

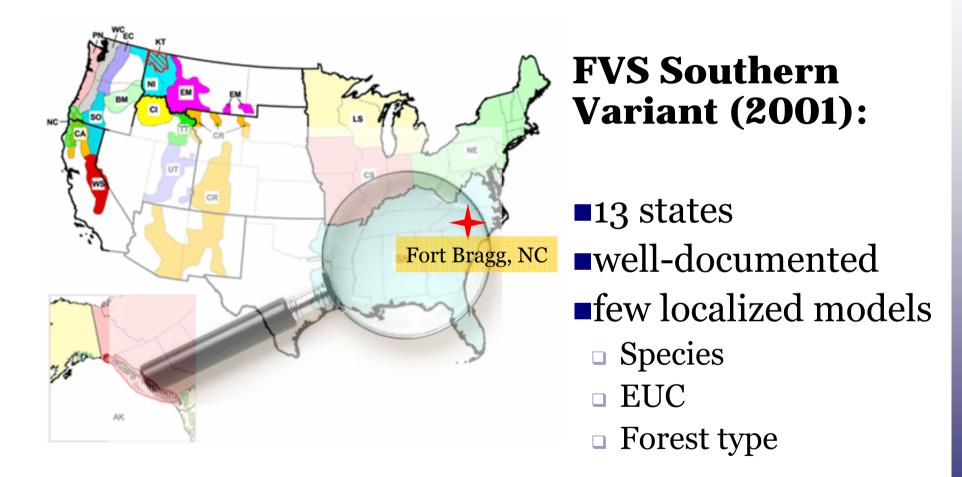
3rd Forest vegetation Simulator Conference Fort Collins CO, February 13-15 2007

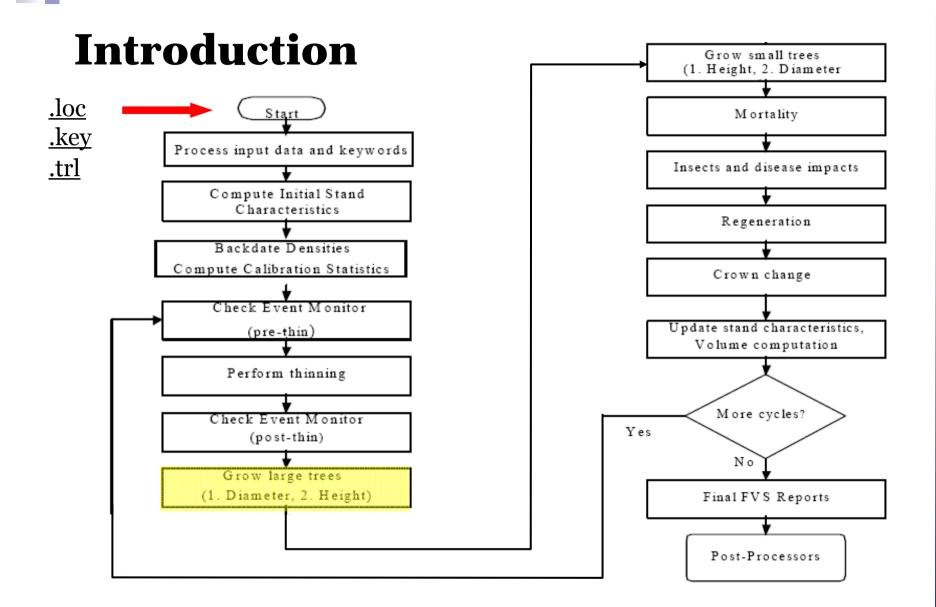
Inventory-based sensitivity analysis of the large tree diameter growth submodel of FVS Southern Variant

RJ DeRose, JN Long Utah State University,

Dept. of Wildland Resources

JD Shaw USDA Forest Service, Rocky Mountain RS





Outline

- Project background
- Inside FVS: dbh increment submodel(s)
- Approaches to sensitivity analysis
- The SIMLAB package
- Variations on the analysis
- Conclusions

Diameter increment for large trees (≥ 3 "):

- 14-parameter exponential model
 scaling on local increment data (if any)
 randomization (tripling)
 senescence bounding function
- bark submodel

"...it is unreasonable to assume that growth responses in locations with substantially different environmental limitations will be the same."

