brakes		15 m	JZSP-UVA131-15-E	JZSP-UVA141-15-E	SERVOPACK Brake end
	Dianos		20 m	JZSP-UVA131-20-E	JZSP-UVA141-20-E	
	Note: Set of two cables (Main		3 m	JZSP-UVA132-03-E	JZSP-UVA142-03-E	SERVOPACK Motor end end L
	Power Sup-		5 m	JZSP-UVA132-05-E	JZSP-UVA142-05-E	
	ply Cable and Holding	Right-angle	10 m	JZSP-UVA132-10-E	JZSP-UVA142-10-E	
	Brake Cable)		15 m	JZSP-UVA132-15-E	JZSP-UVA142-15-E	Brake end Motor end
			20 m	JZSP-UVA132-20-E	JZSP-UVA142-20-E	

^{*1.} The order number for the Main Power Supply Cable is JZSP-UVA101-\$\square\$-E (standard cable) or JZSP-UVA121-\$\square\$-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

^{*2.} The order number for the Main Power Supply Cable is JZSP-UVA102-□□-E (standard cable) or JZSP-UVA122-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

Servo-		Connec-		Order N	Number	
motor Model	Name tor Spec- ifications		Length	Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVA301-03-E	JZSP-UVA321-03-E	
			5 m	JZSP-UVA301-05-E	JZSP-UVA321-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA301-10-E	JZSP-UVA321-10-E	end L
			15 m	JZSP-UVA301-15-E	JZSP-UVA321-15-E	
	For Servomotors without Holding		20 m	JZSP-UVA301-20-E	JZSP-UVA321-20-E	
	Brakes		3 m	JZSP-UVA302-03-E	JZSP-UVA322-03-E	
			5 m	JZSP-UVA302-05-E	JZSP-UVA322-05-E	SERVOPACK Motor end end
		Right-angle	10 m	JZSP-UVA302-10-E	JZSP-UVA322-10-E	
			15 m	JZSP-UVA302-15-E	JZSP-UVA322-15-E	
SGM7G-			20 m	JZSP-UVA302-20-E	JZSP-UVA322-20-E	
20			3 m	JZSP-UVA331-03-E	JZSP-UVA341-03-E	SERVOPACK Motor en
1.8 kW			5 m	JZSP-UVA331-05-E	JZSP-UVA341-05-E	end L
1.0 KW	For Servomotors	Straight*1	10 m	JZSP-UVA331-10-E	JZSP-UVA341-10-E	
	with Holding		15 m	JZSP-UVA331-15-E	JZSP-UVA341-15-E	SERVOPACK Brake end
	Brakes		20 m	JZSP-UVA331-20-E	JZSP-UVA341-20-E	
	Note: Set of two cables (Main Power Sup- ply Cable and Holding Brake Cable)		3 m	JZSP-UVA332-03-E	JZSP-UVA342-03-E	SERVOPACK Motor end end
			5 m	JZSP-UVA332-05-E	JZSP-UVA342-05-E	
		Right-angle	10 m	JZSP-UVA332-10-E	JZSP-UVA342-10-E	
			15 m	JZSP-UVA332-15-E	JZSP-UVA342-15-E	Brake end Motor end
			20 m	JZSP-UVA332-20-E	JZSP-UVA342-20-E	

7.2.2 Servomotor Main Circuit Cables

Note: If you need a Cable with a length of 20 m to 50 m, consider the operating conditions and specify a suitable length.

- *1. The order number for the Main Power Supply Cable is JZSP-UVA301-□□-E (standard cable) or JZSP-UVA321-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.
- *2. The order number for the Main Power Supply Cable is JZSP-UVA302-□□-E (standard cable) or JZSP-UVA322-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

7.2.3 Encoder Cables of 20 m or Less

Servomotor	Name	Length	Order I	Number	Annogrange
Model	Model		Standard Cable	Flexible Cable*	Appearance
		3 m	JZSP-CVP01-03-E	JZSP-CVP11-03-E	
		5 m	JZSP-CVP01-05-E	JZSP-CVP11-05-E	SERVOPACK Encoder end
	Cables with	10 m	JZSP-CVP01-10-E	JZSP-CVP11-10-E	end
	Connec-	15 m	JZSP-CVP01-15-E	JZSP-CVP11-15-E	
	tors on Both Fnds	20 m	JZSP-CVP01-20-E	JZSP-CVP11-20-E	
	(for incre-	3 m	JZSP-CVP02-03-E	JZSP-CVP12-03-E	
	mental	5 m	JZSP-CVP02-05-E	JZSP-CVP12-05-E	SERVOPACK Encoder end
	encoder)	10 m	JZSP-CVP02-10-E	JZSP-CVP12-10-E	end
		15 m	JZSP-CVP02-15-E	JZSP-CVP12-15-E	
SGM7G-03 to -20		20 m	JZSP-CVP02-20-E	JZSP-CVP12-20-E	
300 W to 1.8 kW		3 m	JZSP-CVP06-03-E	JZSP-CVP26-03-E	
	Cables with	5 m	JZSP-CVP06-05-E	JZSP-CVP26-05-E	SERVOPACK Encoder end
	Connec-	10 m	JZSP-CVP06-10-E	JZSP-CVP26-10-E	
	tors on	15 m	JZSP-CVP06-15-E	JZSP-CVP26-15-E	Battery Case (battery included)
	Both Ends	20 m	JZSP-CVP06-20-E	JZSP-CVP26-20-E	(battery included)
	(for abso-	3 m	JZSP-CVP07-03-E	JZSP-CVP27-03-E	
	encoder:	5 m	JZSP-CVP07-05-E	JZSP-CVP27-05-E	SERVOPACK Encoder end
	With Bat-	10 m	JZSP-CVP07-10-E	JZSP-CVP27-10-E	
	tery Case)	15 m	JZSP-CVP07-15-E	JZSP-CVP27-15-E	Battery Case
		20 m	JZSP-CVP07-20-E	JZSP-CVP27-20-E	(battery included)

