
## **YASKAWA**

# Machine Controller MP2200 USER'S MANUAL



Overview

Overview of Specifications and Functions

Mounting and Wiring

System Startup

Overview of System Operation

Built-in Ethernet Communication (Supported by the CPU-03 and CPU-04)

Easy Programming (Supported by the CPU-03 and CPU-04)

Maintenance, Inspection, and Troubleshooting

Appendices



### **Using this Manual**

The MP2200 is a Machine Controller that can be greatly expanded by mounting up to nine Optional Modules per rack and connecting up to four racks. The CPU Module for the MP2200 achieves a high-speed motion control cycle of 0.5 ms and can control up to 256 axes.

Please read this manual to ensure correct usage of the MP2200 system and apply to your manufacturing system for control. Keep this manual in a safe place for future reference.

#### ■ Basic Terms

Unless otherwise specified, the following definitions are used:

- MP2200: MP2200 Machine Controller
- MPE720: The Programming Device Software or a Programming Device (i.e., a personal computer) running the Programming Device Software
- PLC: Programmable Logic Controller

#### Manual Configuration

Read the chapters of this manual as required by the purpose.

| Chapter                                                                        | Selecting<br>Models and<br>Peripheral<br>Devices | Studying<br>Specifications<br>and Ratings | Designing<br>the System | Installation and Wiring | Trial Oper-<br>ation | Maintenance<br>and Inspec-<br>tion |
|--------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|-------------------------|-------------------------|----------------------|------------------------------------|
| Chapter 1<br>Overview                                                          | V                                                | -                                         | -                       | _                       | -                    | _                                  |
| Chapter 2<br>Overview of Specifications<br>and Functions                       | V                                                | V                                         | V                       | V                       | _                    | -                                  |
| Chapter 3<br>Mounting and Wiring                                               | -                                                | V                                         | V                       | √                       | -                    | -                                  |
| Chapter 4<br>System Startup                                                    | V                                                | -                                         | _                       | _                       | V                    | _                                  |
| Chapter 5<br>Overview of System Operation                                      | -                                                | -                                         | V                       | _                       | V                    | _                                  |
| Chapter 6 Built-in Ethernet Communication (Supported by the CPU-03 and CPU-04) | -                                                | -                                         | V                       | -                       | V                    | -                                  |
| Chapter 7 Easy Programming (Supported by the CPU-03 and CPU-04)                | -                                                | -                                         | V                       | -                       | V                    | -                                  |
| Chapter 8 Maintenance, Inspection, and Troubleshooting                         | _                                                | -                                         | V                       | _                       | <b>V</b>             | V                                  |

For information on how to use motion parameters and motion commands, refer to *Machine Controller MP2000-series Built-in SVB/SVB-01 Motion Module User's Manual* (manual no.: SIEP C880700 33).

#### ■ Engineering Tool Used in this Manual

The displays for MPE720 version 6 are used for descriptions in this manual.

If you are using MP720 version 5, interpret the displays according to MPE720 version 5.

#### ■ Related Manuals

The following table lists the manuals relating to the MP2200. Refer to these manuals as required.

| Manual Name                                                                                    | Manual Number   | Contents                                                                                                                                                       |
|------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine Controller MP2000 Series<br>SVA-01 Motion Module<br>User's Manual                      | SIEP C880700 32 | Describes the functions, specifications, and application methods of the MP2000-series SVA-01 Motion Module.                                                    |
| Machine Controller MP2000 Series<br>Built-in SVB/SVB-01 Motion Module<br>User's Manual         | SIEP C880700 33 | Describes the functions, specifications, and application methods of the MP2000-series Motion Module that is built into the SVA, SVB-01, and SVR Module.        |
| Machine Controller MP2000 Series<br>SVC-01 Motion Module<br>User's Manual                      | SIEP C880700 41 | Describes the functions, specifications, and application methods of the MP2000-series SVC-01 Motion Module.                                                    |
| Machine Controller MP2000 Series<br>MPU-01 Multiple-CPU Module<br>User's Manual                | SIEP C880781 05 | Describes the functions, specifications, and application methods of the MPU-01 Multiple-CPU Module that can be connected to MP2000 Series Machine Controllers. |
| Machine Controller MP2000 Series Pulse Output<br>Motion Module PO-01 User's Manual             | SIEP C880700 28 | Describes the functions, specifications, and application methods of the MP2000-series PO-01 Motion Module.                                                     |
| Machine Controller MP2□00 Communication Module User's Manual                                   | SIEP C880700 04 | Describes the functions, specifications, and application methods of the MP2 100 Communication Modules (217IF, 218IF, 260IF, 261IF).                            |
| Machine Controller MP2300S/MP2310/MP2400 Basic Module Supplement for Ethernet Communications   | SIEP C880700 37 | Describes how to communicate with devices (PLCs, Windows computers, etc.) connected to the MP2300S/MP2310/MP2400 by Ethernet.                                  |
| Machine Controller MP2000 Series 262IF-01 FL-net Communication Module User's Manual            | SIEP C880700 36 | Describes the specifications and communication methods of an FL-net Communication Module that can connect to an MP2000-series Machine Controller.              |
| Machine Controller MP2000 Series 263IF-01<br>EtherNet/IP Communication Module User's<br>Manual | SIEP C800700 39 | Describes the specifications and communication methods of an EtherNet/IP Communication Module that can connect to an MP2000-series Machine Controller.         |
| Machine Controller MP2000 Series<br>EtherCAT Module 264IF-01 User's Manual                     | SIEP C880700 42 | Describes the functions, specifications, and application methods of the 264IF-01, EtherCAT Module for the MP2000 Series.                                       |
| Machine Controller MP2000 Series<br>265IF-01 CompoNet Module User's Manual                     | SIEP C880700 44 | Describes the functions, specifications, and application methods of the 265IF-01, CompoNet Module for the MP2000 Series.                                       |
| Machine Controller MP2000 Series<br>266IF-01 PROFINET Controller Module<br>User's Manual       | SIEP C880700 47 | Describes the functions, specifications, and application methods of the 266IF-01, PROFINET Controller Module for the MP2000-series Machine Controllers.        |
| Machine Controller MP2000 Series<br>266IF-02 PROFINET Device Module<br>User's Manual           | SIEP C880700 48 | Describes the functions, specifications, and application methods of the 266IF-02, PROFINET Device Module for the MP2000-series Machine Controllers.            |
| Machine Controller MP2000 Series<br>267IF-01 CC-Link Master Module<br>User's Manual            | SIEP C880712 01 | Describes the functions, specifications, and application methods of the 267IF-01, CC-Link Master Module for the MP2000-series Machine Controllers.             |
| Machine Controller MP2000 Series I/O Module User's Manual                                      | SIEP C800700 34 | Describes functions, specifications, and application methods of the MP2000-series I/O Modules (LIO-01, LIO-02, LIO-04, LIO-05, LIO-06, and DO-01).             |
| Machine Controller MP2000 Series Analog Input/Analog Output Module AI-01/AO-01 User's Manual   | SIEP C800700 26 | Describes the functions, specifications, and communication methods of the MP2000-series I/O Modules (Al-01 and AO-01).                                         |
| Machine Controller MP2000 Series<br>Counter Module CNTR-01<br>User's Manual                    | SIEP C800700 27 | Describes the functions, specifications, and application methods of the MP2000-series CNTR-01 Counter Module.                                                  |

(cont'd)

| Manual Name                                                                                       | Manual Number   | Contents                                                                                                                       |
|---------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------|
| Machine Controller MP900/MP2000 Series User's Manual, Ladder Programming                          | SIEZ-C887-1.2   | Describes the instructions used in MP900/MP2000 ladder programming.                                                            |
| Machine Controller MP2000 Series User's Manual, Motion Programming                                | SIEP C880700 38 | Describes the motion language used with an MP2000-series Machine Controller.                                                   |
| Engineering Tool for MP2000 Series Machine<br>Controller MPE720 Version 6 User's Manual           | SIEP C880700 30 | Describes the installation and operation of the engineering tool for MP2000-series Machine Controller MPE720 Version 6.        |
| Machine Controller MP2000/MP3000 Series<br>Engineering Tool MPE720 Version 7<br>User's Manual     | SIEP C880761 03 | Describes the installation and operation of the engineering tool for MP2000/MP3000-series Machine Controller MPE720 Version 7. |
| Machine Controller MP900/MP2000 Series<br>MPE720 Software for Programming Device<br>User's Manual | SIEP C880700 05 | Describes how to install and operate the MP900/MP2000-series programming system (MPE720).                                      |
| Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Programming Instructions   | SIEZ-C887-13.1  | Describes the programming instructions of the New Ladder Editor, which assists MP900/MP2000-series design and maintenance.     |
| Machine Controller MP900/MP2000 Series<br>New Ladder Editor User's Manual<br>Operation            | SIEZ-C887-13.2  | Describes the operating methods of the New Ladder Editor, which assists MP900/MP2000-series design and maintenance.            |
| Machine Controller MP900/MP2000 Series User's Manual, MECHATROLINK System                         | SIEZ-C887-5.1   | Describes MECHATROLINK distributed I/O for MP900/MP2000-series Machine Controllers.                                            |
| Machine Controller MP900/MP2000 Series<br>Linear Servomotor Manual                                | SIEP C880700 06 | Describes the connection methods, setting methods, and other information for Linear Servomotors.                               |

#### ■ Terms Used to Describe "Torque"

Although the term "torque" is commonly used when describing rotary servomotors and "force" or "thrust" are used when describing linear servomotors, this manual uses "torque" when describing both (excluding parameters).

#### Copyrights

- MPLINK is a registered trademark of the YASKAWA Electric Corporation.
- Ethernet is a registered trademark of the Xerox Corporation.
- EtherCAT is a registered trademark of Beckhoff Automation GmbH, Germany.
- EtherNet/IP, DeviceNet, and CompoNet are the registered trademark of the ODVA (Open DeviceNet Vendor Association, Inc.).
- CC-Link is a trademark of the Mitsubishi Electric Corporation.
- · Microsoft, Windows, Windows NT, and Internet Explorer are registered trademarks of the Microsoft Corporation.
- Pentium is a registered trademark of the Intel Corporation.
- MECHATROLINK is a trademark of the MECHATROLINK Members Association.
- PROFIBUS is a trademark of the PROFIBUS User Organization.
- PROFINET is a registered trademark of PROFIBUS & PROFINET International.
- Other product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ® mark do not appear with product or company names in this manual.

### Safety Information

The following conventions are used to indicate precautions in this manual. These precautions are provided to ensure the safe operation of the MP2200 and connected devices. Information marked as shown below is important for the safety of the user. Always read this information and heed the precautions that are provided. The conventions are as follows:



Indicates precautions that, if not heeded, could possibly result in loss of life, serious injury, or property damage.



Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or property damage.

If not heeded, even precautions classified under \( \frac{\lambda}{\text{CAUTION}} \) can lead to serious results depending on circumstances.



Indicates prohibited actions. Specific prohibitions are indicated inside  $\bigcirc$  .





For example, indicates prohibition of open flame.



Indicates mandatory actions. Specific actions are indicated inside





For example, indicates mandatory grounding.

## Safety Precautions

The following precautions are for checking products on delivery, storage, transportation, installation, wiring, operation, application, inspection, and disposal. These precautions are important and must be observed.

#### General Precautions

## 

· Before connecting the machine and starting operation, ensure that an emergency stop procedure has been provided and is working correctly.

There is a risk of injury.

· Do not touch anything inside the MP2200.

There is a risk of electrical shock.

Always keep the front cover attached when power is being supplied.

There is a risk of electrical shock.

· Observe all procedures and precautions given in this manual for trial operation.

Operating mistakes while the servomotor and machine are connected may damage the machine or even cause accidents resulting in injury or death.

There is a risk of electrical shock.

Do not remove the front cover, cables, connector, or options while power is being supplied. There is a risk of electrical shock.

Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of electrical shock, operational failure or burning of the MP2200.

Do not attempt to modify the MP2200 in any way.

There is a risk of injury or device damage.

• Do not approach the machine when there is a momentary interruption to the power supply. When power is restored, the MP2200 and the device connected to it may start operation suddenly. Provide safety measures in advance to ensure human safety in the event that operation restarts suddenly. There is a risk of injury.

· Do not allow installation, disassembly, or repairs to be performed by anyone other than specified person-

There is a risk of electrical shock or injury.

#### ■ Storage and Transportation

## **⚠** CAUTION

• Do not store or install the MP2200 in the following locations.

There is a risk of fire, electrical shock, or device damage.

- · Direct sunlight
- Ambient temperature exceeds the storage or operating conditions
- · Ambient humidity exceeds the storage or operating conditions
- · Rapid changes in temperature or locations subject to condensation
- · Corrosive or flammable gas
- · Excessive dust, dirt, salt, or metallic powder
- · Water, oil, or chemicals
- · Vibration or shock
- Do not overload the MP2200 during transportation.

There is a risk of injury or an accident.

- Do not under any means subject the MP2200 to an atmosphere that contains halogen gas (fluorine, chloride, bromine, iodine, etc.) during storage, transportation, or installation.
  - There is a risk of damage or malfunction.
- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or
  plywood, the packing materials must be treated before the product is packaged, and methods other than
  fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more.

If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

#### Installation

## **⚠** CAUTION

 Never use the MP2200 in locations subject to water, corrosive atmospheres, or flammable gas, or near burnable objects.

There is a risk of electrical shock or fire.

- Do not step on the MP2200 or place heavy objects on the MP2200.
   There is a risk of injury.
- Do not block the air exhaust port or allow foreign objects to enter the MP2200. There is a risk of element deterioration inside, an accident, or fire.
- Always mount the MP2200 in the specified orientation.

There is a risk of an accident.

• Do not subject the MP2200 to strong shock.

There is a risk of an accident.

#### ■ Wiring

## ♠ CAUTION

· Check the wiring to be sure it has been performed correctly.

There is a risk of motor run-away, injury, or an accident.

· Always use a power supply of the specified voltage.

There is a risk of burning.

In places with poor power supply conditions, take all steps necessary to ensure that the input power supply
is within the specified voltage range.

There is a risk of device damage.

Install breakers and other safety measure to provide protection against shorts in external wiring.
 There is a risk of fire.

· Provide sufficient shielding when using the MP2200 in the following locations.

There is a risk of device damage.

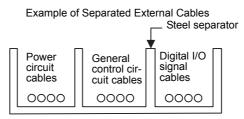
- · Noise, such as from static electricity
- · Strong electromagnetic or magnetic fields
- Radiation
- Near to power lines
- · When connecting the battery, connect the polarity correctly.

There is a risk of battery damage or explosion.

• Do not allow the battery to be replaced by anyone other than qualified personnel who have received safety training.

Improper battery replacement can result in electric shock. It can also cause equipment malfunction, injury to operators, or equipment damage.

· Do not touch the battery terminals when replacing the battery.


There is a risk of electrostatic discharge failure.

#### Selecting, Separating, and Laying External Cables

## **A** CAUTION

- Consider the following items when selecting the I/O signal lines (external cables) to connect the MP2200 to external devices.
  - · Mechanical strength
  - Noise interference
  - · Wiring distance
  - · Signal voltage, etc.
- Separate the I/O signal lines from the power lines both inside and outside the control box to reduce the influence of noise from the power lines.

If the I/O signal lines and power lines are not separated properly, malfunctioning may result.



#### ■ Maintenance and Inspection Precautions

## **A** CAUTION

- Do not attempt to disassemble the MP2200.
  - There is a risk of electrical shock or injury.
- Do not change wiring while power is being supplied. There is a risk of electrical shock or injury.
- When replacing the MP2200, restart operation only after transferring the programs and parameters from the old Module to the new Module.
  - There is a risk of device damage.