(Donnelly et al., 2001)

Large tree dbh increment: **9190 observations** Goodness-of-fit: **R-squared =0.520** Calibration of full model: **flawed params**

	Variable	Description	
$\ln(dds)^* =$	b ₀	intercept	
	$+ b_1 \cdot ln dbh$	log of dbh (at beginning of estimation period)	Tree potential
	$+ b_2 \cdot dbh^2$	squared dbh	Thee potential
	$+ b_3 \cdot \ln crwn$	log of percent crown ratio	
	$+ b_4 \cdot hrel$	relative height	
	$+ b_5 \cdot SI$	site index for the species	Competition
	$+ b_6 \cdot plttba$	plot basal area	competition
	$+ b_7 \cdot pntbal$	plot basal area in trees larger than subject tree	
Predictable?	$+ b_8 \cdot tan slp$	tangent of slope in degrees	
Predictable?	$+ b_9 \cdot f \cos \theta$	tangent of slope, cosine of aspect	Site factors
Predictable?	$+ b_{10} \cdot f sin$	tangent of slope, sine of aspect	(constant or non
	$+ b_{11} \cdot fortype$	categorical variable for forest type group	influential)
INVARIANT	$+ b_{12} \cdot ecounit$	categorical variable for ecological unit group	mucman
INVARIANT	$+ b_{13} \cdot plant$	categorical variable for planted stands	

* dds = (diameter inside bark at time₀ + periodic diameter growth)² – diameter inside bark² (Wykoff et al., 1982).

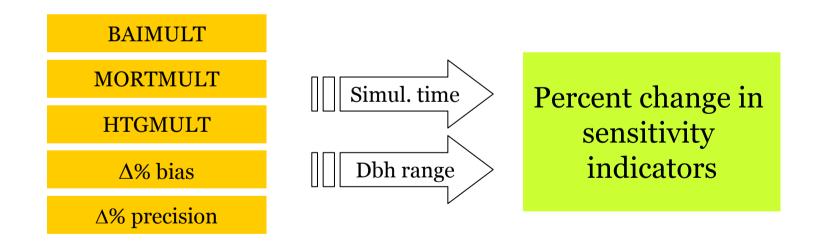
<u>Aim</u>: variable ranking

(F.Bragg-based effectiveness in predicting BAI)

Sensitivity analysis:

"A systematic search for those model entities to which the model is most sensitive".

(Innes, 1979)



Herring and Radtke, 2007 Hamilton, 1997: "Guidelines for Sensitivity analysis of FVS".

> Submodel output Measurement accuracy Measurement precision (LCR, dbh, height)

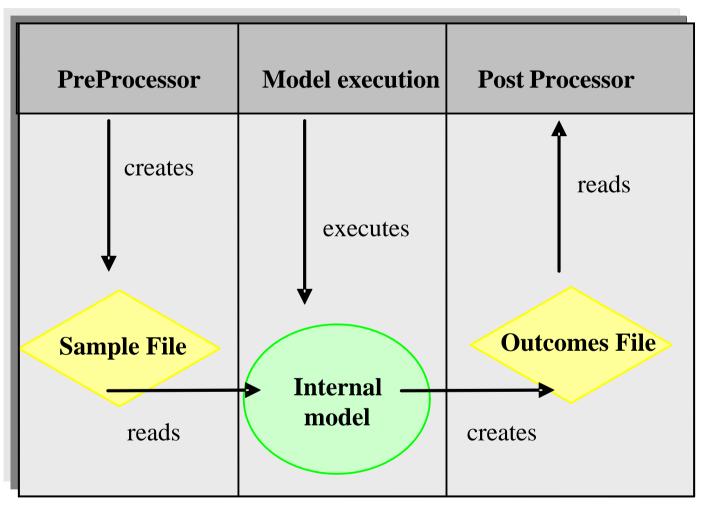
Total volume Tree density QMD Top height Basal area

The Hamilton approach: Multiplicative perturbation of model input (one factor at a time).