^{*} Use Flexible Cables for moving parts of machines, such as robots.

7.2.4 Relay Encoder Cables of 30 m to 50 m

Servomotor Model	Name	Length	Order Number for Standard Cable	Appearance
			JZSP-CVP01-E	SERVOPACK end Encoder end
	Encoder-end Cable (for incremental or absolute encoder)	0.3 m		SERVOPACK end Encoder end
			JZSP-CVP02-E	
SGM7G-03 to -20	Cables with Connec-	30 m	JZSP-UCMP00-30-E	SERVOPACK Encoder end
300 W to 1.8 kW	tors on Both Ends (for incremental or absolute	40 m	JZSP-UCMP00-40-E	end -
	encoder)	50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required only if an absolute encoder is used.)*	0.3 m	JZSP-CSP12-E	SERVOPACK Encoder end end Battery Case (battery included)

^{*} This Cable is not required if a battery is connected to the host controller.

7.3 V

Wiring Servomotors and SERVOPACKs

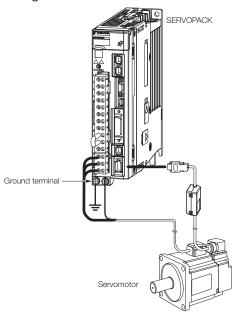
7.3.1 Wiring Precautions

↑ CAUTION

Do not connect the Servomotor directly to an industrial power supply. Doing so will destroy
the Servomotor. You cannot operate a Servomotor without a SERVOPACK that is designed
for it

General Precautions

- Wiring Procedure
- Always connect the Servomotor Main Circuit Cable before you connect the Encoder Cable. If you connect the Encoder Cable first, the encoder may be damaged due to the difference in electrical potential from the FG.
- Never touch the connector pins on the Servomotor directly with your hands. Particularly the encoder may be damaged by static electricity.
- For the following Servomotor models, use the screws to secure the cable connectors to the Servomotor. Make sure that they are securely attached.
 - SGM7J Servomotors
 - SGM7A Servomotors up to 1.0 kW
 - SGM7G Servomotors up to 450 W


If they are not securely attached, the protective structure specifications may not be satisfied.

- Do not remove rubber packings or O-rings. Also, make sure that rubber packings and O-rings do not come off. If the rubber packings or O-rings are not securely attached, the protective structure specifications may not be satisfied.
- Separate the Servomotor Main Circuit Cable from the I/O Signal Cables and Encoder Cable by at least 30 cm.
- Do not connect magnetic contactors, reactors, or other devices on the cables that connect the SERVOPACK and Servomotor. Failure to observe this caution may result in malfunction or damage.
- Do not subject the cables to excessive bending stress or tension. The conductors in the Encoder Cable and Servomotor Main Circuit Cable are as thin as 0.2 mm² or 0.3 mm². Wire them so that they are not subjected to excessive stress.
- If you secure the cables with cable ties, protect the cables with cushioning material.
- If the cable will be bent repeatedly, e.g., if the Servomotor will move in the machine, use Flexible Cables. If you do not use Flexible Cables, the cables may break.
- Before you connect the wires, make sure that there are no mistakes in the wiring.
- Always use the connectors specified by Yaskawa and insert them correctly.
- When you connect a connector, check it to make sure there is no foreign matter, such as metal clippings, inside.
- The connectors are made of resin. To prevent damage, do not apply any strong impact.
- Perform all wiring so that stress is not applied to the connectors. The connectors may break if they are subjected to stress.
- If you move the Servomotor while the cables are connected, always hold onto the main body of the Servomotor. If you lift the Servomotor by the cables when you move it, the connectors may be damaged or the cables may be broken.

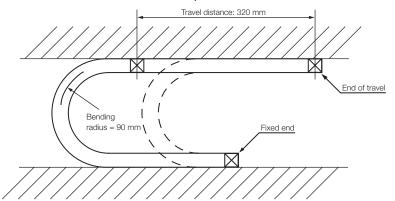
7.3.1 Wiring Precautions

Grounding Precautions

The ground terminal on the SERVOPACK is used to ground the Servomotor.