#### Disposal Precautions

## **A** CAUTION

- Dispose of the MP2200 as general industrial waste.
- A lithium battery is built into the Controller. After replacing the battery, dispose of the old battery separate from regular waste and in accordance with local regulations.

#### General Precautions

## Observe the following general precautions to ensure safe application.

- The products shown in illustrations in this manual are sometimes shown without covers or protective guards. Always replace the cover or protective guard as specified first, and then operate the products in accordance with the manual.
- · The drawings presented in this manual are typical examples and may not match the product you received.
- If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the
  offices listed on the back of this manual.

#### Warranty

#### (1) Details of Warranty

#### ■ Warranty Period

The warranty period for a product that was purchased (hereinafter called "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

#### ■ Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- 2. Causes not attributable to the delivered product itself
- 3. Modifications or repairs not performed by Yaskawa
- 4. Abuse of the delivered product in a manner in which it was not originally intended
- 5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
- 6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

#### (2) Limitations of Liability

- 1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- 2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- 3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license
- 4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

#### (3) Suitability for Use

- 1. It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- 2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- 3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
  - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
  - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
  - Systems, machines, and equipment that may present a risk to life or property
  - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
  - Other systems that require a similar high degree of safety
- 4. Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- 5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- 6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

#### (4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

## Contents

|   | Using this Manual                                          | Vi   |
|---|------------------------------------------------------------|------|
| 1 | Overview                                                   | 1-1  |
|   | 1.1 MP2200 Features                                        | 1-2  |
|   | 1.2 MP2200 Configuration                                   |      |
|   | 1.2.1 Basic Unit Appearance                                |      |
|   | 1.3 System Configuration                                   |      |
|   | 1.3.1 Example                                              |      |
|   | 1.4 Devices Connectable to MECHATROLINK                    |      |
|   | 1.4.1 Devices Connectable to MECHATROLINK-I/II             | 1-10 |
|   | 1.4.2 Devices Connectable to MECHATROLINK-III              |      |
|   | 1.5 Cables, Accessories and Options, and Software          |      |
|   | 1.5.1 Cables                                               |      |
|   | 1.5.3 Software (Programming Tool)                          |      |
| 2 | Overview of Specifications and Functions                   | 2-1  |
|   | 2.1 Specifications                                         | 2-3  |
|   | 2.1.1 General Specifications                               |      |
|   | 2.1.2 Product Specifications                               |      |
|   | 2.2 Base Unit                                              |      |
|   | 2.2.1 Overview of Functions                                |      |
|   | 2.2.2 LED Indicators                                       |      |
|   | 2.3 CPU-01 Module                                          | 2-9  |
|   | 2.3.1 Overview of Functions                                |      |
|   | 2.3.2 LED Indicators and Switch Settings                   |      |
|   | 2.3.4 SVR Module (Virtual Motion Module)                   |      |
|   | 2.4 CPU-02 Module                                          | 2-15 |
|   | 2.4.1 Overview of Functions                                |      |
|   | 2.4.2 External Appearance, Indicators, and Switch Settings | 2-15 |
|   | 2.4.4 SVR Module (Virtual Motion Module)                   |      |
|   | 2.4.5 CARD Module                                          | 2-19 |
|   | 2.4.6 USB Module                                           | 2-24 |
|   | 2.5 CPU-03 Module                                          |      |
|   | 2.5.1 Overview of Functions                                |      |
|   | 2.5.2 External Appearance, Indicators, and Switch Settings |      |
|   | 2.5.4 SVR Module (Virtual Motion Module)                   |      |
|   | 2.5.5 CARD Module                                          | 2-37 |
|   | 2.5.6 218IFA Module (Ethernet)                             | 2-38 |

|   | 2.5.7 M-EXECUTOR Module (Motion Program Executor)          | 2-57 |
|---|------------------------------------------------------------|------|
|   | 2.6 CPU-04 Module                                          | 2-68 |
|   | 2.6.1 Overview of Functions                                | 2-68 |
|   | 2.6.2 External Appearance, Indicators, and Switch Settings |      |
|   | 2.6.3 Hardware Specifications                              |      |
|   | 2.6.4 SVR Module (Virtual Motion Module)                   |      |
|   | 2.6.5 218IFC Module (Ethernet)                             |      |
|   | 2.6.6 M-EXECUTOR Module (Motion Program Executor)          |      |
|   | 2.7 EXIOIF Module                                          | 2-76 |
|   | 2.7.1 Overview of Functions                                |      |
|   | 2.7.2 External Appearance                                  |      |
|   | 2.7.3 Hardware Specifications                              | 2-76 |
|   | 2.8 Optional Module                                        | 2-77 |
|   | 2.8.1 Optional Module Overview List                        | 2-77 |
|   | 2.9 External Dimensions                                    | 2-79 |
|   | 2.9.1 Basic Unit                                           |      |
|   | 2.9.2 Mounting Procedure for EXIOIF Connector              |      |
|   |                                                            |      |
| 3 | Mounting and Wiring                                        | 3-1  |
|   | 3.1 Mounting MP2200                                        | 3-2  |
|   | 3.1.1 Method                                               |      |
|   | 3.1.2 MP2200 Mount Direction                               |      |
|   | 3.1.3 Installation Clearance                               |      |
|   | 3.1.4 Replacing and Adding Optional Modules                | 3-7  |
|   | 3.2 Connecting Basic Units                                 | 3-10 |
|   | 3.2.1 Connecting Base Units                                |      |
|   | 3.2.2 CPU-02 Module Connections                            |      |
|   | 3.2.3 CPU-03/CPU-04 Module Connections                     | 3-14 |
|   | 3.2.4 EXIOIF Module Connections                            |      |
|   | 3.2.5 System Connection Example                            | 3-20 |
| 1 | System Startup                                             | 1 1  |
| 4 | •                                                          |      |
|   | 4.1 System Startup Overview                                | 4-2  |
|   | 4.2 Preparation                                            | 4-3  |
|   | 4.2.1 Wiring                                               |      |
|   | 4.2.2 Self Configuration                                   |      |
|   | 4.2.3 Test Operation                                       |      |
|   | 4.3 Programming                                            |      |
|   |                                                            |      |
|   | 4.3.1 Creating a Project                                   |      |
|   | 4.3.3 Creating Motion Programs                             |      |
|   | 4.3.4 Registering a Motion Program for Execution           |      |
|   | 4.3.5 Transferring a Program                               |      |
|   | 4.3.6 Program Debugging                                    | 4-16 |
|   | 4.3.7 Saving a Program to Flash Memory                     |      |
|   | 4.3.8 Executing Motions                                    | 4-18 |

| E. Overview of System Operation                                                 | <i>E</i> 1   |
|---------------------------------------------------------------------------------|--------------|
| 5 Overview of System Operation                                                  |              |
| 5.1 Startup Sequence and Basic Operation                                        |              |
| 5.1.1 DIP Switch Settings                                                       |              |
| 5.1.2 Startup Sequence Operation Details                                        |              |
| 5.1.4 LED Indicator Details                                                     |              |
| 5.2 User Programs                                                               | 5-6          |
| 5.2.1 Types and Execution Timing of User Program                                |              |
| 5.2.2 Ladder Program                                                            |              |
| 5.2.3 Motion Programs                                                           |              |
| 5.3 Registers                                                                   |              |
| 5.3.1 Types of Registers                                                        |              |
| 5.3.2 Data Types                                                                |              |
| 5.3.3 How to Use Subscripts i, j                                                |              |
| 5.3.4 Register Designation                                                      |              |
| 5.4 Self-configuration                                                          |              |
| 5.4.1 How to Execute Self-Configuration                                         |              |
| 5.4.2 Definition Information Updated with Self-Configuration                    |              |
| 5.5 Application Precautions                                                     |              |
| 5.5.1 Setting or Changing User Definition Files                                 | 5-55<br>5-56 |
| 5.5.3 Setting and Changing the Scan Time                                        | 5-57         |
| 6 Built-in Ethernet Communication (Supported by the CPU-03 and CPU-0            | 4) 6-1       |
| 6.1 Communication Methods                                                       | 6-2          |
| 6.2 Communication with Other MP Series                                          | 6-3          |
| 6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used) |              |
| 6.2.2 When the CPU-03/CPU-04 Acts as a Slave                                    |              |
| (ladder program which uses a MSG-RCV function)                                  |              |
| 6.2.4 When the CPU-03/CPU-04 Acts as Master                                     | su) 0-34     |
| (ladder program which uses MSG-SND function)                                    | 6-47         |
| 6.3 Communication with Touch Panel                                              | 6-63         |
| 6.3.1 When CPU-03/CPU-04 Acts as Slave (automatic receive function is used)     | 6-63         |
| 6.4 Communication with PLC Manufactured by Mitsubishi Electric Corporation      | on           |
| (MELSEC protocol)                                                               |              |
| 6.4.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used) | 6-73         |
| 6.4.2 When the CPU-03/CPU-04 Acts as Master                                     | 0.00         |
| (I/O message communication function is used)                                    | 6-80         |
| 7 Easy Programming (Supported by the CPU-03 and CPU-04)                         |              |
| 7.1 System Startup Overview                                                     | 7-2          |
| 7.2 Preparation (step 1)                                                        | 7-3          |
| 7.2.1 Wiring                                                                    |              |
| 7.2.2 Self Configuration                                                        |              |
| 1.4.J 1851 Operation                                                            | /-0          |

| -           | ramming (step 2)                                                                         |      |
|-------------|------------------------------------------------------------------------------------------|------|
|             | nitializing the M-EXECUTOR Module                                                        |      |
|             | cuting Motion (step 3)                                                                   |      |
|             | Registering Program Execution                                                            |      |
|             | Starting a Motion Program Using the Drive Control Panel                                  |      |
| 7.5 Starti  | ing Motion Program from an External Signal                                               | 7-17 |
| 7.5.1       | Overview                                                                                 | 7-17 |
|             | Required Equipment                                                                       |      |
| 8 Maintenar | nce, Inspection, and Troubleshooting                                                     | 8-1  |
|             | ection Items                                                                             |      |
| •           | Daily Inspections                                                                        |      |
| 8.1.2 F     | Regular Inspections                                                                      | 8-3  |
| 8.1.3 F     | Replacing the Basic Unit Battery                                                         | 8-4  |
| 8.2 Troub   | bleshooting                                                                              | 8-5  |
|             | Basic Flow of Troubleshooting                                                            |      |
|             | Error Check Flowchart                                                                    |      |
|             | LED Indicators                                                                           |      |
| 8.2.5 N     | Motion Program Alarms                                                                    | 8-28 |
|             | List of Causes for Command Error Completed Status                                        |      |
| 8.2.7 T     | Troubleshooting Motion Errors                                                            | 8-35 |
| Appendices  |                                                                                          |      |
| Appendix    | A System Registers Lists                                                                 | A-2  |
|             | stem Service Registers                                                                   |      |
|             | can Execution Status and Calendar                                                        |      |
|             | ogram Software Numbers and Remaining Program Memory Capacity                             |      |
|             | B SVR Motion Parameter Details                                                           |      |
|             | xed Parameter List                                                                       |      |
|             | etting Parameter List                                                                    |      |
|             | -                                                                                        | 7.12 |
|             | C Simple Connection Function of the Engineering Tool Supported by the CPU-03 and CPU-04) | ۸ 16 |
|             | reparation                                                                               |      |
|             | ocedure                                                                                  |      |
| Annendiy    | D MSG-SND/ MSG-RCV Functions (Ethernet)                                                  | Δ_20 |
|             | essage Send Function (MSG-SND)                                                           |      |
|             | essage Receive Function (MSG-RCV)                                                        |      |
| D.3 Co      | ommunication Buffer Channel                                                              | A-83 |
| Appendix    | E Optional Functions                                                                     | A-85 |
| E.1 Cle     | earing D Registers at Startup                                                            | A-85 |
|             | ecurity                                                                                  |      |
|             | attery Backup for Table Data                                                             |      |
| Appendix    | F Installing MPE720 Version 6                                                            | A-98 |
|             |                                                                                          |      |

Index

**Revision History** 

## Overview

This chapter explains an overview and features of the MP2200 Machine Controller.

| 1.1 MP2200 Features                               | 1-2  |
|---------------------------------------------------|------|
| 1.2 MP2200 Configuration                          | 1-3  |
| 1.2.1 Basic Unit Appearance                       |      |
| 1.3 System Configuration                          | 1-6  |
| 1.3.1 Example                                     |      |
| 1.3.2 System Configuration Precautions            | 1-9  |
| 1.4 Devices Connectable to MECHATROLINK           | 1-10 |
| 1.4.1 Devices Connectable to MECHATROLINK-I/II    | 1-10 |
| 1.4.2 Devices Connectable to MECHATROLINK-III     | 1-12 |
| 1.5 Cables, Accessories and Options, and Software | 1-13 |
| 1.5.1 Cables                                      | 1-13 |
| 1.5.2 Accessories and Options                     | 1-16 |
| 1.5.3 Software (Programming Tool)                 | 1-16 |

#### 1.1 MP2200 Features

The MP2200 is a high-performance, multi-axis Machine Controller for flexible system construction. In addition to I/O and Communication Modules, it has a wide range of Optional Modules, including various Motion Modules that support a variety of motor drives. It provides ideal motion control for a range of machines, from stand-alone machines to FA systems.

#### ■ Flexibility

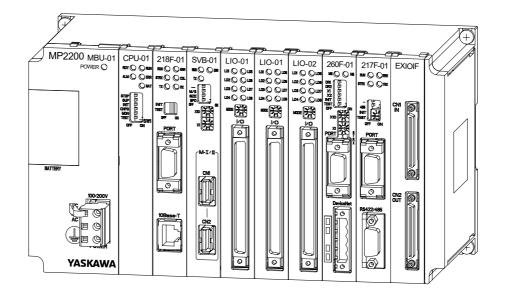
- The following CPU Modules are available: CPU-01, CPU-02, CPU-03, and CPU-04. The best CPU Module can be selected to match your application and machine specifications.
- With an option slot configuration that enables expansion to 35 slots, Optional Modules can be selected freely and the optimum system can be built for your machine.

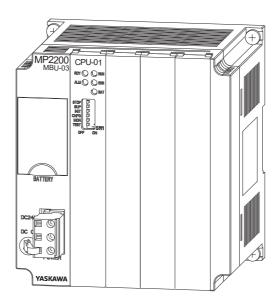
#### High Performance

- Control characteristics have been improved by increasing the CPU and Motion Network (MECHATROLINK-II) speed.
  - Completely synchronous operation can be achieved for up to 256 axes.
  - MECHATROLINK-II baud rate: 2.5 times faster than MP920 (previous model)
  - CPU processing speed: 2.0 to 5.0 times faster than MP920 (previous model)
  - · Larger user memory area
- High-speed (0.5 ms) motion control is now possible.
- MECHATROLINK-II enables position control, speed control, torque control, and phase control, and makes precise synchronous control possible. The control mode can also be changed online, facilitating complicated machine operations. The range of possible motion control applications is increased even further with the Virtual Motion Module (SVR).
- The following open networks are supported when optional Communication Modules are used.
  - Ethernet
  - DeviceNet
  - PROFIBUS
  - FL-net
  - EtherNet/IP

#### Easy to Use

- Machine startup times can be greatly reduced by using the self-configuration function that automatically detects devices connected to MECHATROLINK and sets the required parameters.
- The application program converter can utilize your previous software assets with their accumulated databanks of specific knowledge to improve the system further.