LOCAL SA:

local response of the output(s) by varying input parameters one at a time, holding others constant.

GLOBAL SA:


global response (averaged over the variation of all the parameters) of model by exploring a finite or infinite input space.

SIMLAB (2004) Version 2.2 Simulation Environment for Uncertainty and Sensitivity Analysis

developed by the Joint Research Centre of the European Commission.

SIMLAB

SIMLAB

- Statistical description of input <u>variables</u> imputed from field data
 - Shape of distribution
 - Mean, standard deviation
- 1. Iterative MC-based sampling
- 2. Input propagation through model
- 3. Uncertainty analysis
- 4. Sensitivity analysis

Database

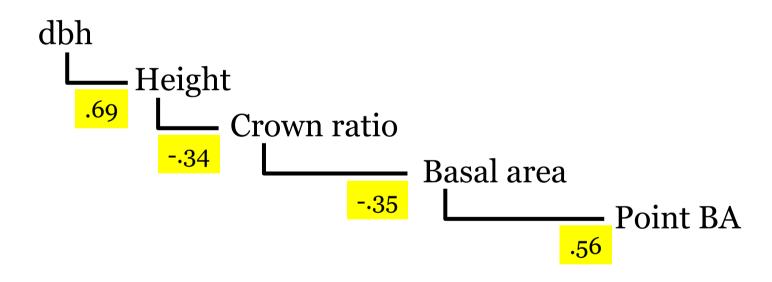
Tree variables	<u>Stand (plot) variables</u>
ID codes	ID codes
Inventory type	Inventory type
Species (FIA codes)	Inventory date
Dbh	Spatial location (UTM NAD ₈₃)
Rank (stand-wise dbh distribution)*	Trees per hectare *
Point Basal Area Larger*	Quadratic mean dbh*
Total Height	Basal area*
Crown width _{1.2}	Additive Stand Density Index*
Crown width mean*	Reineke's Stand Density Index*
Crown ratio estimate	$\mathrm{SDI}_{\mathrm{sum}}/\mathrm{SDI}_{\mathrm{Reineke}}$ ratio
Tree crown class estimate	Relative SDI*
Height to crown base	Species-specific Site Index
Live crown ratio	Species-specific asymptotic height ^{]*}
Radial increment	Point Basal Area*
5-year diameter increment	Slope %
Basal Area (outside bark)*	Slope (°)*
Age at breast height	Aspect (°)
Age*	Forest type code
Relative height (Height H ₄₀ ⁻¹)*	EUC
Tree condition $code^{\Gamma}$	H_{40}^{*}
Bark thickness	Age minimum, maximum*
Bark ratio*	Age mean, median*

Analisi di sensitività

Input	Definition	Distrib.	Range	Units
dbh	Diam. breast height	Normal	2 - 30	In
crwn	Live crown ratio	Normal	1 – 100	%
h	Tree height	Normal	10 – 101	Feet
H40	Height of 40 thickest	Normal	40 – 140	Feet
	trees ac^{-1}			
SI	Site Index	Normal	44 – 132	Feet
BA	Basal area (stand)	Normal	5.5 – 158	feet ² ac ⁻¹
BAp	Basal area (plot)	Normal	10 – 270	feet ² ac ⁻¹
rank	%ile of tree's dbh in	Uniform	0 – 1	-
	plot			
slope	plot mean slope	Discrete	0-0.8	rad
aspect	plot mean aspect	Uniform	$0 - 2\pi$	rad
EUC	Ecological unit code	Constant	0	categ.
forcode	Forest cover type	Discrete	0 – 1	categ.
plant	Plantation origin	Constant	0	binary