Precautions for Standard Cables

Do not use standard cables in applications that required a high degree of flexibility, such as twisting and turning, or in which the cables themselves must move. When you use Standard Cables, observe the recommended bending radius given in the following table and perform all wiring so that stress is not applied to the cables. Use the cables so that they are not repeatedly bent.


Cable Diameter	Recommended Bending Radius [R]
Less than 8 mm	15 mm min.
8 mm	20 mm min.
Over 8 mm	Cable diameter × 3 mm min.

Precautions for Flexible Cables

• The Flexible Cables have a service life of 10,000,000 operations minimum when used at the recommended bending radius of 90 mm or larger under the following test conditions. The service life of a Flexible Cable is reference data under special test conditions. The service life of a Flexible Cable greatly depends on the amount of mechanical shock, how the cable is attached, and how the cable is secured.

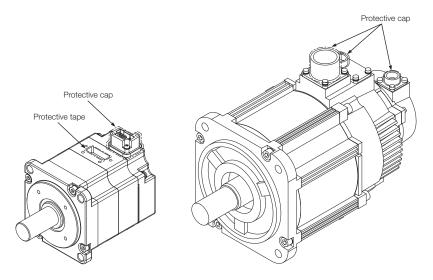
Test Conditions

- One end of the cable is repeatedly moved forward and backward for 320 mm using the test equipment shown in the following figure.
- The lead wires are connected in parallel, and the number of cable return operations until a lead wire breaks are counted. One round trip is counted as one bend.

Note: The service life of a Flexible Cable indicates the number of bends while the lead wires are electrically charged for which no cracks or damage that affects the performance of the cable sheathing occur. Breaking of the shield wire is not considered.

- Straighten out the Flexible Cable when you connect it. If the cable is connected while it is twisted, it will break faster. Check the indication on the cable surface to make sure that the cable is not twisted.
- Do not secure the portions of the Flexible Cable that move. Stress will accumulate at the point that is secured, and the cable will break faster. Secure the cable in as few locations as possible.
- If a Flexible Cable is too long, looseness will cause it to break faster. It the Flexible Cable is too short, stress at the points where it is secured will cause it to break faster. Adjust the cable length to the optimum value.
- Do not allow Flexible Cables to interfere with each other. Interference will restrict the motion of the cables, causing them to break faster. Separate the cables sufficiently, or provide partitions between them when wiring.

7.3.2 Wiring Procedure

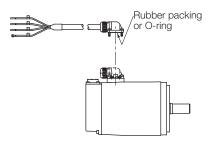

This manual provides the wiring procedure only for the Servomotors.

Refer to the SERVOPACK manual for information on wiring the SERVOPACKs.

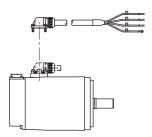
1. Remove the protective cap and protective tape from the Servomotor connectors.

Information

- Some models of Servomotors do not have protective tape.
- The number of connectors depends on the model of the Servomotor.



2. Attach the Servomotor Main Circuit Cable and tighten the screws.


Pay attention to the orientation of the cable (i.e., load or non-load side) when you attach it. Refer to the following table for the tightening torque.

Servomotor Model	Tightening Torque	Servomotor Model	Tightening Torque
SGM7J-A5 to -06	0.15 N·m	SGM7A-A5 to -06	0.15 N·m
SGM7J-08	0.33 N·m	SGM7A-08 to -10	0.33 N·m
		SGM7G-03, -05	0.44 N·m

· Leads on Non-load Side

· Leads on Load Side

Information

- There are two Servomotor Main Circuit Cables for the SGM7G-09, SGM7G-13, or SGM7G-20 Servomotor (the Main Power Supply Cable and the Holding Brake Cable). Attach both of them.
- 3. Attach the Encoder Cable and tighten the screws. Pay attention to the orientation of the cable (i.e., load or non-load side) when you attach it.
 - Tightening torque: SGM7J and SGM7A Servomotors up to 1.0 kW: 0.15 N·m

To extend the Encoder Cable to from 30 to 50 m, proceed to step 4.

- 4. Connect a Cable with Connectors on Both Ends to the Encoder Cable.
- If necessary, connect a Cable with a Battery Case to the Cable with Connectors on Both Ends.

Maintenance and Inspection

8

This section describes the maintenance, inspection, and disposal of a Servomotor.

8.1	Periodic Inspections8-2
8.2	Service Lives of Parts8-3
8.3	Disposing of Servomotors 8-4

8.1

Periodic Inspections

The following table gives the periodic inspection items for a Servomotor. The inspection periods given in the table are guidelines. Determine the optimum inspection periods based on the application conditions and environment.

CAUTION

Before you perform any maintenance or inspection work, turn OFF the power supply, confirm that the CHARGE indicator on the front of the SERVOPACK has gone out, and then use a tester to check the voltage between the positive and negative terminals on the SERVOPACK. Start inspection work only after you have confirmed that the main circuit voltage has dropped.

If there is any main circuit voltage left, the risk of electric shock still exists. Do not touch the Servomotor or any wiring.

- All inspection and maintenance work must be performed only by qualified engineers. There is a risk of electric shock or injury.
- Contact your Yaskawa representative for help with failures, repairs, or part replacement.