#### Compact


• The mounting area has been reduced to half that of the MP920 (previous model).

## 1.2 MP2200 Configuration

## 1.2.1 Basic Unit Appearance

The appearance of the Basic Units is shown below.





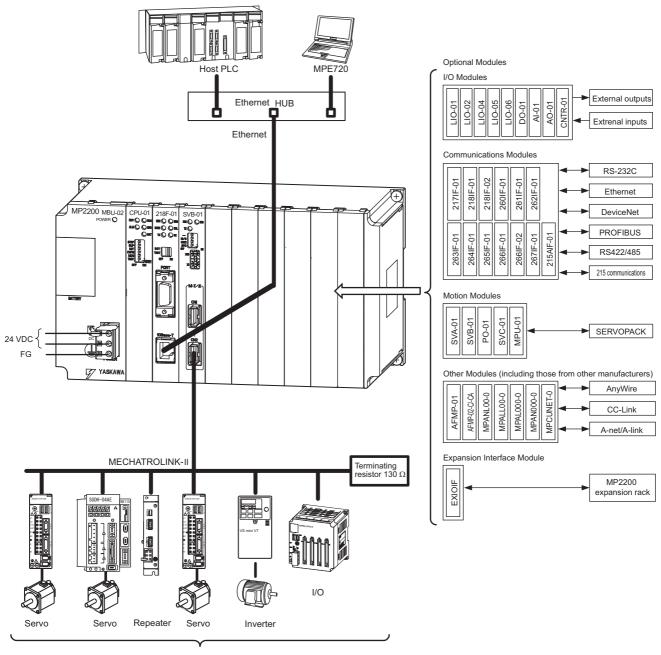
#### 1.2.2 MP2200 Modules

The following table shows the names and specifications of the Basic Unit and Optional Modules.

|               | Group          | Name                          | Description | Model                          | Specifications                                                                |
|---------------|----------------|-------------------------------|-------------|--------------------------------|-------------------------------------------------------------------------------|
|               |                | Base Unit for AC power supply | MBU-01      | JEPMC-BU2200-E<br>JEPMC-BU2200 | 85 to 276 VAC<br>9 slots                                                      |
|               | Base Unit      | Base Unit for DC power supply | MBU-02      | JEPMC-BU2210-E<br>JEPMC-BU2210 | 24 VDC ±20%<br>9 slots                                                        |
|               |                | Base Unit for DC power supply | MBU-03      | JEPMC-BU2220-E                 | 24 VDC ±20%<br>4 slots                                                        |
| Basic<br>Unit |                | CPU Modules                   | CPU-01      | JAPMC-CP2200-E<br>JAPMC-CP2200 | CPU Module for MP2200 system                                                  |
|               |                |                               | CPU-02      | JAPMC-CP2210-E<br>JAPMC-CP2210 | CPU Module for MP2200 system with 1<br>Compact Flash slot and 1 USB port      |
|               | CPU<br>Modules | CI O Wodules                  |             | JAPMC-CP2220-E                 | CPU Module for MP2200 system with 1<br>Compact Flash slot and 1 Ethernet port |
|               |                |                               | CPU-04      | JAPMC-CP2230-E                 | Host CPU Module for MP2200 system with 1 Ethernet port                        |
|               |                | Multiple-CPU Module           | MPU-01      | JAPMC-CP2700-E                 | Optional Module with CPU + SVC-01 functions                                   |

(cont'd)

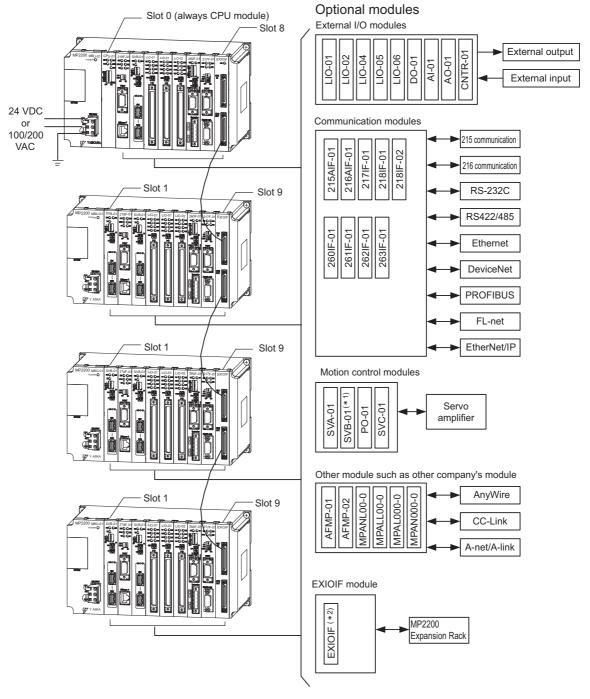
|          | <b>3</b>                         | N                                                 | December 41 - | Ma -1 -1                       | (cont'd)                                                                                                          |
|----------|----------------------------------|---------------------------------------------------|---------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|
| (        | Group<br>I                       | Name                                              | Description   | Model                          | Specifications                                                                                                    |
|          | Motion                           | MECHATROLINK                                      | SVB-01        | JAPMC-MC2310-E<br>JAPMC-MC2310 | MECHATROLINK-I and -II Interface, 16 axes maximum                                                                 |
|          |                                  | Motion Module                                     | SVC-01        | JAPMC-MC2320-E                 | MECHATROLINK-III Interface, 16 axes maximum                                                                       |
|          | Modules                          | Analog Output Motion<br>Module                    | SVA-01        | JAPMC-MC2300-E<br>JAPMC-MC2300 | Analog output, 2 axes maximum                                                                                     |
|          |                                  | Pulse Output Motion<br>Module                     | PO-01         | JAPMC-PL2310-E                 | Pulse output, 4 axes maximum                                                                                      |
|          |                                  | I/O Module                                        | LIO-01        | JAPMC-IO2300-E<br>JAPMC-IO2300 | 16 inputs, 16 outputs (sink mode output) 1 pulse input                                                            |
|          |                                  | I/O Module                                        | LIO-02        | JAPMC-IO2301-E<br>JAPMC-IO2301 | 16 inputs, 16 outputs (source mode output) 1 pulse input                                                          |
|          |                                  | I/O Module                                        | LIO-04        | JAPMC-IO2303-E<br>JAPMC-IO2303 | 32 inputs, 32 outputs (sink mode output)                                                                          |
|          |                                  | I/O Module                                        | LIO-05        | JAPMC-IO2304-E<br>JAPMC-IO2304 | 32 inputs, 32 outputs (source mode output)                                                                        |
|          | I/O Modules                      | I/O Module                                        | LIO-06        | JAPMC-IO2305-E                 | 8 inputs, 8 outputs (sink mode outputs), 1 analog input channel, 1 analog output channel, 1 pulse counter channel |
|          |                                  | Output Module                                     | DO-01         | JAPMC-DO2300-E<br>JAPMC-DO2300 | 64 outputs (sink mode output)                                                                                     |
|          |                                  | Analog Input Module                               | AI-01         | JAPMC-AN2300-E<br>JAPMC-AN2300 | Analog input, 8 channels                                                                                          |
|          |                                  | Analog Output Module                              | AO-01         | JAPMC-AN2310-E                 | Analog input, 4 channels                                                                                          |
|          |                                  | Counter Module                                    | CNTR-01       | JAPMC-PL2300-E                 | Reversible counter, 2 channels                                                                                    |
|          |                                  | Ethernet Communication Module                     | 218IF-01      | JAPMC-CM2300-E<br>JAPMC-CM2300 | RS-232C and Ethernet communication                                                                                |
| Optional |                                  | Ethernet Communication Module                     | 218IF-02      | JAPMC-CM2302-E                 | RS-232C and Ethernet communication (100 Mbps)                                                                     |
| Modules  |                                  | General-purpose Serial<br>Communication<br>Module | 217IF-01      | JAPMC-CM2310-E<br>JAPMC-CM2310 | RS-232C and RS422/485 communication                                                                               |
|          |                                  | DeviceNet<br>Communication<br>Module              | 260IF-01      | JAPMC-CM2320-E<br>JAPMC-CM2320 | RS-232C and DeviceNet communication                                                                               |
|          |                                  | PROFIBUS<br>Communication<br>Module               | 261IF-01      | JAPMC-CM2330-E<br>JAPMC-CM2330 | RS-232C and PROFIBUS communication                                                                                |
|          | Communica-                       | FL-net Communication<br>Module                    | 262IF-01      | JAPMC-CM2303-E                 | FL-net communication                                                                                              |
|          | tion<br>Modules                  | EtherNet/IP Communication Module                  | 263IF-01      | JAPMC-CM2304-E                 | EtherNet/IP communication                                                                                         |
|          |                                  | EtherCAT Communication Module                     | 264IF-01      | JAPMC-CM2305-E                 | EtherCAT communication (slave)                                                                                    |
|          |                                  | CompoNet Communication Module                     | 265IF-01      | ЈАРМС-СМ2390-Е                 | CompoNet communication                                                                                            |
|          |                                  | PROFINET Communi-                                 | 266IF-01      | JAPMC-CM2306-E                 | PROFINET communication (master)                                                                                   |
|          |                                  | cation Module                                     | 266IF-02      | JAPMC-CM2307-E                 | PROFINET communication (slave)                                                                                    |
|          |                                  | CC-Link Communication Module                      | 267IF-01      | ЈАРМС-СМ23А0-Е                 | CC-Link communication (master)                                                                                    |
|          |                                  | CC-Link IE Field<br>Communication<br>Module       | 269IF-01      | JAPMC-CM2308-E                 | CC-Link IE Field communication (slave)                                                                            |
|          |                                  | MPLINK/CP-215<br>Communication<br>Module          | 215AIF-01     | JAPMC-CM2360-E<br>JAPMC-CM2360 | RS-232C, MPLINK, and CP-215 communications                                                                        |
|          | Expansion<br>Interface<br>Module | Connection Interface                              | EXIOIF*       | JAPMC-EX2200-E<br>JAPMC-EX2200 | System bus expansion (configuration: 4 racks max.)                                                                |


\* Use an EXIOIF cable that has a maximum length of 6.0 m. Note: Models that have model numbers ending in "-E" are RoHS compliant.

## 1.3 System Configuration

### 1.3.1 Example

#### (1) Basic Unit Rack (Rack 1) Configuration


The following diagram shows an example of system configuration.



Max. 21 stations including I/O. (Max. 16 stations servo can be included.)

- Note: 1. For the details on the system configuration example, refer to 4.2.1 (1) System Layout Model.
  - 2. Use the connecting cables and connectors recommended by Yaskawa. Always check the device to be used and select the correct cable for the device.
  - 3. Different SERVOPACKs are connected to MECHATROLINK-I (4 Mbps) and MECHATROLINK-II (10 Mbps). Refer to 1.4.1 Devices Connectable to MECHATROLINK-I/II and select the appropriate SERVOPACKs.
  - 4. If devices compatible with MECHATROLINK-I and with MECHATROLINK-II are used together, make the settings for MECHATROLINK-I.
  - 5. The user must supply the 24-VDC power supply.
  - 6. When connecting SERVOPACKs via MECHATROLINK, connect the overtravel, zero point return deceleration limit switch, and external latch signals to the SERVOPACKs. For connection, refer to the SERVOPACK's manual.

#### (2) Maximum Four-Rack Configuration



- \* 1. A distributed I/O function is provided by the SVB-01 Modules through MECHATROLINK communication.
- $^{\star}$  2. Use an EXIOIF cable that has a maximum length of 6.0 m.

## Overvie

#### 1.3.2 System Configuration Precautions

The following precautions must be followed when designing a system using the MP2200.

- Use the connecting cables and connectors recommended by Yaskawa. Yaskawa has a range of cables. Always check the device to be used and select the correct cable for the device.
- Different SERVOPACKs are connected to MECHATROLINK-I and MECHATROLINK-II. Refer to the list and select the appropriate SERVOPACKs.
- The user must supply the 24-VDC power supply.
- The battery backs up M registers, system registers, and trace memory. Always save the program to flash memory whenever it is input or changed.

### 1.4 Devices Connectable to MECHATROLINK

#### 1.4.1 Devices Connectable to MECHATROLINK-I/II

The devices that are compatible with MECHATROLINK-I/II and can be connected to the MP2200 and the SVB-01 Module are listed below.

#### (1) Compatible SERVOPACKs

| Model Number            | Details                                                             | MECHATROLINK-I | MECHATROLINK-II |
|-------------------------|---------------------------------------------------------------------|----------------|-----------------|
| SGD-□□□N<br>SGDB-□□AN   | MECHATROLINK-I-compatible AC SERVOPACK                              | Yes            | No              |
| SGDH-□□□E<br>JUSP-NS100 | Σ-II Series SGDH SERVOPACK NS100 MECHATROLINK-I Application Module  | Yes            | No              |
| SGDH-□□□E<br>JUSP-NS115 | Σ-II Series SGDH SERVOPACK NS115 MECHATROLINK-II Application Module | Yes            | Yes             |
| SGDS-00100              | Σ-III Series SGDS SERVOPACK                                         | Yes            | Yes             |
| SGDX-□□□12□             | SGDX SERVOPACK                                                      | Yes            | Yes             |
| SJDE-□□AN□              | SJDE SERVOPACK                                                      | No             | Yes             |
| SGDV-000100             | SGDV SERVOPACK                                                      | Yes            | Yes             |
| SGD7S-□□□□10□           | SGD7S SERVOPACK                                                     | Yes            | Yes             |

#### (2) Compatible Inverters

| Model Number          | Details                                                                    | MECHATROLINK-I | MECHATROLINK-II |
|-----------------------|----------------------------------------------------------------------------|----------------|-----------------|
| CIMR-G7A□<br>SI-T     | Varispeed G7 Inverter with MECHATROLINK interface                          | Yes            | Yes             |
| CIMR-F7A□<br>SI-T     | Varispeed F7 Inverter with MECHATROLINK interface                          | Yes            | Yes             |
| CIMR-V7AA□<br>SI-T/V7 | VSmini V7 Inverter with MECHATROLINK interface                             | Yes            | Yes             |
| CIMR-A□<br>SI-T3      | High Performance Vector Control Drive A1000<br>MECHATROLINK-II Option Card | Yes            | Yes             |
| CIMR-V□<br>SI-T3/V    | Compact Vector Control Drive V1000<br>MECHATROLINK-II Option Unit          | Yes            | Yes             |