Modeling stand dynamics in Scots pine forests of the Southwesten Alps

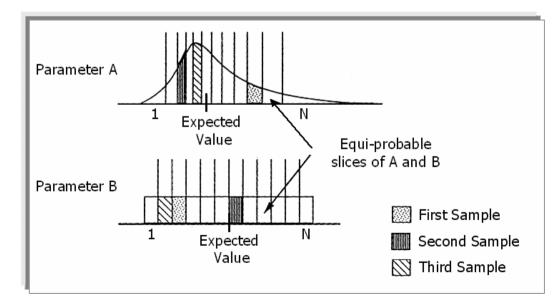
7,300 Longleaf pine trees



Database

- PDFs of sample variables were tested for normality by means of one-variable Kolmogorov-Smirnov test (p < 0.05)
- Truncation to field-based minima and maxima helped avoiding sampling outliers.
- Biologically relevant correlations were assessed and entered in a tree-like structure.

Results


Correlated inputs (Pearson's r):

Sampling

Latin Hypercube Sampling (10,000 runs):

Probability distributions of model inputs are divided into N equi-probable intervals. For each simulation, a value for each parameter combination is selected from one of these intervals at random, and without replacement.

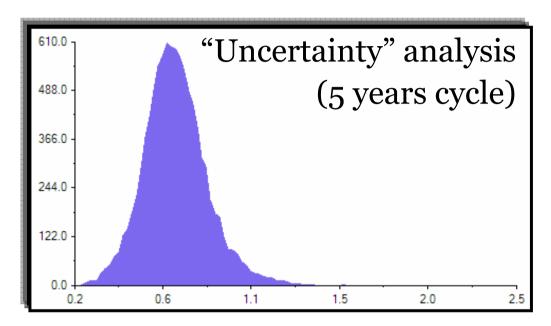
Model propagation

Demo Help			
Statistical Pre Processor New Sample Generation Configure Load gample file Import external Sample file	Model Execution Select Model Internal model executable: dds Number of equations: 3 Output Variables: dds DG	Statistical Post Processor	
Current Configuration Internal Configuration Total factors: 13 Sampling method selected: Latin Hypercube Correlation method selected: Dependence tree Samples to generate: 10000 Samples file: D:\Progetti\Bragg\Sensitivity Analysis\dds_lhs_	Configu Conte Carlo) Star Inte Carlo) Log Abort		

exp(-1.3311+1.0981*log(D)-0.0018*(D**2)+0.1845*log(CR)+0.0088*SI+ +0.2252*tan(slope)+0.0869*tan(slope)*cos(aspect)+0.1074*tan(slope)*sin(aspect)+ +0.388*H/H40-0.0022*BA-0.0029*PointBA*(1-rank)+EUC+forcode+planted)

Model propagation

Modeled output:


dds: change in squared inside bark dbh Dg: inside bark diameter growth

$$D_{g} = \sqrt{dib^{2} + dds} - dib$$

$$dib = \frac{1}{k}dbh$$

$$(k = 1.129)$$
Field-based bark thickness ratio (k = 1.129)

Results

Dg [in]	Mean	SE	Range	Skewness	
Data	0.57	0.0030	0.08 – 2.36	1.403	SA is
Model	0.71	0.0018	0.17 - 1.01		needed!