Item	Inspection Period	Basic Inspection and Maintenance Procedure	Remarks
Check the coupling between the Servomotor and the machine.	Before starting operation	 Make sure that there are no loose mounting screws between the Servomotor and machine. Make sure that there is no looseness in the coupling between the Servomotor and machine. Make sure that there is no misalignment. 	_
Check for vibration and noise.	Daily	Inspect by touching and by listening.	There should be no more vibration or noise than normal.
Exterior	Check for dirt and grime.	Clean off the dirt and grime with a cloth or pressurized air.	-
Measure the insulation resistance.	At least once a year	Disconnect the Servomotor from the SERVOPACK and measure the insulation resistance at 500 V with an insulation resistance meter. (Measurement method: Measure the resistance between phase U, V, or W on the Servomotor's power line and FG.) The insulation is normal if the resistance is $10~\text{M}\Omega$ or higher.	If the resistance is less than 10 $M\Omega$, contact your Yaskawa representative.
Replace the oil seal.	At least once every 5,000 hours	Contact your Yaskawa representative.	This inspection applies only to Servomotors with Oil Seals.
Overhaul	At least once every 5 years or every 20,000 hours	Contact your Yaskawa representative.	_

8.2 Service Lives of Parts

The following table gives the standard service lives of the parts of the Servomotor. Contact your Yaskawa representative using the following table as a guide. After an examination of the part in question, we will determine whether the part should be replaced. Even if the service life of a part has not expired, replacement may be required if abnormalities occur. The standard service lives in the table are only for reference. The actual service lives will depend on the application conditions and environment.

Part	Standard Service Life	Remarks
Bearing	20,000 hours	The service life is affected by operating conditions. Check for abnormal sounds and vibration during inspections.
Oil Seal	5,000 hours	The service life is affected by operating conditions. Check for oil leaks during inspections.
Holding Brake	20,000 hours	The service life is affected by operating conditions. Check for abnormal sounds and vibration during inspections. Confirm that the brake is released when power is supplied and check for any changes in the operating time of the brake.

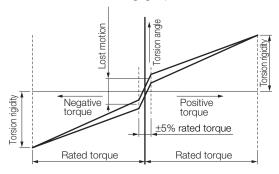
8.3

Disposing of Servomotors

When disposing of a Servomotor, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labeling and warnings as a final product as required.

The appendices provide additional information on Servomotors with Gears and reference information on selecting Servomotor capacity.

9.1	Termin	ology and Data for Servomotors with Gears 9-2
	9.1.1	Terminology for Servomotors with Low-backlash Gears
	9.1.3	Efficiency9-3
9.2	Referen	ce Information for Servomotor Capacity Selection9-4
	9.2.1	Formulas Required to Select the Servomotor Capacity
	9.2.2	GD ² for Simple Diagrams9-5
	9.2.3	Conversions between Engineering Units and SI Units
	9.2.4	Application Examples by Type of Application9-7

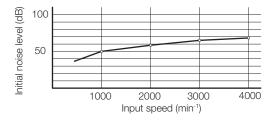

9.1

Terminology and Data for Servomotors with Gears

9.1.1 Terminology for Servomotors with Low-backlash Gears

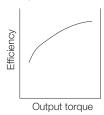
Item	Measurement Method and Definition	Typical Value for Low- Backlash Gear
Rated Torque (N·m)	The rated output torque of the Servomotor is the input torque to the gear. The rated torque is this value multiplied by the inverse of the gear ratio and efficiency.	-
Lost Motion (arc-min)	The difference in the torsion angle with a ±5% rated torque load (maximum value at any four positions during output).	3 max.
Torsion Rigidity (arc-min)	Higher torsion angle value on one side with a \pm rated torque load.	10 max.
Angle Transmission Deviation Accuracy (arc-min)	The difference between the absolute accuracy and the accuracy for one rotation under no-load conditions during output.	6 max.

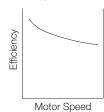
Refer to the following graph for lost motion and torsion rigidity.



9.1.2 Noise Data

The following noise data for Servomotors with Gears is only for reference. The data may vary slightly depending on the capacity and gear ratio of the Servomotor.


Measurement Conditions


- · Scale A: 50 cm
- Ground noise: 28 dB

9.1.3 Efficiency

The output torque and motor speed produce the following trends in efficiency. The values in the tables of ratings and specifications for Servomotors with Gears are given at the rated motor torque and rated motor speed.