### (3) Compatible Modules

| Model                            | Details                                                                       | MECHATROLINK-I | MECHATROLINK-II |
|----------------------------------|-------------------------------------------------------------------------------|----------------|-----------------|
| JEPMC-IO350                      | 64-point I/O Module<br>24 VDC, 64 inputs, 64 outputs (sink mode<br>outputs)   | Yes            | No              |
| JAMSC-120DDI34330                | DC Input Module<br>12/24 VDC, 16 inputs                                       | Yes            | No              |
| JAMSC-120DDO34340                | DC Output Module<br>12/24 VDC, 16 outputs                                     | Yes            | No              |
| JAMSC-120DAI53330                | AC Input Module<br>100 VAC, 8 inputs                                          | Yes            | No              |
| JAMSC-120DAI73330                | AC Input Module<br>200 VAC, 8 inputs                                          | Yes            | No              |
| JAMSC-120DAO83330                | AC Output Module<br>100/200 VAC, 8 outputs                                    | Yes            | No              |
| JAMSC-120DRA83030                | Relay Module Wide voltage range relay contacts, 8 contact outputs             | Yes            | No              |
| JAMSC-120AVI02030                | A/D Module Analog inputs, -10 to 10 V, 4 channels                             | Yes            | No              |
| JAMSC-120AVO01030                | D/A Module Analog outputs, -10 to 10 V, 2 channels                            | Yes            | No              |
| JAMSC-120EHC21140                | Counter Module<br>Reversible counter, 2 channels                              | Yes            | No              |
| JAMSC-120MMB20230                | Pulse Output Module<br>Pulse output, 2 channels                               | Yes            | No              |
| JAMSC-IO2900-E                   | DC Input Module<br>12/24 VDC, 16 inputs                                       | Yes            | Yes             |
| JAMSC-IO2910-E                   | DC Output Module<br>12/24 VDC, 16 outputs                                     | Yes            | Yes             |
| JAMSC-IO2920-E                   | 8-point I/O Module 24 VDC, 8 inputs, 8 outputs                                | Yes            | Yes             |
| JAPMC-IO2950-E                   | Relay Module Wide voltage range relay contacts, 8 contact outputs             | Yes            | Yes             |
| AB023-M1                         | MECHATROLINK Bit decentralization I/O terminal (by Anywire Corporation)       | Yes            | Yes             |
| JEPMC-IO2310<br>JEPMC-IO2310-E   | 64-point I/O Module<br>24 VDC, 64 inputs, 64 outputs (sink mode<br>outputs)   | Yes            | Yes             |
| JEPMC-IO2330<br>JEPMC-IO2330-E   | 64-point I/O Module<br>24 VDC, 64 inputs, 64 outputs (source<br>mode outputs) | Yes            | Yes             |
| JEPMC-PL2900<br>JEPMC-PL2900-E   | Counter Module Reversible counters, 2 channels                                | Yes            | Yes             |
| JEPMC-PL2910<br>JEPMC-PL2910-E   | Pulse Output Module<br>Pulse output, 2 channels                               | Yes            | Yes             |
| JEPMC-AN2900<br>JEPMC-AN2900-E   | A/D Module<br>Analog inputs, –10 to 10 V, 4 channels                          | Yes            | Yes             |
| JEPMC-AN2910<br>JEPMC-AN2910-E   | D/A Module Analog outputs, -10 to 10 V, 2 channels                            | Yes            | Yes             |
| JAPMC-MC2310<br>JAPMC-MC2310-E   | SVB-01 Motion Module Yes                                                      |                | Yes             |
| JEPMC-REP2000<br>JEPMC-REP2000-E | MECHATROLINK-II Repeater                                                      | peater No Ye   |                 |
| JEVSA-YV250<br>JEVSA-YV250-E     | MYVIS (image processing device)                                               | Yes            | Yes             |
| JEVSA-YV260□□-E                  | MYVIS YV260 Machine Vision System                                             | Yes            | Yes             |
| JEPMC-MC400                      | MP940 Motion Controller                                                       | Yes            | No              |

#### 1.4.2 Devices Connectable to MECHATROLINK-III

The devices that are compatible with MECHATROLINK-III and can be connected to the SVC-01 Module are listed below.

### (1) Compatible SERVOPACKs

| Model Number  | Details                                                          |
|---------------|------------------------------------------------------------------|
| SGDV-000200   | SGDV SERVOPACKs with MECHATROLINK-III Communications References  |
| SGD7S-□□□□20□ | SGD7S SERVOPACKs with MECHATROLINK-III Communications References |
| SGD7W-□□□□20□ | SGD7W SERVOPACKs with MECHATROLINK-III Communications References |

### (2) Compatible Inverters

| Model Number        | Details                                                                  |
|---------------------|--------------------------------------------------------------------------|
| CIMR-A□<br>SI-ET3   | High Performance Vector Control Drive A1000 MECHATROLINK-III Option Card |
| CIMR-V□<br>SI-ET3/V | Compact Vector Control Drive V1000 MECHATROLINK-III Option Unit          |

#### (3) Compatible Modules

| Model Number    | Details                                              |
|-----------------|------------------------------------------------------|
| JAPMC-MC2320-E  | SVC-01 Motion Module                                 |
| JEPMC-MTD2310-E | 64-point I/O Module<br>24 VDC, 64 inputs, 64 outputs |
| JEPMC-MTA2900-E | Analog Input Module<br>Analog input, 8 channels      |
| JEPMC-MTA2910-E | Analog Output Module<br>Analog output, 4 channels    |
| JEPMC-MTP2900-E | Pulse Input Module<br>Pulse input, 2 channels        |
| JEPMC-MTP2910-E | Pulse Output Module<br>Pulse output, 4 channels      |

## 1.5 Cables, Accessories and Options, and Software

#### 1.5.1 Cables

The following table shows the cables that can be connected to the MP2200 Basic Module and Optional Modules.

| Module           | Connector<br>Name          | Cable Name                                                                      | Model                                                                                                                                                       | Specifications                                                                          |                                                                     |
|------------------|----------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| CPU-02           | USB                        | USB cable                                                                       | Use a commercially available                                                                                                                                | Used between CPU-02 and external device with mini-B connector                           |                                                                     |
| CPU-03<br>CPU-04 | Ethernet                   | Ethernet communication cable                                                    | cable.                                                                                                                                                      | Cross cable used between CPU-03/CPU-04 and external device (category 5)                 |                                                                     |
|                  |                            | MECHATROLINK-I Cables                                                           | JEPMC-W6010-□□<br>with a MECHATROLINK<br>connector and loose wires                                                                                          | Used between the devices listed below SVB-01 and SGD-□□□N SVB-01 and SGDB-□□AN          |                                                                     |
|                  |                            | MECHATROLINK-I Terminator (terminating resistance)                              | JEPMC-W6020                                                                                                                                                 | -                                                                                       |                                                                     |
| SVB-01           | M-I/II                     | MECHATROLINK-II                                                                 | JEPMC-W6002-□□<br>with MECHATROLINK connectors on both ends                                                                                                 | Used between the devices listed below                                                   |                                                                     |
|                  |                            | Cables                                                                          | JEPMC-W6003-□□<br>with MECHATROLINK con-<br>nectors on both ends with fer-<br>rite core                                                                     | SVB-01 and MECHATROLINK-II compatible device                                            |                                                                     |
|                  |                            | MECHATROLINK-II Terminator (terminating resistance)                             | JEPMC-W6022                                                                                                                                                 | -                                                                                       |                                                                     |
|                  |                            |                                                                                 | JEPMC-W6012□□-E with MECHATROLINK-III connectors on both ends with ferrite core                                                                             |                                                                                         |                                                                     |
| SVC-01 M-III     | MECHATROLINK-III<br>Cables | JEPMC-W6013□□-E with MECHATROLINK-III connectors on both ends with ferrite core | Used between the following devices:<br>SVC-01 and MECHATROLINK-III<br>compatible device                                                                     |                                                                                         |                                                                     |
|                  |                            |                                                                                 |                                                                                                                                                             |                                                                                         | JEPMC-W6014□□-E<br>with loose wires on one end<br>with ferrite core |
| SVA-01           | CH1<br>CH2                 | Cable for Analog Reference<br>Input SERVOPACK                                   | JEPMC-W2040-□□                                                                                                                                              | Used between the devices listed below<br>SVA-01 and Analog Reference Input<br>SERVOPACK |                                                                     |
| MPU-01           | M-III                      | MECHATROLINK-III cable                                                          | JEPMC-W6012-□□-E  • with MECHATROLINK- III connectors on both ends  JEPMC-W6013-□□-E  • with MECHATROLINK- III connectors on both ends  • with ferrite core | Used between the devices listed below MPU-01 and MECHATROLINK-III compatible device     |                                                                     |
|                  |                            |                                                                                 | JEPMC-W6014-□□-E • with a MECHATROLINK- III connector and loose wires                                                                                       | -                                                                                       |                                                                     |
| LIO-01<br>LIO-02 | I/O                        | External I/O Cable                                                              | JEPMC-W2061-□□<br>with loose wires on one end                                                                                                               | Used between LIO-01/02 and external I/O device                                          |                                                                     |
| LIO-04<br>LIO-05 | CN1, CN2                   | External I/O Cable                                                              | JEPMC-W6060-□□<br>with loose wires on one end                                                                                                               | Used between LIO-04/05 and external I/O device                                          |                                                                     |
| LIO-06           | CN1                        | External I/O Cable                                                              | JEPMC-W2064-□□<br>with loose wires on one end                                                                                                               | Used between LIO-06 and external I/O device                                             |                                                                     |
| DO-01            | CN1, CN2                   | External Output Cable                                                           | JEPMC-W6060-□□ with loose wires on one end                                                                                                                  | Used between DO-01 and external input device                                            |                                                                     |
| AI-01            | CN1, CN2                   | Analog Input Cable                                                              | JEPMC-W6080-□□<br>with loose wires on one end                                                                                                               | Used between AI-01 and analog external input device                                     |                                                                     |

### 1.5.1 Cables

(cont'd)

| Module        | Connector<br>Name | Cable Name                        | Model                                         | Specifications                                                                                                                                                                                                                     |
|---------------|-------------------|-----------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AO-01         | CN1               | Analog Output Cable               | JEPMC-W6090-□□<br>with loose wires on one end | Used between AO-01 and analog external output device                                                                                                                                                                               |
| CNTR-01       | CN1               | Cable for CNTR-01 Module          | JEPMC-W2063E-□□ with loose wires on one end   | Used between CNTR-01 and external I/O device                                                                                                                                                                                       |
| PO-01         | CN1, CN2          | Cable for PO-01 Module            | JEPMC-W6060-□□ with loose wires on one end    | PO-01 and external I/O device                                                                                                                                                                                                      |
|               | 10Base-T          | Ethernet communication cable      | Use a commercially available cable.           | Cross cable (category 3 min.)                                                                                                                                                                                                      |
| 218IF-01      | PORT              | RS-232C                           | JEPMC-W5310-□□                                | RS-232C port and 25-pin male D-sub connector                                                                                                                                                                                       |
|               |                   | communication cable               | JEPMC-W5311-□□                                | RS-232C port and DOS/V                                                                                                                                                                                                             |
|               | Ethernet          | Ethernet communication cable      | Use a commercially available cable.           | Cross cable or straight cable (category 5)                                                                                                                                                                                         |
| 218IF-02      | PORT              | RS-232C                           | JEPMC-W5310-□□                                | RS-232C port and 25-pin male D-sub connector                                                                                                                                                                                       |
|               |                   | communication cable               | JEPMC-W5311-□□                                | RS-232C port and DOS/V                                                                                                                                                                                                             |
| 217IF-01      | RS422/485         | RS-422/RS-485 communication cable | Use a commercially available cable.           | Module-side connector:     1010214-52A2JL     (manufactured by 3M Japan Limited)     Cable-end connector:     10114-3000PE     (manufactured by 3M Japan Limited)     Shell: 10314-52A0-008     (manufactured by 3M Japan Limited) |
|               | PORT              | RS-232C communication cable       | JEPMC-W5310-□□                                | RS-232C port and 25-pin male D-sub connector                                                                                                                                                                                       |
|               |                   | communication cable               | JEPMC-W5311-□□                                | RS-232C port and DOS/V                                                                                                                                                                                                             |
| 26015 04      | DeviceNet         | DeviceNet communication cable     | Use a commercially available cable.           | Module-side connector:<br>MSTB2.5/5-GF-5.08AU<br>(manufactured by Phoenix Contact)                                                                                                                                                 |
| 260IF-01 PORT |                   | RS-232C                           | JEPMC-W5310-□□                                | RS-232C port and 25-pin male D-sub connector                                                                                                                                                                                       |
|               |                   | communication cable               | JEPMC-W5311-□□                                | RS-232C port and DOS/V                                                                                                                                                                                                             |
| 26415 04      | PROFIBUS          | PROFIBUS communication cable      | Use a commercially available cable.           | Module-side connector:<br>17LE-13090-27(D33C)<br>(manufactured by DDK Ltd.)                                                                                                                                                        |
| 261IF-01      | PORT              | RS-232C communication cable       | JEPMC-W5310-□□                                | RS-232C port and 25-pin male D-sub connector                                                                                                                                                                                       |
|               | <u></u>           |                                   | JEPMC-W5311-□□                                | RS-232C port and DOS/V                                                                                                                                                                                                             |

#### (cont'd)

| Module    | Connector<br>Name                               | Cable Name                                      | Model                                                                                             | Specifications                                                     |  |
|-----------|-------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
| 262IF-01  | FL-net                                          | E4                                              |                                                                                                   |                                                                    |  |
| 263IF-01  | EtherNet/IP                                     | Ethernet communication cable                    |                                                                                                   | Cross cable or straight cable (category 5)                         |  |
| 264IF-01  | EtherCAT                                        | Cubic                                           |                                                                                                   |                                                                    |  |
| 265IF-01  | CompoNet                                        | CompoNet communication cable                    | Use a commercially available                                                                      | For details, refer to the "Construction Manual" issued by ODVA.    |  |
| 266IF-01  | PROFINET                                        | Ethernet communication                          | cable.                                                                                            | Cross cable or straight cable (category 5)                         |  |
| 266IF-02  | PROFINE                                         | cable                                           |                                                                                                   | Cross cable of straight cable (category 3)                         |  |
| 267IF-01  | CC-Link                                         | CC-Link communication cable                     |                                                                                                   | CC-Link dedicated cables (three-core shielded twisted-pair cables) |  |
| 269IF-01  | CC-Link<br>IE Field                             | Ethernet communication cable                    |                                                                                                   | Cross cable or straight cable (category 5)                         |  |
|           |                                                 | MDI INIV agrammination                          | JEPMC-W6002-□□ • with MECHATROLINK connectors on both ends                                        | Used between 215AI-01 MPLINK and                                   |  |
| 215AIF-01 | MPLINK communication cable (MECHATROLINK cable) |                                                 | JEPMC-W6003-□□ • with MECHATROLINK connectors on both ends • with ferrite core                    | MPLINK compatible device                                           |  |
|           |                                                 |                                                 | JEPMC-W6022                                                                                       | Terminator                                                         |  |
|           | CP-215                                          | CP-215 communication cable                      | Provided by the customers.  Refer to the communication module manual (Manual No.: SIEPC88070004). |                                                                    |  |
| EXIOIF    | CH1 IN,<br>CH2 OUT                              | EXIOIF Cable JEPMC-W2091-□□ Between EXIOIF Modu |                                                                                                   | Between EXIOIF Modules                                             |  |

## 1.5.2 Accessories and Options

| Name                    | Accessory/Optional | Model           | Remarks                                                                                 |
|-------------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------|
| Battery                 | Accessory          | JZSP-BA01       | ER3VC + exclusive use connector (BA000517)                                              |
| Power Supply Connector  | Accessory          | 721-203/026-304 | MBU-01 Unit Cable side (manufactured by WAGO Company of Japan, Ltd, black)              |
| Tower Supply Connector  | Accessory          | 721-203/026-000 | MBU-02/MBU-03 Unit Cable side<br>(manufactured by WAGO Company of<br>Japan, Ltd, white) |
| DIN Rail Mounting Parts | Optional           | JEPMC-OP300     | 1 pair                                                                                  |
| Cover for Option Slot   | Optional           | JEPMC-OP2300    | Front cover for the unused slot.                                                        |

## 1.5.3 Software (Programming Tool)

The MPE720, programming tool for MP2200, is available.