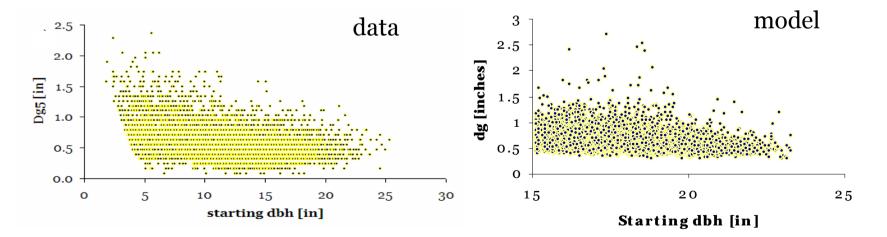
Data variability is reduced by model

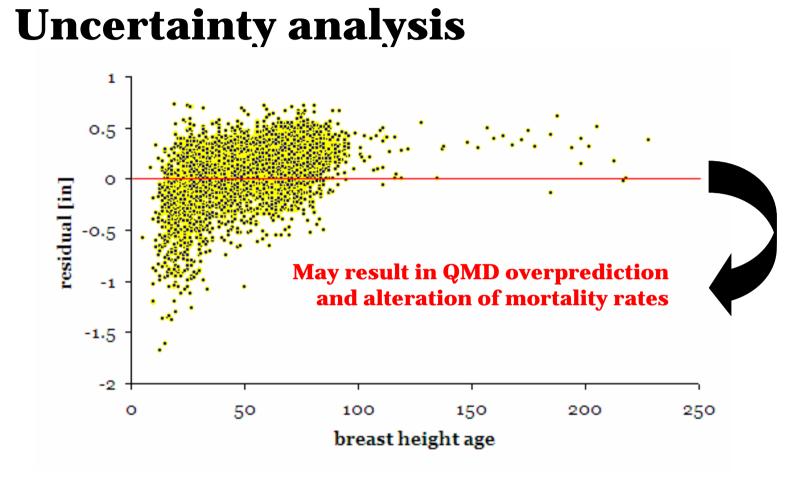
Model-induced simplification

BUT: adj.R² of default SN is much lower (0.52 vs 0.91)

Diameters were split into very small (3-5"), small (5-10"), medium (10-15") and large (15"+) classes.

Size class	Mean		Ra	R ²	
Very small	0.82	0.54	0.39–2.58	0.16–1.26	
Small	0.59	0.60	0.36–0.99	0.08–1.89	
Medium	0.57	0.59	0.34–0.98	0.08–2.99	
Large	0.47	0.61	0.25-0.82	0.08 –3.15	


Field data

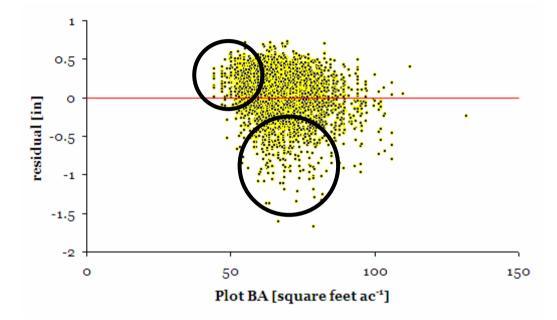

Simulated results

<u>Small & medium trees:</u> Competition unexplained, lower end of growth range.

Medium & large trees:

Less variation explained, overestimation of growth rate (0.21", 0.14"), upper end of Dg range. Age-related decline?

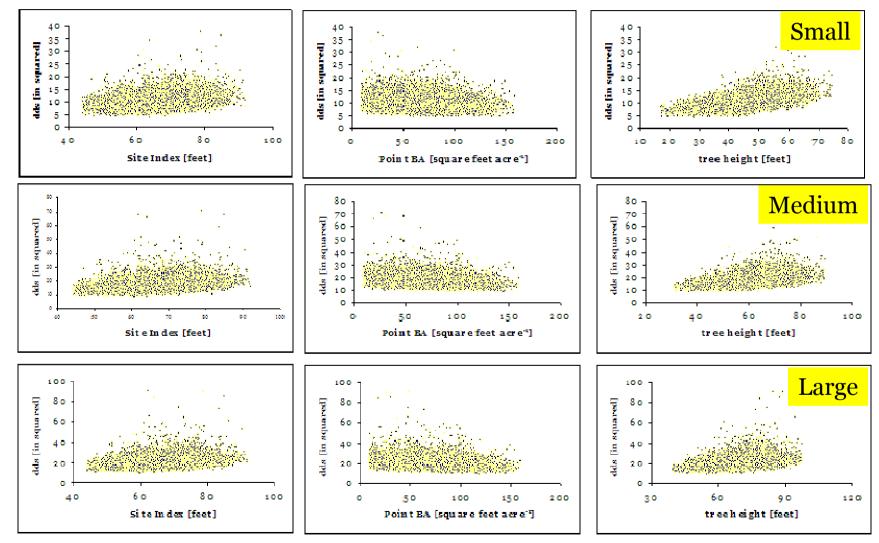
<u>Age-related decline</u> (MAGNITUDE) Evaluate role of senescence bounding function.