9.2

Reference Information for Servomotor Capacity Selection

9.2.1 Formulas Required to Select the Servomotor Capacity

Type of Motion	Rotary Motion	Linear Motion		
Type of Motion	Tiotaly Motion	Horizontal Axis	Vertical Axis	
Machine Configura-	Servomotor 1/R	Servomotor V_R μ Lead: P_B	Counterweight M_c $M_$	
tion	N_ℓ : Load shaft speed (min ⁻¹) V_ℓ : Load speed (m/min) T_ℓ : Load torque calculated at load shaft (N·m) μ : Friction coefficient	P _B : Ball screw lead (m) M: Linear motion section mass (kg) M _c : Counterweight mass (kg)	1/R : Gear ratio η: Mechanical efficiency Τ _{pM} : Servomotor instantaneous maximum torque (N⋅m)	
Speed Diagram		Torque Motor speed Motor speed Vertical axis T_s T		
Travel distance (m)	$R = \frac{V\ell}{60} \cdot \frac{t_{a} + 2t_{c} + t_{d}}{2} \qquad \left(t_{a} = \text{If}t_{d}, R = \frac{V\ell}{60} \left(t_{m} - t_{a}\right)\right)$			
Load Shaft Speed (min ⁻¹)	N_ℓ	$N_{\ell} = \frac{V_{\ell}}{P_{\scriptscriptstyle B}}$		
Motor Shaft Speed (min ⁻¹)		$N_{\mathcal{M}} = N_{\ell} \cdot R$		
Load Torque Calculated at Motor Shaft (N·m)	$T_L = \frac{T_\ell}{R \cdot \eta}$	$T_L = \frac{9.8 \times \mu \cdot M \cdot P_B}{2\pi \cdot R \cdot \eta}$	$T_L = \frac{9.8 \times (M - M_c) P_B}{2\pi \cdot R \cdot \eta}$	
Load Moment of Inertia Calculated at Motor Shaft (kg·m²)		$J_L = J_{L1} + J_{L2} + J_{L3}$		
Linear Motion Section	_	$J_{LI} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$	$J_{LI} = (M + M_c) \cdot \left(\frac{P_B}{2\pi R}\right)^2$	
Rotary Motion Section	Solid Cylinder L (m) Hollow Cylinder Moment of Inertia of Rotary Motion Section at gear input section.	Section Calculated at Motor Shaft	02	
Minimum Starting Time (s)		$t_{am} = \frac{2\pi \cdot N_{\!\!M} \; (J_{\!\!M} + J_{\!\!L})}{60 \; (T_{\!\!P\!M}{}^- \; T_{\!\!L})}$		

Type of Motion	Rotary Motion Linear Motion		
Type of Motion	notary wotton	Horizontal Axis	Vertical Axis
Minimum Braking Time (s)	$t_{obs} = \frac{2\pi \cdot N_{M} \left(J_{M} + J_{L}\right)}{60 \left(T_{PM} + T_{L}\right)}$		
Load Moving Power (W)	$P_o = \frac{2\pi \cdot N_{\!\scriptscriptstyle M} \cdot T_{\!\scriptscriptstyle L}}{60}$		
Load Acceleration Power (W)	P _a =	$= \left(\frac{2\pi}{60} \cdot N_{M}\right)^{2} \frac{J_{L}}{t_{a}} \qquad (t_{a})$	$\geq t_{am}$)
Required Starting Torque (N·m)	$T_{P} =$	$\frac{2\pi \cdot N_{M} \left(J_{M} + J_{L}\right)}{60 \times t_{a}} + T_{L} \qquad (t_{a}^{T})$	$\geq t_{am}$)
Required Braking Torque (N·m)	$T_S =$	$\frac{2\pi \cdot N_{M} \left(J_{M} + J_{L}\right)}{60 \times t_{G}} - T_{L} \qquad (t_{G})$	$t_{dm} \geq t_{dm}$
Effective Torque Value (N·m)	$T_{ms} = \sqrt{\frac{T_{\rho}^{2} \cdot t_{a} + t_{a}}{T_{\rho}^{2} \cdot t_{a}}}$	$\frac{T_L^2 \cdot t_c + T_S^2 \cdot t_d}{t}$	$T_{mrs} = \sqrt{\frac{T_{\rho}^{2} \cdot t_{s} + T_{L}^{2} (t_{c} + t_{\theta}) + T_{S}^{2} \cdot t_{d}}{t}}$

9.2.2 GD² for Simple Diagrams

When Rotary Shaft Is Aligned with Center Line of Cylinder	Solid cylinder $(D^2 = D_0^2/2)$ $\begin{pmatrix} OR \\ GD^2 = 125\pi \ \rho LD^4 \\ \rho : Density \ (g/cm^3)Copper: 7.866 \\ L : Length \ (m) \\ D : Diameter \ (m) \end{pmatrix}$	Hollow cylinder $D^2 = (D_o^2 + D_i^2)/2$ OR $GD^2 = 125\pi \rho L (D_o^4 + D_i^4)$ $\rho:Density (g/cm^3)$ $L: Length (m)$ $D_o, D_i:Diameter (m)$
	Rectangular solid $D^2 = (b^2 + c^2)/3$ b	Cylindrical body $D^2 = L^2/3 + D_0^2/4$
When Rotary Shaft Runs Through Gravitational Center	Sphere $D^2 = \frac{2}{5}D_0^2$	Hollow sphere $D^{2} = \frac{2}{5} \cdot \frac{D_{0}^{5} - D_{1}^{3}}{D_{0}^{3} - D_{1}^{3}}$
	Cone $D^2 = \frac{3}{10} D_0^2$	Wheel $D^2 = D_0^2 + \frac{3}{4}D_1^2$
When Rotary Shaft Is on One End	Rectangular solid $D^2 = (4 b^2 + C^2)/3$ b C b	Cylindrical body $D^2 = \frac{4}{3}L^2 + \frac{D_o^2}{4}$
When Rotary Shaft Is Outside Rotating Body	Rectangular solid $D^{2} = \frac{4b^{2} + C^{2}}{3} + 4(bd + d^{2})$	Cylindrical body $D^2 = \frac{4}{3}L^2 + \frac{D_o^2}{4} + 4(dL + d^2)$

9.2.3 Conversions between Engineering Units and SI Units

Continued from previous page.