| Name Model          |                  | Supported versions    |                       |                       |                       | Remarks |
|---------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------|
| Ivairie             | iviodei          | CPU-01                | CPU-02                | CPU-03                | CPU-04                | Remarks |
| MPE720              | CPMC-<br>MPE720  | Version 5.10 or later | Version 5.31 or later | Version 5.50 or later | Version 5.52 or later | CD-ROM  |
| MPE720<br>Version 6 | CPMC-<br>MPE770D | All versions          | All versions          | Version 6.20 or later | Version 6.22 or later | DVD-ROM |
| MPE720<br>Version 7 | CPMC-<br>MPE780D | All versions          | All versions          | All versions          | All versions          | DVD-ROM |

## Overview of Specifications and Functions

This chapter explains the specifications and functions for the Basic Unit and Optional Modules of the MP2200.

| 2.1 Specifications                                         | 2-3  |
|------------------------------------------------------------|------|
| 2.1.1 General Specifications                               |      |
| 2.1.2 Product Specifications                               |      |
| 2.1.3 Function Lists                                       | 2-5  |
| 2.2 Base Unit                                              |      |
| 2.2.1 Overview of Functions                                |      |
| 2.2.2 LED Indicators                                       | 2-6  |
| 2.2.3 Hardware Specifications                              | 2-8  |
| 2.3 CPU-01 Module                                          | 2-9  |
| 2.3.1 Overview of Functions                                | 2-9  |
| 2.3.2 LED Indicators and Switch Settings                   | 2-9  |
| 2.3.3 Hardware Specifications                              | 2-11 |
| 2.3.4 SVR Module (Virtual Motion Module)                   | 2-12 |
| 2.4 CPU-02 Module                                          | 2-15 |
| 2.4.1 Overview of Functions                                | 2-15 |
| 2.4.2 External Appearance, Indicators, and Switch Settings | 2-15 |
| 2.4.3 Hardware Specifications                              |      |
| 2.4.4 SVR Module (Virtual Motion Module)                   | 2-18 |
| 2.4.5 CARD Module                                          | 2-19 |
| 2.4.6 USB Module                                           | 2-24 |
| 2.5 CPU-03 Module                                          | 2-33 |
| 2.5.1 Overview of Functions                                | 2-33 |
| 2.5.2 External Appearance, Indicators, and Switch Settings | 2-34 |
| 2.5.3 Hardware Specifications                              |      |
| 2.5.4 SVR Module (Virtual Motion Module)                   | 2-37 |
| 2.5.5 CARD Module                                          |      |
| 2.5.6 218IFA Module (Ethernet)                             | 2-38 |
| 2.5.7 M-EXECUTOR Module (Motion Program Executor)          |      |
|                                                            |      |

| 2.6 CPU-04 Module                                          | 2-68 |
|------------------------------------------------------------|------|
| 2.6.1 Overview of Functions                                | 2-68 |
| 2.6.2 External Appearance, Indicators, and Switch Settings |      |
| 2.6.3 Hardware Specifications                              |      |
| 2.6.4 SVR Module (Virtual Motion Module)                   | 2-71 |
| 2.6.5 218IFC Module (Ethernet)                             | 2-72 |
| 2.6.6 M-EXECUTOR Module (Motion Program Executor)          | 2-75 |
| 2.7 EXIOIF Module                                          | 2-76 |
| 2.7.1 Overview of Functions                                | 2-76 |
| 2.7.2 External Appearance                                  | 2-76 |
| 2.7.3 Hardware Specifications                              | 2-76 |
| 2.8 Optional Module                                        | 2-77 |
| 2.8.1 Optional Module Overview List                        | 2-77 |
| 2.9 External Dimensions                                    | 2-79 |
| 2.9.1 Basic Unit                                           | 2-79 |
| 2.9.2 Mounting Procedure for EXIOIF Connector              | 2-81 |

## 2.1 Specifications

## 2.1.1 General Specifications

| Item                                  |                               | Specifications                                                                                                                                                                                                    |
|---------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Ambient Operating Temperature | 0°C to 55°C, but 0 to 50°C for the CPU-03                                                                                                                                                                         |
|                                       | Ambient Storage Temperature   | -25°C to 85°C                                                                                                                                                                                                     |
| Environmental Conditions              | Ambient Operating Humidity    | 30% to 95% (with no condensation)                                                                                                                                                                                 |
|                                       | Ambient Storage Humidity      | 5% to 95% (with no condensation)                                                                                                                                                                                  |
|                                       | Pollution Level               | Pollution level 2 (conforming to JIS B 3502)                                                                                                                                                                      |
|                                       | Corrosive Gas                 | There must be no combustible or corrosive gas.                                                                                                                                                                    |
|                                       | Operating<br>Altitude         | 2,000 m above sea level or lower                                                                                                                                                                                  |
| Mechanical<br>Operating               | Vibration<br>Resistance       | Conforming to JIS B 3502:  • 10 to 57 Hz with single-amplitude of 0.075 mm  • 57 to 150 Hz with fixed acceleration of 9.8 m/s <sup>2</sup> • 10 sweeps each in X, Y, and Z directions (sweep time: 1 octave/min.) |
| Conditions                            | Shock Resistance              | Conforming to JIS B 3502: Peak acceleration of 147 m/s <sup>2</sup> (15 G) twice for 11 ms each in the X, Y, and Z directions                                                                                     |
| Electrical<br>Operating<br>Conditions | Noise Resistance              | Conforming to EN 61000-6-2, EN 61000-6-4, EN 55011 (Group 1, Class A)                                                                                                                                             |
| Installation<br>Requirements          | Ground                        | Ground to $100~\Omega$ max.                                                                                                                                                                                       |
| Requirements                          | Cooling Method                | Natural cooling                                                                                                                                                                                                   |

## 2.1.2 Product Specifications

The following table shows the product specifications of the MP2200.

|                                 | Items                                      | Specifications                                    |                                           |                                                                                                      |                                                                                                          |
|---------------------------------|--------------------------------------------|---------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                 |                                            | CPU-01                                            | CPU-02                                    | CPU-03                                                                                               | CPU-04                                                                                                   |
| External Dimen-                 | Long rack                                  | 240 mm × 130 mm × 108 mm                          |                                           |                                                                                                      |                                                                                                          |
| sions                           | Short rack                                 | 120 mm × 130 mm × 108 mm                          |                                           |                                                                                                      |                                                                                                          |
| Maximum Number of Option Slots  |                                            | 35 slots                                          |                                           |                                                                                                      |                                                                                                          |
| Number of<br>Control Axes       | Number of Basic<br>Control Axes            | _                                                 |                                           |                                                                                                      |                                                                                                          |
|                                 | Maximum Number of Control Axes             | 256 axes (when sixteen SVB-01 Modules are added.) |                                           |                                                                                                      |                                                                                                          |
|                                 | Number of Virtual Axis<br>Controlling Axes | 16 axes                                           |                                           |                                                                                                      |                                                                                                          |
| CPU Processing Speed Comparison |                                            | 1.0                                               | 1.0                                       | 1.6                                                                                                  | 2.5                                                                                                      |
| Scan Interval<br>Setting        | High-speed Scan                            | 0.5 ms to 32 ms (per 0.5 ms)                      |                                           |                                                                                                      |                                                                                                          |
|                                 | Low-speed Scan                             | 2.0 ms to 300 ms (per 0.5 ms)                     |                                           |                                                                                                      |                                                                                                          |
| Communication I/F               |                                            | Not provided.                                     | USB: USB 2.0 (functions), 12 Mbps, 1 port | Ethernet: 100Base-<br>TX, 1 port<br>Maximum connec-<br>tions: 4 + 2 (I/O mes-<br>sage communication) | Ethernet: 100Base-<br>TX, 1 port<br>Maximum connec-<br>tions: 20 + 2 (I/O<br>message communica-<br>tion) |
| External Memory I/F             |                                            | Not provided.                                     | One Compa                                 | act Flash slot Not provided                                                                          |                                                                                                          |
| Memory Capacity                 | SDRAM/DDR                                  | 32 MB                                             | 32 MB                                     | 64 MB                                                                                                |                                                                                                          |
|                                 | SRAM (battery backup)                      | 512 KB                                            | 2 MB*1                                    | 4 MB*2                                                                                               |                                                                                                          |
|                                 | FLASH                                      | 12 MB                                             | 16 MB                                     | 16 MB                                                                                                |                                                                                                          |
|                                 | Program Capacity                           | 7.5 MB                                            | 11.5 MB                                   | 11.5 MB                                                                                              |                                                                                                          |
| Programming<br>Language         | Ladder Language                            | V                                                 | √                                         | √                                                                                                    |                                                                                                          |
|                                 | Motion Language                            | V                                                 | V                                         | V                                                                                                    |                                                                                                          |
|                                 | Sequence Program                           | _                                                 | _                                         | V                                                                                                    |                                                                                                          |
|                                 | C Language                                 | $\sqrt{}$                                         | V                                         | √                                                                                                    |                                                                                                          |

<sup>\* 1. 1</sup> MB max. with battery backup for table data.

Note: Symbols in the table mean as follows.

√: Available, –: Not available

<sup>\* 2. 3</sup> MB max. with battery backup for table data.

# 2.1.3 Function Lists

# (1) PLC Function Specifications

The following table shows the PLC functions of the MP2200.

| Item                 | Specifications                                                                                 |                                                               |  |  |
|----------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Control Method       | Sequence: High-speed and low-speed scan methods                                                |                                                               |  |  |
| Programming          | Ladder diagram: Relay circuit                                                                  |                                                               |  |  |
| Language             | Text-type language: Numeric operations, logic operations, etc.                                 |                                                               |  |  |
|                      | Two scan levels: High-speed scan and                                                           | =                                                             |  |  |
| Scan                 | 2 1                                                                                            | 5 to 32 ms                                                    |  |  |
|                      | Low-speed scan time setting: 2 t                                                               | o 300 ms                                                      |  |  |
|                      | Startup drawings (DWG.A):                                                                      | 64 drawings max. Up to three hierarchical drawing             |  |  |
|                      |                                                                                                | levels                                                        |  |  |
|                      | Interrupt processing drawings                                                                  | 64 drawings max. Up to three hierarchical drawing             |  |  |
|                      | (DWG.I):<br>High-speed scan process drawings                                                   | levels 200 drawings max. Up to three hierarchical drawing     |  |  |
| User Drawings,       | (DWG.H):                                                                                       | levels                                                        |  |  |
| Functions and Motion | Low-speed scan process drawings                                                                | 500 drawings max. Up to three hierarchical drawing            |  |  |
| Programs             | (DWGL):                                                                                        | levels                                                        |  |  |
|                      | Number of steps:                                                                               | Up to 1,000 steps per drawing                                 |  |  |
|                      | User functions:                                                                                | Up to 500 functions                                           |  |  |
|                      | Motion programs and sequence pro-                                                              |                                                               |  |  |
|                      | grams <sup>*1</sup> :                                                                          | A total of up to 256                                          |  |  |
|                      | Revision history of drawings and moti                                                          |                                                               |  |  |
|                      | Security function for drawings and mo                                                          |                                                               |  |  |
|                      | Common data (M) registers:                                                                     | 64 kwords                                                     |  |  |
|                      | System (S) registers: Drawing local (D) registers:                                             | 8 kwords                                                      |  |  |
| Data Memory          | Drawing constant (#) registers:                                                                | Up to 16 kwords per drawing<br>Up to 16 kwords per drawing    |  |  |
| Data Memory          | Input (I) registers:                                                                           | 32 kwords                                                     |  |  |
|                      | Output (O) registers:                                                                          | 32 kwords                                                     |  |  |
|                      | Constant (C) registers:                                                                        | 16 kwords                                                     |  |  |
| Trace Memory         | Data trace: 128 kwords (32 kwords × 4 groups), 16 points defined                               |                                                               |  |  |
|                      | Program memory: Flash memory:                                                                  | Data other than battery backup data such as definition files, |  |  |
| Memory Backup        | ladder programs, motion programs.                                                              |                                                               |  |  |
|                      | Data memory: Battery backup: M registers, S registers, alarm history, trace data, table data*2 |                                                               |  |  |
|                      | Bit (relay): ON/OFF                                                                            |                                                               |  |  |
| Data Types           | Integer: -32768 to +32767                                                                      |                                                               |  |  |
| 2444 . ) p 00        | Double-length integer: -2147483648 to +2147483647                                              |                                                               |  |  |
|                      | · · · · · · · · · · · · · · · · · · ·                                                          | E-38 to 3.402E+38)                                            |  |  |
| Register Designation |                                                                                                | signation of register number                                  |  |  |
| Method               | Symbolic designation: Up to 8 a With automatic numbering or symbol                             | lphanumeric characters (up to 200 symbols per drawing)        |  |  |
|                      | <u> </u>                                                                                       | 14 instructions                                               |  |  |
|                      | Program control instructions: Direct I/O instructions:                                         | 2 instructions                                                |  |  |
|                      | Relay circuit instructions:                                                                    | 14 instructions (including set and reset coils)               |  |  |
|                      | Logic operation instructions:                                                                  | 3 instructions                                                |  |  |
|                      | Numeric operation instructions:                                                                | 16 instructions                                               |  |  |
| Instructions         | Numeric conversion instructions:                                                               | 9 instructions                                                |  |  |
|                      | Numeric comparison instructions:                                                               | 7 instructions                                                |  |  |
|                      | Data manipulation instructions:                                                                | 14 instructions                                               |  |  |
|                      | Basic function instructions: Table data manipulation instructions:                             | 10 instructions 11 instructions                               |  |  |
|                      | DDC instructions:                                                                              | 13 instructions                                               |  |  |
|                      | System functions:                                                                              | 9 instructions                                                |  |  |
|                      | Clearing D registers at startup                                                                |                                                               |  |  |
| Optional Functions*3 | Security Security                                                                              |                                                               |  |  |
|                      | Battery backup for table data*2                                                                |                                                               |  |  |
|                      | . J                                                                                            |                                                               |  |  |

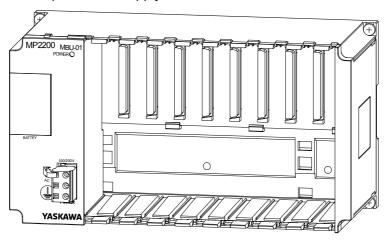
<sup>\* 1.</sup> Sequence programming cannot be used with the CPU-01 or CPU-02.

<sup>\* 2.</sup> Table data cannot be backed up with a battery with the CPU-01.

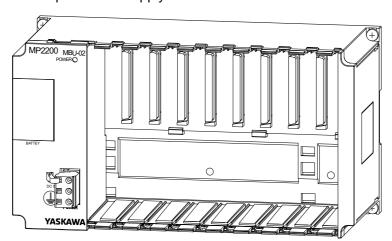
<sup>\* 3.</sup> For details on optional functions, refer to Appendix E Optional Functions.

# 2.2 Base Unit

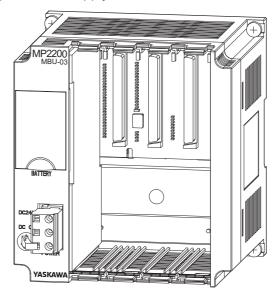
## 2.2.1 Overview of Functions


The Base Unit combines the power supply, mounting base board, and frame in one unit. Both AC-input and DC-input power supply Base Units are available. The Base Unit provides either four option slots (short rack) or nine option slots. Any Optional Modules can be mounted in the option slots to create the perfect system for the machinery.

## 2.2.2 LED Indicators


## (1) External Appearance

The following figure shows the external appearance of the Base Unit.