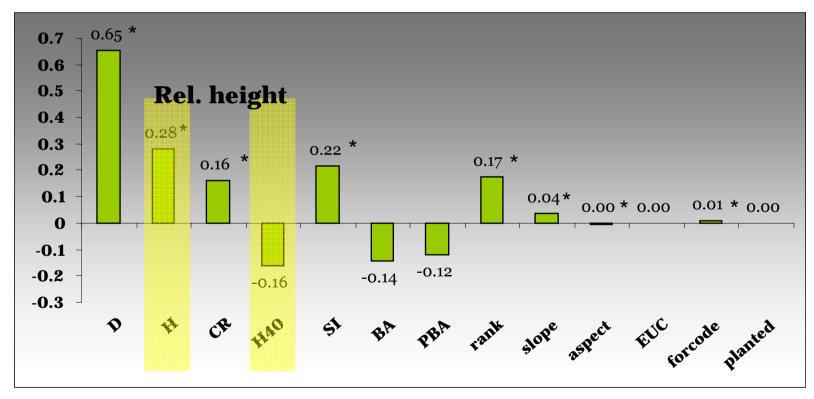

"If research is available showing diameter growth relationships for aged, very large trees, it could be incorporated into the variant."

(Donnelly et al., 2001)

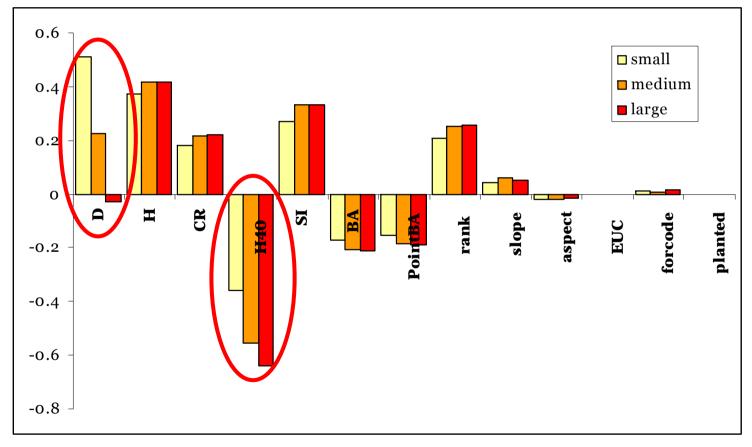
FVS-SN calibration data:

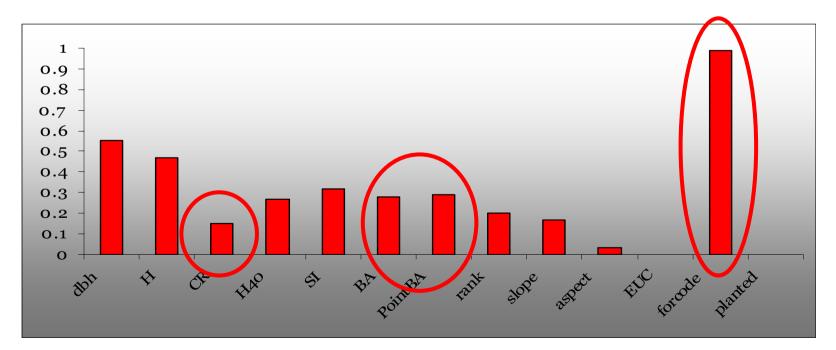
Fort Bragg:


9300 tree records 95% smaller than 17.4 in. Maximum dbh: 28.3 in. Dbh bounding limits: low 15.9 in, high 24.4 in 7302 site trees (67,294 LL)
25.5% larger than 15.9 in
Mean dbh, all trees: 28.2 in
Max dbh, all trees: 40 in


Functional form may not entirely reflect the effect of competition:

Overestimation for OGT (also in HD model, Shaw et al. 2006)


Larger understimation for intermediate densities


St. rank regression coefficients: effect of varying a variable by a proportion of its variance.

Standardized rank regression coefficients

Smirnov two-sample test: Variable helps splitting behavioral vs. non-behavioral simulations.

Discussion

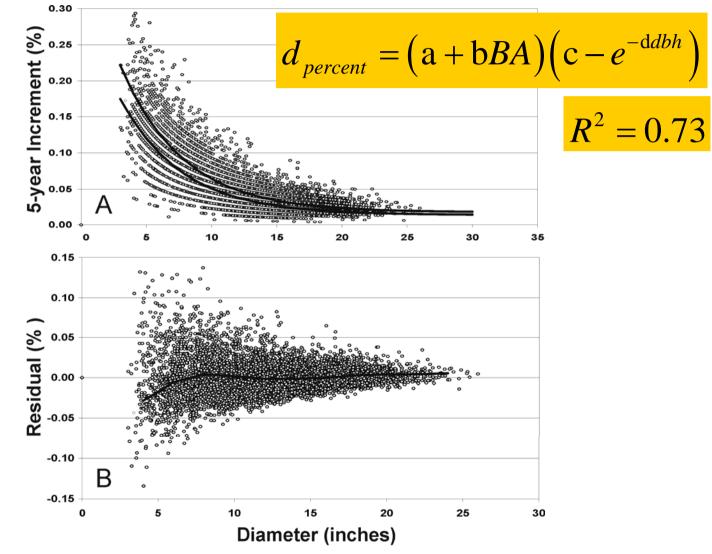
• *"Dbh at the beginning of projection cycle is the strongest single statistical determinant of diameter growth".* (Donnelly et al., 2001).

 Model relationships consistent with ecologically sound behavior.

 Tree potential variables are the most influential (dbh, height, Site index).

• LCR has negliglible influence; forest type coding important when different than Longleaf pine.

Discussion


Model parsimony

Model flexibility

Take unifluential variables <u>out</u> of the model (e.g., COMP). <u>Re-work</u> model form according to variable ranking:

stepwise calibintercept, slope, asymptotes...)

Discussion

Third Forest Vegetation Simulator Conference. Fort Collins, CO

Summary

Scope of sensitivity analysis:

- 1. Prior-to-calibration variable screening
- 2. Functional relationships
- 3. Data variability (uncertainty analysis)
- 4. Exploration of specific input space
- 5. Comparing alternative models

Further steps

- Extending SA to other species
- Ecological-oriented analysis (Rel. Density)
- FVS global sensitivity analysis:
 - Accounting for randomization and selfcalibration routines
 - Accounting for small trees and senescence "soft boundaries" (may not be needed).
 - Chaining submodels

3rd Forest vegetation Simulator Conference Fort Collins CO, February 13-15 2007

Thank you for your attention.

Giorgio Vacchiano

Dep. AGROSELVITER - University of Turin Via Leonardo da Vinci 44 10095 Grugliasco (TO) – ITALY

giorgio.vacchiano@unito.it

Tel. (39) 11 6708641 – Fax (39) 11 6708734