General Formula When Rotary Shaft Is outside Rotating Body General formula for diameter of rotation when rotary shaft Is outside rotating body

 $D_2^2 = D_1^2 + 4 d^2$

 ${\it D_{_{\rm J}}}$: Diameter of rotation when shaft that is parallel to rotary shaft and runs through center of gravity virtually operates as a rotary shaft

Rotary shaft

Center of gravity

Information

 GD^2 = Weight × (Diameter of rotation)²

9.2.3 Conversions between Engineering Units and SI Units

The following table provides the conversion rates between engineering units and SI units for typical physical quantities required for capacity selection.

Quantity	Engineering Unit	SI Unit	Conversion Factor	
Force or load	kgf	N	1 kgf = 9.80665 N	
Weight	kgf	_	The numerical values are the same for mass in	
Mass	kgf•s²/m	kg	the traditional unit and the SI unit. (The mass SI unit Wkg is used for objects in the Wkgf traditional unit.)	
Torque	kgf∙m	N∙m	1 kgf·m = 9.80665 N·m	
Inertia (moment of inertia)	gf·cm·s ²	kg·m²	1 gf·cm·s ² = $0.980665 \times 10^{-4} \text{ kg·m}^2$	
GD ²	kgf∙m²	kg∙m²	Relationship between GD ² (kgf·m ²) and moment of inertia J (kg·m ²) $J = \frac{GD^2}{4}$	

Appendice

Application Examples by Type of Application

9.2.4

		Rotating Body	Horizontal Ball Screw	Vertical Ball Screw
Machine Configuration		Gear ratio 1/R	F (kg) Friction coefficient F (kg) Pitch: Pitch: P _B (mm)	$\begin{array}{c c} & & & & \\ & &$
Load Spe (min ⁻¹)	ed, N $_\ell$	N _ℓ	Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{\scriptscriptstyle B}}$	Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{B}}$
Speed Ca Motor Sha (min ⁻¹)	alculated at aft, N _M	$R \times N_{\ell}$	$R \times N_{\ell}$	$R \times N_{\ell}$
Linear Motion	GD ² _ℓ Calculated at Load Shaft	-	$W \cdot \left(\frac{P_B}{1000\pi}\right)^2$	$W \cdot \left(\frac{P_B}{1000\pi}\right)^2$ [However, W=W ₁ + W ₂]
Section, GD ₂ (kg·m ²)	GD ² _L Cal- culated at Motor Shaft	$GD_{\perp}^{2} \times \left(\frac{1}{R}\right)^{2}$	$GD^{2}_{L} \times \left(\frac{1}{R}\right)^{2}$ $\left[OR \ W \cdot \left(\frac{V\ell}{\pi \cdot N_{M}}\right)^{2}\right]$	$GD_{L}^{2} \times \left(\frac{1}{R}\right)^{2}$ $OR \qquad W \cdot \left(\frac{V\ell}{\pi \cdot N_{M}}\right)^{2}$ $However, W=W_{1} + W_{2}$
Load	T_ℓ Calculated at Load Shaft	τ_{ℓ}	$\{\mu \cdot (W + F_V) + F_H\} \cdot \frac{P_B}{2000\pi}$	$\{\mu \cdot F_{_{\!\!H}} + W_{_{\!\!T}} - W_{_{\!\!2}} + F_{_{\!\!V}}\} \cdot \frac{P_{_{\!\!B}}}{2000\pi}$
Load Torque (kg·m)	T _L Calculated at Motor Shaft	$T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta}$ Mechanical efficiency		$ \begin{array}{c} T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta} & \text{Mechanical} \\ \\ OR \\ \left[\frac{\{ \mu \ F_{_{\!\mathit{H}}} + W_{_{\!\mathit{I}}} - W_{_{\!\!2}} + F_{_{\!\mathit{V}}} \} \cdot V_{\ell}}{2\pi \cdot N_{_{\!\!M}} \cdot \eta} \right] \end{array} $
Load Mov P _O (kW)	ving Power,	<u>Tℓ·Nℓ</u> 973 × η	$\frac{\{\mu \cdot (W + F_V) + F_H\} \cdot V_{\ell}}{6120 \times \eta}$	$\frac{\{\mu \ F_{H} + W_{1} - W_{2} + F_{V}\} \cdot V_{\ell}}{6120 \times \eta}$
Load Acc Power	eleration	$\frac{GD^{2}\ell \cdot N\ell^{2}}{365 \times 10^{3} \times t_{s}}$ Acceleration time (s)	$ \frac{GD^2\ell \cdot N\ell^2}{365 \times 10^3 \times t_a} $ Acceleration time (s)	$ \frac{GD^{2}\ell \cdot N\ell^{2}}{365 \times 10^{3} \times t_{a}} $ Acceleration time (s)
Starting Torque, T _P (kg·m) Deceleration Torque, T _S (kg·m) Effective Torque Value, Trms (kg·m)		T_{P} V_{ℓ} (m/min) T_{\perp} T_{s} T_{c} T_{d}	$T_{ms} = \sqrt{\frac{T_p^2 \cdot t_a + T_L^2 \cdot (T_a)}{T_a}}$	$-T_{L}$ $\overline{T_{S}^{2} \cdot t_{\sigma}}$ Ile stopped for a vertical ball screw: \
System Remarks		-	 The gear backlash is a problem. Effective for applications for which increasing system speed is not required. A large torque can be generated by a small motor. 	 Falling when W₁≠W₂ Brake timing