## [ a ] Base Unit with AC-input Power Supply and Nine Slots



## [b] Base Unit with DC-input Power Supply and Nine Slots



# [c] Base Unit with DC-input Power Supply Short Rack



# (2) Indicator

The LED indicator that displays the status of the power supply is detailed in the following table. The short-rack Base Unit does not have a POWER indicator.

| Indicator | Indicator<br>Name | Color | Significance when Lit                   |
|-----------|-------------------|-------|-----------------------------------------|
| POWER     | POWER             | Green | The power supply is operating normally. |

# 2.2.3 Hardware Specifications

The following table shows the hardware specifications of the Base Units.

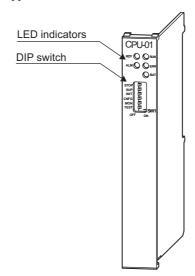
|                    | Item                                                                                       | Specifications                                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                     |  |
|--------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name               |                                                                                            | Base Unit with AC-input power                                                                                                                                                                                                                                                 | Base Unit with DC-input power   | Base Unit with DC-input power                                                                                                                                                                                       |  |
|                    |                                                                                            | supply                                                                                                                                                                                                                                                                        | supply                          | supply for short racks                                                                                                                                                                                              |  |
| Model Nu           |                                                                                            | JEPMC-BU2200                                                                                                                                                                                                                                                                  | JEPMC-BU2210                    | JEPMC-BU2220-E                                                                                                                                                                                                      |  |
| Abbrevia           | tion                                                                                       | MBU-01                                                                                                                                                                                                                                                                        | MBU-02                          | MBU-03                                                                                                                                                                                                              |  |
| Slot Configuration |                                                                                            | Basic Unit Rack (Rack1) Configuration 1 slot for CPU Module 8 slots for Optional Modules (including slots for Expansion Modules) Optional Expansion Rack (Rack 2, 3, 4) Configuration 9 slots for Optional Modules (because a CPU Module is not mounted to Racks 2, 3, and 4) |                                 | Basic Unit Rack (Rack 1) Configuration 1 slot for CPU Module 3 slots for Optional Modules (including slots for Expansion Modules) Optional Expansion Rack (Rack 2, 3, 4) Configuration 4 slots for Optional Modules |  |
|                    | Input Voltage                                                                              | 85 to 132 VAC / 198 to 276 VAC                                                                                                                                                                                                                                                |                                 |                                                                                                                                                                                                                     |  |
|                    | Allowable Frequeucy Range                                                                  | 47 to 63 Hz                                                                                                                                                                                                                                                                   | -                               |                                                                                                                                                                                                                     |  |
|                    | Input Current                                                                              | 1.5 A max. (at rated I/O)                                                                                                                                                                                                                                                     | 3.0 A max. (at rated I/O)*      | 1.0 A max. (at rated I/O)*                                                                                                                                                                                          |  |
| D                  | Inrush Current                                                                             | 40 A max. (when completely discharged, with 275-VAC input, rated output)                                                                                                                                                                                                      | 30 A max. (when completely disc | charged, rated output)*                                                                                                                                                                                             |  |
| Power<br>Unit      | Allowable Power Loss<br>Time                                                               | 20 ms                                                                                                                                                                                                                                                                         | 1 ms                            |                                                                                                                                                                                                                     |  |
|                    | Rated Voltage                                                                              | 5.0 V                                                                                                                                                                                                                                                                         |                                 |                                                                                                                                                                                                                     |  |
|                    | Rated Current                                                                              | 8.0 A                                                                                                                                                                                                                                                                         |                                 | 4.0 A                                                                                                                                                                                                               |  |
|                    | Output Current Range                                                                       | 0.0 to 8.0 A                                                                                                                                                                                                                                                                  |                                 | 0.0 to 4.0 A                                                                                                                                                                                                        |  |
|                    | Constant Voltage Precision ±2% max. (including input voltage and output load fluctuations) |                                                                                                                                                                                                                                                                               | e and output load fluctuations) |                                                                                                                                                                                                                     |  |
|                    | Battery Battery for memory retention attachable                                            |                                                                                                                                                                                                                                                                               |                                 |                                                                                                                                                                                                                     |  |
| Indicators         | s                                                                                          | POWER (green)                                                                                                                                                                                                                                                                 |                                 |                                                                                                                                                                                                                     |  |
| Dimensio           | ons (mm)                                                                                   | $240 \times 130 \times 108 \text{ (W} \times \text{H} \times \text{D)}$                                                                                                                                                                                                       |                                 | $120 \times 130 \times 108 \text{ (W} \times \text{H} \times \text{D)}$                                                                                                                                             |  |
| Mass               |                                                                                            | 650 g                                                                                                                                                                                                                                                                         |                                 | 500 g                                                                                                                                                                                                               |  |

<sup>\*</sup> For the external 24-V power supply, select a power supply that satisfies the following specifications and that can provide the rated current:

- Allowable output load capacity: 1200 μF or more
- Overcurrent detection is automatically restored by removing causes

However, except that the primary side (AC side) of the external 24V power supply is turned ON/OFF.

# 2.3 CPU-01 Module


## 2.3.1 Overview of Functions

The CPU-01 Module is the MP2200 Control Module that controls the Motion, Communication, I/O, and other Optional Modules.

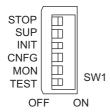
# 2.3.2 LED Indicators and Switch Settings

## (1) External Appearance

The following figure shows the external appearance of the CPU-01 Module.



## (2) Indicators


The LED indicators that display the operating status and error details for the Base Unit are detailed in the following table.

| Indicators  | Indicator<br>Name | Color | Significance when Lit      |
|-------------|-------------------|-------|----------------------------|
| RDY ( ) RUN | RDY               | Green | Unit operating normally.   |
|             | RUN               | Green | User program running.      |
| ALM ( ) ERR | ALM               | Red   | Lights/blinks for warning. |
| ○ BAT       | ERR               | Red   | Lights/blinks for errors.  |
|             | BAT               | Red   | Battery alarm activated.   |

Note: Refer to 8.2.3 (2) LED Indicator Meanings for details on the meaning of indicators.

# (3) Switch Settings

The SW1 of the DIP switch sets the operating conditions for the CPU-01 Module when the power is turned ON.



| Pin<br>Number | Switch<br>Name       | Status | Operating Mode                                                             | Default<br>Setting | Details                                     |  |
|---------------|----------------------|--------|----------------------------------------------------------------------------|--------------------|---------------------------------------------|--|
| 6             | STOP                 | ON     | User program stopped                                                       | OFF                | Stops the user program execution. Enabled   |  |
|               | 3106                 | OFF    | User program running                                                       | OH                 | only when debugging.                        |  |
| 5             | SUP                  | ON     | System use                                                                 | OFF                | Always set to OFF.                          |  |
| 3             | 301                  | OFF    | Normal operation                                                           | OH                 | Always set to Off.                          |  |
|               |                      | ON     | Memory clear                                                               |                    | Set to ON to clear the memory. If this      |  |
| 4             | OFF Normal operation | OFF    | switch is set to OFF, the program stored in flash memory will be executed. |                    |                                             |  |
| 3             | CNFG                 | ON     | Configuration mode                                                         | OFF                | Set to ON to execute self-configuration for |  |
| 3             | CINEG                | OFF    | Normal operation                                                           | OH                 | connected devices.                          |  |
| 2             | MON                  | ON     | System use                                                                 | OFF                | Always set to OFF.                          |  |
|               | 2 IVION              |        | Normal operation                                                           | OH                 | Aiways set to Off.                          |  |
| 1             | TEST                 | ON     | System use (adjusted before shipment)                                      | OFF                | Always set to OFF.                          |  |
|               |                      | OFF    | Normal operation                                                           |                    |                                             |  |

# 2.3.3 Hardware Specifications

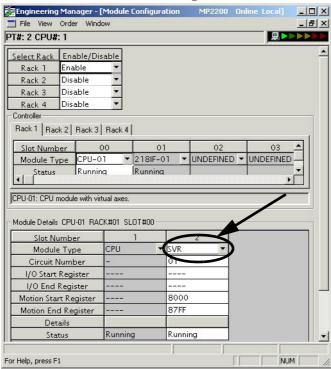
The following table shows the hardware specifications of the CPU-01 Module.

| Item            | Specifications                                                                 |
|-----------------|--------------------------------------------------------------------------------|
| Name            | CPU-01 Module                                                                  |
| Model           | JAPMC-CP2200                                                                   |
| Abbreviation    | CPU-01                                                                         |
| Flash Memory    | 12 MB                                                                          |
| SDRAM           | 32 MB                                                                          |
| SRAM            | 512 KB, M registers, S registers, trace memory, alarm history (battery backup) |
| Calendar        | Seconds to year timer (battery backup)                                         |
| Indicators      | RDY (green) RUN (green) ALM (red) ERR (red) BAT (red)                          |
| Switches        | STOP SUP INIT CNFG MON TEST                                                    |
| Dimensions (mm) | 125 × 95 (H × D)                                                               |
| Mass            | 66 g                                                                           |

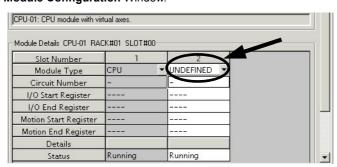
2.3.4 SVR Module (Virtual Motion Module)

## 2.3.4 SVR Module (Virtual Motion Module)

### (1) Overview


The Virtual Motion Module is a software module provided as a standard feature with the CPU-01 Module. It is not connected to a motor, but provides a virtual axis interface.

The SVR Module has fixed parameters, setting parameters, and monitoring parameters (see *Appendix B SVR Motion Parameters*), and can be accessed from application programs using I/O registers.


The SVR can be used to control up to 16 virtual axes in the high-speed scan control cycle.

Note: For information on how to use SVR motion parameters and motion commands, refer to *Machine Controller MP2000-series Built-in SVB/SVB-01 Motion Module User's Manual* (manual no.: SIEP C880700 33).

In an MP2200 CPU Module, slot 2 in the default **Module Configuration** Window is for the SVR Module.



Note: If the SVR is not used, MP2200 processing time can be reduced by setting the *Module Type* for SVR to **UNDEFINED** in the **Module Configuration** Window.



## (2) Example SVR Usage

The SVR is used in the following two applications.

- Program testing: Results are easily obtained without connecting a motor.
- Generating commands: If the SVR is used in applications where motion modules are required only for generating commands, such as master axis for phase control or multi-axis synchronous control, then Motion Modules on real axes are no longer required.

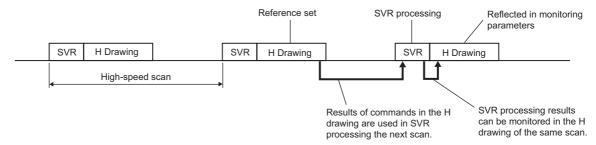
The following table lists application examples of the SVR.

| Slot<br>Number | Application Example            | Application Method                                                                                                                                                                |
|----------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1              | Master axis for phase control  | Electronic cam or shaft operation can be achieved by using the SVR for the virtual master axis.                                                                                   |
| 2              | Multi-axis synchronous control | Multi-axis synchronous control can be achieved by controlling the SVR from a motion program and then using the ladder program to copy position commands of the SVR to other axes. |
| 3              | Sine curve commands            | If the motion program is used to perform circular interpolation with the SVR, the axis will operate with a sine curve command.                                                    |

Note: The software limit function and machine lock function cannot be used with the SVR. The position error will always be 0.

## (3) System Configuration Example

The following figure shows an example system configuration using SVR.




2.3.4 SVR Module (Virtual Motion Module)

## (4) SVR Operation

## [a] SVR Execution Timing

The SVR is processed at the beginning of the high-speed scan. SVR processing is performed in the next scan after specifying and the processing results are reflected in the monitoring parameters.



### [b] Processing Time

When fixed parameter 0 (Selection of Operation Modes) is set to 0 (Normal Operation Mode), services are started for each of the 16 SVR Module virtual axes.

Note: The default for the Selection of Operation Modes parameter is 1 (Axis Unused).

The following table gives guidelines for the processing time required for each SVR axis.

| Command | MP2200                                                 |
|---------|--------------------------------------------------------|
| NOP     | $35 + 14 \times \text{Number of axes } (\mu \text{s})$ |
| POSING  | $35 + 36 \times \text{Number of axes } (\mu \text{s})$ |

Note: Number of axes: The number of axes (1 to 16) when Selection of Operation Modes (fixed parameter 0) is set to Normal Operation Mode (0). The formula listed above do not apply when the number of axes is 0.

#### ■ Differences from SVB Simulation Mode

Simulation mode does not have a positioning function, so the position data is refreshed in one scan to the final target position. The SVR has its own positioning function that performs distribution, so like a real module, position data is refreshed each scan for the final target position.

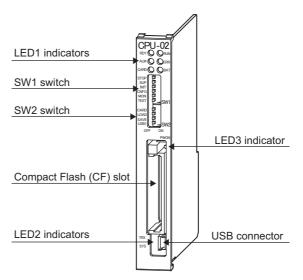
## 2.4 CPU-02 Module

### 2.4.1 Overview of Functions

The CPU-02 Module is used exclusively for the MP2200, and has been developed as a higher level of CPU-01 Module.

In addition to the expansion of the user memory, the CPU-02 Module is highly generalized, and has one Compact Flash port and one USB port.

The Compact Flash already in the Compact Flash slot can be used to back up applications directly without going through the MPE720 to save them as a batch. Also, applications can be loaded from the Compact Flash directly to the CPU in batch loads.


The USB connector has only one channel, which works as a port only for the MPE720. With a USB hub, several CPU-02 Modules can be controlled with one personal computer (MPE720).

Note: MPE720 version 5.31B or later.

## 2.4.2 External Appearance, Indicators, and Switch Settings

## (1) External Appearance

The following figure shows the external appearance of the CPU-02 Module.

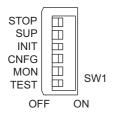


Note: A dummy card is inserted in the Compact Flash slot to prevent dust from entering before shipment.

## (2) Indicators

The following table shows the indicators that show the operating status of the CPU-02 Module and error information.

| Indicators                                         | Indicator<br>Name | Color | Significance when Lit                 |
|----------------------------------------------------|-------------------|-------|---------------------------------------|
| LED1                                               | RDY               | Green | Unit operating normally. *1           |
| RDY O RUN                                          | RUN               | Green | User program running. *1              |
|                                                    | ALM               | Red   | Lights/blinks for warning. *1         |
| ALM ( ) ERR                                        | ERR               | Red   | Lights/blinks for errors.*1           |
| CARD ( ) BAT                                       | CARD              | Green | Accessing the Compact Flash.          |
|                                                    | BAT               | Red   | Battery alarm activated.*1            |
| LED2                                               | TRX               | Green | Communicating with USB. *2            |
| TRX ()                                             |                   |       |                                       |
| STS (                                              | STS               | Red   | Lights or blinks for errors. *2       |
| LED3<br>PWON                                       |                   |       |                                       |
| (On the side of the Compact Flash connector lever) | PWON              | Green | Supplying power to the Compact Flash. |


<sup>\* 1.</sup> Refer to 8.2.3 (2) LED Indicator Meanings on the meaning of indicators.

## (3) Switch Settings

## [a] SW1

The SW1 of the DIP switch is used to set the operating conditions for the CPU-02 Module when the power supply is turned ON.