9.2.4 Application Examples by Type of Application

Continued from previous page.

		Continued from previous page.		
		Roll Feeder	Rack and Pinion	
Machine Configuration		Applied pressure, N (kg)	F _V (kg) W(kg) F _H (kg) F _H (kg) Mumber of teeth, Z _P Pitch, L _P (mm)	
Load Speed, N _ℓ (min ⁻¹)		Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{B}}$ [However, $P_{B} = \pi \cdot d_{P}$]	Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{B}} \longrightarrow \begin{bmatrix} \text{However, } P_{B} = \pi \cdot d_{P} \\ \text{OR} & P_{B} = Z_{P} \cdot L_{P} \end{bmatrix}$	
Speed Calculated at Motor Shaft, N _M (min ⁻¹)		$R \times N_{\ell}$	$R \times N_{\ell}$	
Linear Motion Section, GD ₂ (kg·m ²)	GD ² _ℓ Cal- culated at Load Shaft	$W\cdot\left(\frac{d_p}{1000}\right)^2$	$W\cdot\left(\frac{d_p}{1000}\right)^2$	
	GD ² _L Cal- culated at Motor Shaft	$GD^{2}_{\perp} \times \left(\frac{1}{R}\right)^{2}$ $\left[OR W \cdot \left(\frac{V \ell}{\pi \cdot N_{M}}\right)^{2}\right]$	$GD^{2}_{L} \times \left(\frac{1}{R}\right)^{2}$ $\left[OR \ W \cdot \left(\frac{V\ell}{\pi \cdot N_{M}}\right)^{2}\right]$	
Load Torque (kg·m)	T_ℓ Calculated at Load Shaft	$(F_{_{1}} + \mu_{_{1}}W + \mu_{_{2}}N) \cdot \frac{d_{_{P}}}{2000}$	$\{\mu \cdot (W + F_V) + F_H\} \cdot \frac{d_P}{2000}$	
	T _L Calcu- lated at Motor Shaft	$T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta} - \underbrace{\text{Mechanical}}_{\text{efficiency}}$ $\left[OR \frac{(F_{\tau} + \mu_{1} W + \mu_{2} N) \cdot V_{\ell}}{2\pi \cdot N_{M} \cdot \eta} \right]$	$T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta} \underbrace{\qquad}_{\text{efficiency}} \\ \left[\text{OR} \frac{\{\mu \cdot (\text{W} + F_{_{V}}) + F_{_{\mathcal{H}}}\} \cdot V_{\ell}}{2\pi \cdot N_{_{\!\!M}} \cdot \eta} \right]$	
Load Moving Power, P _O (kW)		$\frac{(F_1 + \mu_1 W + \mu_2 N) \cdot V \ell}{6120 \times \eta}$	$\frac{\{\mu\cdot(W+F_V)+F_H\}\cdot V_{\ell}}{6120\times\eta}$	
Load Acceleration Power		$\frac{GD^{2}\ell \cdot N\ell^{2}}{365 \times 10^{3} \times t_{a}}$ Acceleration time (s)	$\frac{GD^{2} \ell \cdot N\ell^{2}}{365 \times 10^{3} \times t_{a}}$ Acceleration time (s)	
Starting Torque, T _P (kg·m) Deceleration Torque, T _S (kg·m) Effective Torque Value, Trms (kg·m)		$T_{P} = \frac{(GD_{M}^{2} + GD_{L}^{2}) \cdot N_{M}}{375 \cdot t_{a}} + T_{L}$ $T_{S} = \frac{(GD_{M}^{2} + GD_{L}^{2}) \cdot N_{M}}{375 \cdot t_{g}} - T_{L}$ $T_{ms} = \sqrt{\frac{T_{P}^{2} \cdot t_{a} + T_{L}^{2} \cdot t_{c} + T_{S}^{2} \cdot t_{d}}{T}}$ (When a load torque is applied while stopped for a vertical ball screw: $T_{ms} = \sqrt{\frac{T_{P}^{2} \cdot t_{a} + T_{L}^{2} \cdot (T - t_{a} \cdot t_{g}) + T_{S}^{2} \cdot t_{d}}{T}}$		
System Remarks		 Feeding of coiled and sheet materials Roller slipping affects accuracy. A measuring roller pulse generator may also be installed separately. 	 Can be used for positioning with long travel distances. A separate pulse generator is often installed. 	

Continued from previous page.

		Continued from previous page.			
		Chains and Timing Belts	Dollies		
Machine Configuration		F _V (kg) W(kg) The proof of teeth, Z _p Pitch, L _p (mm)	W(kg) 1/R 1/R C: Resistance to travel (kg/t) ϕ dp(mm)		
Load Speed, N _ℓ (min ⁻¹)		Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{B}} \leftarrow \begin{bmatrix} \text{However, } P_{B} = \pi \cdot d_{P} \\ \text{OR} & P_{B} = Z_{P} \cdot L_{P} \end{bmatrix}$	Load speed (m/min) $\frac{1000 \times V_{\ell}}{P_{B}}$ [However, $P_{B} = \pi \cdot d_{P}$]		
Speed Calculated at Motor Shaft, N _M (min ⁻¹)		$R \times N_{\ell}$	$R \times N_{\ell}$		
Linear Motion Section, GD ₂ (kg·m ²)	GD ² _ℓ Calculated at Load Shaft	$W\cdot\left(\frac{d_p}{1000}\right)^2$	$W\cdot\left(\frac{d_p}{1000}\right)^2$		
	GD ² _L Calculated at Motor Shaft	$\frac{GD^{2} \times \left(\frac{1}{R}\right)^{2}}{\left[OR \ W \cdot \left(\frac{V \ell}{\pi \cdot N_{M}}\right)^{2}\right]}$	$GD^{2}_{L} \times \left(\frac{1}{R}\right)^{2}$ $\left[OR \ W \cdot \left(\frac{V\ell}{\pi \cdot N_{M}}\right)^{2}\right]$		
Load Torque (kg·m)	T_ℓ Calculated at Load Shaft	$\{\mu \cdot (W + F_V) + F_H\} \cdot \frac{d_P}{2000}$	$C \cdot W \frac{d_P}{2 \times 10^6}$		
	T _L Calcu- lated at Motor Shaft	$T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta} \xrightarrow{\text{Mechanical}} $ $\left[\text{OR} \frac{\{\mu \cdot (W + F_{\ell}) + F_{\mathcal{H}}\} \cdot V_{\ell}}{2\pi \cdot N_{\mathcal{M}} \cdot \eta} \right]$	$ T_{\ell} \times \frac{1}{R} \times \frac{1}{\eta} \xrightarrow{\text{Mechanical}} $ $ \left[\text{OR } \frac{\text{C} \cdot W \cdot V_{\ell}}{2 \times 10^{3} \times \pi \times N_{M} \cdot \eta} \right] $		
Load Moving Power, P _O (kW)		$\frac{\{\mu \cdot (W + F_V) + F_H\} \cdot V\ell}{6120 \times \eta}$	$\frac{\text{C} \cdot W \cdot V_{\ell}}{6120 \times 10^3 \times \eta}$		
Load Acceleration Power		$\frac{GD^2 \ell \cdot N\ell^2}{365 \times 10^3 \times t_a}$ Acceleration time (s)	$\frac{GD^{2} \ell \cdot N\ell^{2}}{365 \times 10^{3} \times t_{a}}$ Acceleration time (s)		
Starting Torque, T _P (kg·m) Deceleration Torque, T _S (kg·m) Effective Torque Value, Trms (kg·m)		T_{c} V_{ℓ} (m/min) $T_{c} = \frac{G}{T_{ms}}$ $T_{ms} = \frac{G}{T_{ms}}$ When a local set $T_{ms} = \frac{G}{T_{ms}}$	$\frac{SD_{M}^{2} + GD_{L}^{2}) \cdot N_{M}}{375 \cdot t_{s}} + T_{L}$ $\frac{SD_{M}^{2} + GD_{L}^{2}) \cdot N_{M}}{375 \cdot t_{g}} - T_{L}$ $\sqrt{\frac{T_{\rho}^{2} \cdot t_{s}^{2} + T_{L}^{2} \cdot t_{c}^{2} + T_{S}^{2} \cdot t_{g}}{T}}$ and torque is applied while stopped for a vertical ball screw: $\sqrt{\frac{T_{\rho}^{2} \cdot t_{s}^{2} + T_{L}^{2} \cdot (T - t_{s}^{2} \cdot t_{g}^{2}) + T_{S}^{2} \cdot t_{g}^{2}}{T}}$		
System Remarks		 Positioning of conveyors Chain looseness, movement, and pitch error are problems (not suitable for frequent use). Radial load for overtightened belt chains 	Dolly slipping		

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEP S800001 36A

Published in Japan April 2014 14-4

Date of publication

Date of original publication

Date of Publication	Rev. No.	Section	Revised Contents
April 2014	-	_	First edition

Σ-7-Series AC Servo Drive

Rotary Servomotor Product Manual

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone 81-4-2962-5151 Fax 81-4-2962-6138 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brasil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstraβe 185, Eschborn 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD.

12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2014 YASKAWA ELECTRIC CORPORATION. All rights reserved