Before turning ON the power supply, set this switch. Any settings made after the power supply is turned ON are invalid.




| Pin<br>Number | Switch<br>Name | Status | Operating Mode                        | Default<br>Setting | Details                                                                                                                       |  |
|---------------|----------------|--------|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 6             | STOP           | ON     | User program stopped                  | OFF                | Stops the user program execution. Enabled only                                                                                |  |
|               | 3101           | OFF    | User program running                  | OFT                | when debugging.                                                                                                               |  |
| 5             | SUP            | ON     | System use                            | OFF                | Always set to OFF.                                                                                                            |  |
| 3             | 301            | OFF    | Normal operation                      | Off                | Always set to OFF.                                                                                                            |  |
|               |                | ON     | Memory clear                          |                    | Set to ON to clear the memory. Also set to ON                                                                                 |  |
| 4             | INIT           | OFF    | Normal operation                      | OFF                | not to save the data in the Compact Flash. If this switch is set to OFF, the program stored in flash memory will be executed. |  |
| 3             | CNFG           | ON     | Configuration mode                    | OFF                | Set to ON to execute self-configuration for con-                                                                              |  |
| 3             | CIVI G         | OFF    | Normal operation                      | OFT                | nected devices.                                                                                                               |  |
| 2             | MON            | ON     | System use                            | OFF                | Always set to OEE                                                                                                             |  |
| 2             | IVIOIN         | OFF    | Normal operation                      | Off                | Always set to OFF.                                                                                                            |  |
| 1             | TEST           | ON     | System use (adjusted before shipment) | OFF                | Always set to OFF.                                                                                                            |  |
|               |                |        | Normal operation                      |                    |                                                                                                                               |  |

<sup>\* 2.</sup> Refer to 2.4.6 ( 3 ) Details of LED Display (LED2) for USBs for details of the LED displays.

# [b] SW2

The SW2 of the DIP switch is used to set the operating conditions for the Compact Flash slot and the USB connector.



| Pin<br>Number | Switch<br>Name | Status         | Operating Mode                                                                | Default<br>Setting | Details                                                                                                                                 |
|---------------|----------------|----------------|-------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 4             | CARD           | ON             | Compact Flash enabled.                                                        | OFF                | Turns the power supply to the Compact Flash                                                                                             |
|               | CAILD          | OFF            | Compact Flash disabled.                                                       | OH                 | ON or OFF.                                                                                                                              |
| 3             | LOAD           | ON             | Executes batch load from the Compact Flash (Compact Flash $\rightarrow$ CPU). | OFF                | Enabled when switches SW2-4 is ON (Compact Flash enabled). With the LOAD switch set to ON, a batch load from the Compact                |
|               |                | OFF            | Batch load is not executed.                                                   |                    | Flash is executed when the power supply is turned ON.                                                                                   |
| 2             | SAVE           | OFF<br>↓<br>ON | Save (CPU $\rightarrow$ Compact Flash).                                       | OFF                | Enabled when switches SW2-4 is ON (Compact Flash enabled). By turning it from OFF to ON, a batch save to the Compact Flash is executed. |
|               |                | ON             | USB local address1.                                                           |                    |                                                                                                                                         |
| 1             | USB1           | OFF            | Start up according to the Module Configuration Definitions of USB.            | OFF                | Setting this switch to ON initializes the USB local address and sets it to 1 by force.                                                  |

# 2.4.3 Hardware Specifications

The following table shows the hardware specification of the CPU-02 Module.

| Item                      | Specifi                                                 | cations               |  |
|---------------------------|---------------------------------------------------------|-----------------------|--|
| Name                      | CPU-02 Module                                           |                       |  |
| Model                     | JAPMC-CP2210                                            |                       |  |
| Abbreviation              | CPU-02                                                  |                       |  |
| Flash Memory              | 16 MB (User's area: 11.5 MB                             | 3)                    |  |
| SDRAM                     | 32 MB                                                   |                       |  |
| SRAM                      | 2 MB, M registers, S registers history (battery backup) | , trace memory, alarm |  |
| External Memory Interface | Compact Flash interface × 1 s                           | lot                   |  |
| Engineering Port          | USB interface × 1 channel                               |                       |  |
| Calendar                  | Seconds to year timer (battery backup)                  |                       |  |
|                           | LED1                                                    | LED2                  |  |
|                           | RDY (green)                                             | TRX (green)           |  |
| Indicators                | RUN (green)                                             | SYS (red)             |  |
| maisatore                 | ALM (red)                                               | LED3                  |  |
|                           | ERR (red)                                               | PWON (green)          |  |
|                           | BAT (red)                                               |                       |  |
|                           | SW1                                                     | SW2                   |  |
|                           | STOP                                                    | CARD                  |  |
|                           | SUP                                                     | LOAD                  |  |
| Switches                  | INIT                                                    | SAVE                  |  |
|                           | CNFG                                                    | USB1                  |  |
|                           | MON                                                     |                       |  |
|                           | TEST                                                    |                       |  |
| Dimensions (mm)           | $125 \times 95 \text{ (H} \times \text{D)}$             |                       |  |
| Mass                      | 75 g                                                    |                       |  |

Note: For information on general specifications, refer to 2.1 Specifications.

# 2.4.4 SVR Module (Virtual Motion Module)

Refer to 2.3.4 SVR Module (Virtual Motion Module).

## 2.4.5 CARD Module

The specifications of the Compact Flash interface are described here.

## (1) Specifications

### [a] General Specifications

The following table shows the general specifications of the Compact Flash interface.

| Item                                        | Specifications                        | Remarks                                                                                                                                             |
|---------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Slot Standard                               | For Compact Flash (TYPE-I)            | 50 pins                                                                                                                                             |
| Number of Slots                             | 1                                     | -                                                                                                                                                   |
| Interface                                   | PC card ATA                           | True IDE is not supported.                                                                                                                          |
| Applicable Media                            | Compact Flash (TYPE-1)                | The Compact Flash described in the following table is recommended.*                                                                                 |
| Media Memory Capacity                       | 32 MB, 64 MB, 128 MB,<br>256MB, 512MB | -                                                                                                                                                   |
| For Partition                               | Not available                         | -                                                                                                                                                   |
| Applicable FAT                              | FAT12/16/32,<br>VFAT (long name)      | Up to 256 characters of a file name are available when VFAT is used, but only 246 characters are actually allowed because of full path designation. |
| Max. No. of Nested<br>Directory             | 10                                    | -                                                                                                                                                   |
| File Information                            | Report of updating date available     | Calendar function of the controller is used.                                                                                                        |
| Max. Length of File Name and Directory Name | 256 characters                        | Total number of characters in file names and directory names.                                                                                       |
| Current Directory Function                  | Not available                         | -                                                                                                                                                   |
| Max. No. of Simultaneous<br>Open Files      | 16                                    | _                                                                                                                                                   |

<sup>\*</sup> Micro drive, I/O device, or HDD is not supported.

## Recommended Compact Flash / Adapter (Available from YASKAWA)

| Model      | Specifications                              | Manufacturer               |
|------------|---------------------------------------------|----------------------------|
| CFI-128MDG | 128 MB                                      |                            |
| CFI-256MDG | 256 MB                                      | Hagiyyara Sye Com Co. I td |
| CFI-512MDG | 512 MB                                      | Hagiwara Sys-Com Co., Ltd. |
| CFC-ADP03  | PC-card adapter* (for the PCMCIA connector) |                            |

<sup>\*</sup> Use a PC-card type adapter when the Compact Flash is used with a personal computer.

By mounting the Compact Flash on a PC-card adapter, it can be used as a PC-Card Type-II Flash Card.

### Operation Confirmed Compact Flash (Available from an electric appliance shop)

| Model         | Specifications                            | Manufacturer               |  |
|---------------|-------------------------------------------|----------------------------|--|
| SDCFB-64-J60  | 64 MB                                     | SanDisk Corporation        |  |
| SDCFB-128-J60 | 128 MB                                    | Sampisk Corporation        |  |
| HPC-CF64V     | 64 MB                                     | Hagiwara Sys-Com Co., Ltd. |  |
| HPC-CF128V    | 128 MB                                    | (V Series)                 |  |
| HPC-SD128T    | 128-MB SD memory card                     | Hagiwara Sye Com Co. I to  |  |
| HPC-CDA01     | Compact Flash-type SD memory card adapter | Hagiwara Sys-Com Co., Ltd  |  |

# [b] Functions

The following table shows the functional specifications for the Compact Flash interface.

| Item                | Specifications                      | Descriptions                                                                                                                                                          |
|---------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation<br>Switch | 3 pins of SW2                       | CARD: Enables or disables use of media.  LOAD: Executes batch load if set to ON when power supply is turned ON.  SAVE: Executes a batch save when set from OFF to ON. |
| Batch Load          | Compact Flash  → CPU (Flash memory) | Executes and controls operation in accordance with settings of SW2.                                                                                                   |
| Batch Save          | CPU (SDRAM)  → Compact Flash        | • The data to be transferred is: User application + register.                                                                                                         |

## [c] Compact Flash-Related System Registers

The following table shows the specifications of the system register related to the Compact Flash interface.

| Specifications                          | Registe    | r Number       | Description                                              |                                        |  |  |
|-----------------------------------------|------------|----------------|----------------------------------------------------------|----------------------------------------|--|--|
| Whole capacity of<br>Compact Flash Card | SL00652    |                | Unit: Byte                                               |                                        |  |  |
|                                         |            | SB006540       | 0: Compact Flash card not mounted                        | 1: Compact Flash card mounted          |  |  |
|                                         |            | SB006541       | 0: Power not supplied                                    | 1: Power being supplied                |  |  |
|                                         |            | SB006542       | 0: Compact Flash card not identified                     | 1: Compact Flash card being identified |  |  |
| Card Status                             | SW00654    | SB006543       | 0: No Compact Flash card access                          | 1: Compact Flash card being accessed   |  |  |
|                                         |            | SB006544       | 0: -                                                     | 1: FAT file system being checked       |  |  |
|                                         |            | SB006545       |                                                          |                                        |  |  |
|                                         |            | to<br>SB00654F | Reserved for system                                      |                                        |  |  |
|                                         |            | 0001H          | FAT12                                                    |                                        |  |  |
| FAT Type                                | SW00655    | 0002H          | FAT16                                                    |                                        |  |  |
|                                         | 0003H      |                | FAT32                                                    |                                        |  |  |
| Reserved for system                     | SW00656    |                | -                                                        |                                        |  |  |
| Reserved for system                     | SW00657    |                | _                                                        |                                        |  |  |
|                                         |            | SB006580       | During batch load                                        |                                        |  |  |
|                                         |            | SB006581       | Compact Flash card read-out error                        |                                        |  |  |
|                                         |            | SB006582       | Load file model mismatched                               |                                        |  |  |
|                                         |            | SB006583       | Load file write-in error                                 |                                        |  |  |
|                                         |            | SB006584       | Flash-storage error                                      |                                        |  |  |
|                                         |            | SB006585       | No batch load folder exists.                             |                                        |  |  |
| Batch Load/Save                         | SW00658    | SB006586       | Load error due to prohibition (program write protection) | n of load                              |  |  |
| Datch Load/Save                         | 5 11 00036 | SB006587       | Reserved for system                                      |                                        |  |  |
|                                         |            | SB006588       | During a batch save                                      |                                        |  |  |
|                                         |            | SB006589       | Compact Flash card write-in                              | error                                  |  |  |
|                                         |            | SB00658A       | Save file read-out error                                 |                                        |  |  |
|                                         |            | SB00658B       | Security error                                           |                                        |  |  |
|                                         |            | SB00658C       |                                                          |                                        |  |  |
|                                         |            | to<br>SB00658F | Reserved for system                                      |                                        |  |  |
| Reserved for system                     | SW00659    |                | -                                                        |                                        |  |  |

### (2) Precautions when Using Compact Flash

Pay attention to the following points when using the Compact Flash.

#### Removing and Reattaching the Compact Flash

Before removing or inserting the Compact Flash, set the switch SW2-4 (CARD) to OFF, and confirm that the CARD and PWON LED indicator lamps are unlit.

If the Compact Flash is removed or inserted while these LED indicator lamps are lit, the data stored in the Compact Flash may be damaged.

#### Formatting the Compact Flash

Format the Compact Flash in a computer running on Windows 2000 or Windows XP operating system. The CPU-02 Module cannot be used to format the Compact Flash.

Note: The Compact Flash purchased from YASKAWA has already been formatted.

### · FAT Check and Restoration of Compact Flash

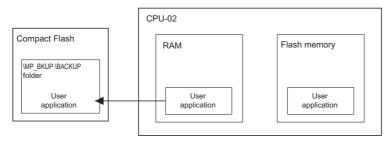
If the Compact Flash is removed or if the power supply is turned OFF while accessing the Compact Flash with the CARD LED indicator lamp lit, the FAT in the Compact Flash may be damaged.

The CPU-02 Module checks the FAT when the switch SW2-4 (CARD) is set to ON and attempts to restore the data if the FAT is damaged. During data restoration, the CARD LED indicator lamp will flicker ON and OFF, because the Compact Flash is accessed automatically. This is not a failure.

It may take 10 minutes or more to restore the FAT. If in a hurry, forcibly remove the Compact Flash and run an error check on the personal computer to restore the data.

#### · INIT Switch Setting and Transfer of Registers M, S, I, and O

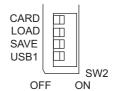
The following table shows registers M, S, I, and O to be transferred between the Compact Flash and the controller according to the status of the INIT the SW1 switch.


| Setting of INIT (SW1) Switch |                     | ON      |
|------------------------------|---------------------|---------|
| At batch save                | M, S, I, O, C, #, D | C, #, D |
| At batch load                | M, C, #, D          | C, #, D |

Note:1. S, I, and O registers are not transferred in a batch load regardless of the INIT setting.

2. Registers other than M, S, I, and O registers are transferred both in a batch save and a batch load regardless of the INIT setting.

## (3) Batch Save to Compact Flash


By using the DIP switches, the batch save function of the CPU-02 Module can save all the user application data from the RAM to the specified folder and file, \MP\_BKUP\BACKUP, of the Compact Flash without going through the MPE720.



- Note: 1. If data in the Compact Flash has already been saved in a batch or another form written in from the MPE720, it will be cleared when a new batch is saved.
  - 2. A batch load is not possible if a motion register is used for trace definition, or if the relevant motion module is not defined or not mounted.
  - 3. The security function is not provided for program transfers with the Compact Flash in the CPU software (version 2.41 or earlier).

The procedure for batch saving to the Compact Flash is as follows:

**1.** Confirm that the CARD, LOAD and SAVE of the CPU-02 Module's SW2 are set to OFF.



- **2.** Insert the formatted Compact Flash into the Compact Flash slot on the CPU-02 Module with the power supply ON.
- 3. Set the CARD switch to ON.

The PWON LED indicator lamp will light up.

**4.** Set the SAVE switch to ON.

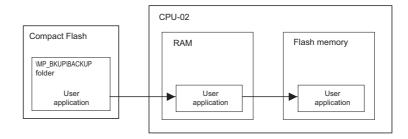
The batch save will start, and the CARD LED indicator lamp will light up. When a batch save is completed, the CARD LED indicator lamp will go out.

Note: If the operation fails, the ALM LED indicator lamp will light up, and the error will be reported to the system register SW00658. Refer to 3.2.2 [ a ] Compact Flash (CF) Slot Specifications.

The ALM LED indicator lamp will turn OFF by re-executing batch save or by restarting the MP2200.

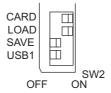
How to Input Data from the Compact Flash to the MPE720

The MPE720 can read application data that was batch-saved to Compact Flash. For information on how to read the data, refer to the MPE720 user's manual.


Writing in from the MPE720 to the Compact Flash

The MPE720 can write application data to the Compact Flash if the application data was batch-dumped from the Controller. If data that is created or edited off-line is written in to the Compact Flash, an error may occur in a batch load.

Refer to the MPE720 user's manual for information on how to write application data to the Compact Flash using the MPE720.


### (4) Batch Load from Compact Flash

By using only the DIP switches, you can use the batch load function of the CPU-02 Module to read in user application data in the Compact-Flash-specified folder and file, \MP\_BKUP\BACKUP, and also flash-store the data without going through the MPE720.



To load data in a batch from the Compact Flash, use the following procedure:

- 1. Insert the Compact Flash with the backup application data into the Compact Flash slot of the CPU-02 Module with the power supply OFF.
- 2. Set the CARD and LOAD switches of SW2 of the CPU-02 Module to ON.

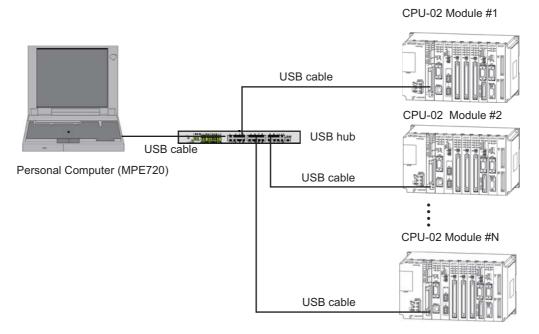


Turn ON the MP2200 power supply.

The PWON LED indicator lamp will light up, and the batch load will start. The CARD LED indicator lamp will light up, and the RUN LED indicator lamp will blink. When all of the data has been successfully read out from the Compact Flash, the CARD LED indicator lamp will turn OFF.

After the data has been successfully saved, the RUN and PWON LED indicator lamps will turn OFF.

Note: If a load failure occurs, the ALM indicator will light, and the error details will be reported in system register SW00658. (Refer to 2.4.5 (1) [c] Compact Flash-Related System Registers.) If you restart the MP2200, the ALM LED indicator lamp will turn OFF.


- **4.** Turn OFF the MP2200 power supply.
- **5.** Set the CARD, LOAD, and INIT switches to OFF. Then, turn ON the MP2200 power supply to start from the flash memory.

## 2.4.6 USB Module

## (1) Overview

By connecting a computer with MPE720 installed, either directly or via a USB hub with a CPU-02 Module, MP2200 controller engineering can be done through the MPE720-equipped computer.

• Example of Configuration Using Several CPU-02 Modules



Note: 1. USB corresponding communications process and exclusive-use device driver must be installed for this function. For information on the installation method, refer to 2.4.6 (4) Installing the Hardware Driver.

2. Up to 5 USB hubs can be connected.

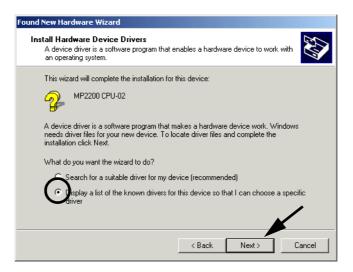
## (2) General Specifications

The following table describes the general specifications of the USB interface.

| Item                              | Specifications                                                                       | Remarks                                                           |
|-----------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Standard                          | In accordance with USB2.0 Full-speed function                                        | -                                                                 |
| Bus speed                         | Full speed (12 Mbps)                                                                 | -                                                                 |
| Format                            | Asynchronous serial                                                                  | -                                                                 |
| Communication<br>Method           | Half duplex                                                                          | -                                                                 |
| Connected Devices                 | One USB host, 127 slaves                                                             | Including hub                                                     |
| Cable                             | USB cable available at most electric appliance stores                                | Connector: PC side: Series A plug Module side: Series mini-B plug |
| Cable Length                      | Max. length in full-speed mode: 5 m (30 m at full speed with Hub 5-layer connection) | _                                                                 |
| Connector Type Series mini-B plug |                                                                                      | -                                                                 |
| Power Supply                      | Self-powered type                                                                    | Shares power supply with the MP2200.                              |

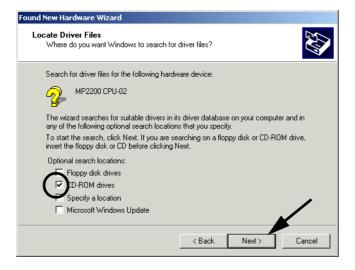
## (3) Details of LED Display (LED2) for USBs

| Classification      | Indicato  | or Name  | Indicator Details                                                                                                                                                                                           | Description                                                                                   |
|---------------------|-----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Cidoomodion         | TRX       | STS      | maloator Betaile                                                                                                                                                                                            | Beddiption                                                                                    |
| Normal<br>Operation | Not lit   | Not lit  | During normal operation                                                                                                                                                                                     | LED is OFF when USB transmission is not carried out even after the power supply is turned ON. |
| Transmission        | Blinking  | Not lit  | During USB transmission                                                                                                                                                                                     | TRX flashes during USB transmission.                                                          |
| Error               | Undefined | Blinking | Hardware error (Meaning differs depending on the number of blinks.) Number of blinks and error 1: ROM diagnostic error 2: RAM diagnostic error 3: Shared-memory diagnostic error 15: Watchdog timeout error | Hardware error in the USB-control section. The module must be replaced.                       |


## (4) Installing the Hardware Driver

Before connecting the MP2200 (CPU-02 Module) to the personal computer via a USB for the first time, the USB communications driver for the MP series must be installed. Prepare the setup disc (Ver 5.31B or later) of the MPE720, and install the USB driver as described in this section.

- 1. Connect the USB port on the CPU-02 Module to the USB port on the personal computer with a USB cable (series mini-B), and turn ON the MP2200 power supply.
- **2.** A message **Find New Hardware** will be displayed. Then, **Found New Hardware Wizard** will be displayed. Click the **Next** button.




3. Select Display a list of the known drivers for this device so that I can choose a specific driver and click the Next button.



A message will appear, asking where to find the driver.

- 4. Insert the MPE720 setup disc into the CD-ROM drive.
- 5. Select CD-ROM drives and click the Next button.



If the driver is found, the search results will appear.

#### 6. Click the Next button.



The installation will start.

7. After the driver has been successfully installed, click the **Finish** button.



## (5) Removing the Cable from the USB Connector

When removing the cable from the USB connector on the personal computer, the USB hub, or the CPU-02 Module, or when turning OFF the MP2200 power supply connected to a USB, perform the following operations to safely undo the connections.

1. In the task tray at the lower right of the window, click the icon to remove the device.



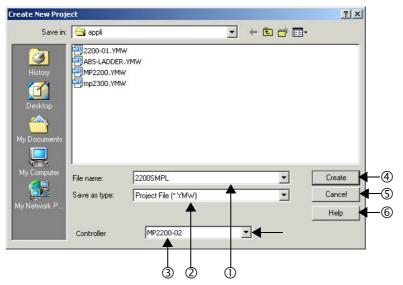
A message Stop USB Mass Storage Device-Drive (F:) will appear.

#### 2. Click inside the window.

The connection will be cut and a window, **The 'USB Mass Storage Device' device can now be safety removed from the system**, will appear. After this message appears, the cable can be safely removed and the MP2200 power supply can be turned OFF.

Click the inside the window or click the **OK** button in the dialog box to close the window.

2.4.6 USB Module


### (6) Creating Project Files for a USB Connection

This section describes how to create a project file that specifies USB for the communication port.

- 1. Use either of the following methods to start creating a new project file.
  - Select *Project New* from the start window.
  - Select File New Project from the main menu.

Note: A message will be displayed to confirm whether to compile and save any project file that is being edited. The following processing will be performed when a button is pressed.

- Yes Button: The project file will be compiled, saved, and closed.
- No Button: The project file will be closed without compiling or saving it.
- Cancel Button: Creating the new file will be canceled, and editing will continue.
- **2.** Open the folder at the save location, input the file name, and select the file type and machine controller to be used.



The settings and setting procedure are described below.

① File name

Inputs a new name for a project file.

② Save as type

Displays the extensions that can be selected for the project file.

Example: Project File (\*.YMW)

3 Controller

Selects the type of Controller to be used.

In this case, select MP2200-02.

Creates a file with the name that was input in ①.

© Cancel Button

Cancels the operation to name the file and save it, and closes the dialog box.

6 Help Button

Displays the Select Help Dialog Box.

Note: 1. The following characters cannot be used in file names: / , : \* ? " < > |

2. You can select either *Project File* (\*.YMW) or *all files* (\*.\*) for the *Save as type*. A project file (\*.YMW) will be created either way.

#### 3. Click the Create Button.

A project file create/open message will be displayed and the project file will be created in the specified folder and displayed in the Ladder Subwindow.



**4.** Select *Online - Communication Settings* from the main menu. Or, click *Controller - Communication Settings* in the start window (or *Project - Communication Settings* in the start window).

The Communications Settings Dialog Box will appear.

**5.** Select USB for the communication port.

Click the Detail Button, and then set the local address.



6. Click the Setting Button.

The communication settings will be completed, and the dialog box will close.

Note: While the machine controller is connected, the Connection Button and Setting Button will be disabled and it will not be possible to set communications. The operation of MPE720 version 6 when connected to the Machine Controller is different depending on whether the connection information (i.e., the settings in the Communications Settings Dialog Box) have been saved in the project files.

7. Select *File - Overwrite Save* Project from the main menu.

A message saying to wait while the project file is being saved will be displayed, and then the project file being edited will be saved.

Note: The local address to be set in this paragraph is used to specify the corresponding CPU-02 Modules from the MPE720 (personal computer) side. If one CPU-02 Module is connected to the personal computer, set it to 1. If more than one CPU-02 Module is connected to the personal computer, use the appropriate setting. For details, refer to 2.4.6 (7) Setting the Local Station when Connecting Several CPU-02 Modules via USB.

### (7) Setting the Local Station when Connecting Several CPU-02 Modules via USB

To connect several CPU-02 Modules to the personal computer via the USB hub, perform the following connections and settings. Incorrect settings may overlap local addresses, resulting in an error.

1. Execute self-configuration in advance before the USB connection of a CPU-02 Module that is being used for the first time.

Note: For information on the procedure for executing self-configuration, refer to 5.4 Self-configuration.

- **2.** If some CPU-02 Modules are already connected, remove all the CPU-02 cables from the USB hub. Note: Refer to 2.4.6 (5) Removing the Cable from the USB Connector.
- **3.** After turning ON the USB1 switch (SW2) of the CPU-02 Modules where the local station is to be set, use the USB cable to connect the CPU-02 Modules to the USB hub.

If the USB1 switch (SW2) is set to ON, the CPU-02 module will operate as local address 1 regardless of the Module Configuration Definitions.

Start MPE720 version 6.

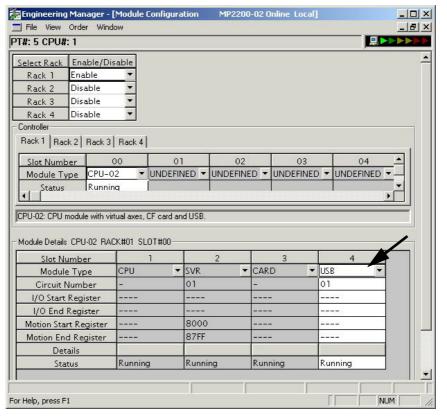
Note: If any project file is in MPE720 version 6, close the file.



- Select Online Communications Settings from the main menu. Or, click Controller Communication Settings in the start window (or Project Communication Settings in the start window).
   The Communications Settings Dialog Box will be displayed.
- **6.** Select USB for the communication port.

Click the **Detail** Button, and then set the local address to 1.

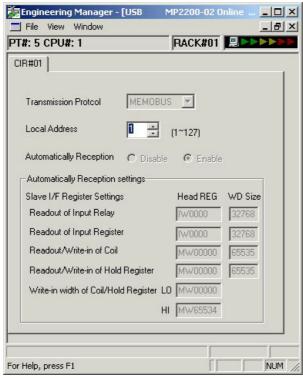



#### 7. Click the Connection Button.

The communication settings will be completed, and the system will be connected online.

**8.** Double-click the **Module configuration** Icon in the System Subwindow to display the window for module configuration definitions.

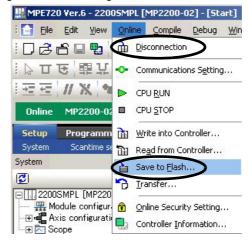



Double-click USB in the Module Details Area.



The dialog box for setting the local address will be displayed.

10. Set the local address, and then click the Close Button.


For the local address, set an address that is not already being used by other CPU-02 Modules.



Click the **OK** button in the dialog box to set the local address.

Note: The local address that is set here is used to write-in to the CPU-02 Module.

**11.** Flash-store the data and log off after returning to the **MPE720 Ver.6** Window.



**12.** Turn OFF the USB1 switch (SW2) of the CPU-02 Module and then turn the power supply of the MP2200 OFF and back ON again.

The local address of the USB in the CPU-02 Module will be changed to the new address after restart of the power. To add another CPU-02 Module, repeat the above steps 1 to 9.

Refer to 2.4.6 (6) Creating Project Files for a USB Connection for the procedure to create a project file to connect to a CPU-02 Module.

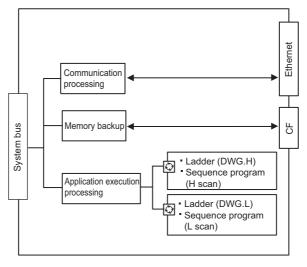
## 2.5 CPU-03 Module

### 2.5.1 Overview of Functions

The CPU-03 Module is a special CPU Module for the MP2200. It was designed as a upper-end model to provide greater speed and easier operation than the CPU-01 Module and CPU-02 Module.

The CPU-03 Module has one Compact Flash interface and one Ethernet interface with the following characteristics.

#### • One Standard-feature Slot for Compact Flash (CF) Interface


- Applications can be directly backed up (i.e., batch-saved) to the Compact Flash mounted in the CF slot without going through the MPE720.
- Applications can be loaded directly to the CPU Module from the Compact Flash (i.e., batch-loaded).

#### Standard-feature Ethernet (100 Mbps)

- High-speed communication can be performed with the MPE720 Engineering Tool.
- Communication can be performed with a touch panel without using ladder programming (automatic reception).
- Communication can be performed with the host PLC without using ladder programming (I/O message communication).

#### Simple Programming

- The operating procedures have been greatly streamlined through execution of motion operations.
- The motion program can be started from the host PLC without programming simply by creating a motion program and registering the execution sequence.



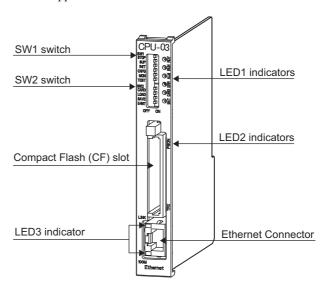

Started at fixed interval

Fig. 2.1 Overview of CPU-03 Module Functions

# 2.5.2 External Appearance, Indicators, and Switch Settings

## (1) External Appearance

The following figure shows the external appearance of the CPU-03 Module.

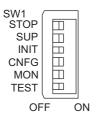


Note: A dummy card is inserted in the Compact Flash slot to prevent dust from entering before shipment.

## (2) Indicators

The following table shows the indicators that show the operating status of the CPU-03 Module and error information.

| Indicators                                     | Indicator<br>Name | Color  | Significance when Lit                                                       |
|------------------------------------------------|-------------------|--------|-----------------------------------------------------------------------------|
| LED1                                           | RDY               | Green  | Unit operating normally. *                                                  |
| O.S. O.S. O.S. O.S. O.S. O.S. O.S. O.S.        | RUN               | Green  | User program running. *                                                     |
| ALM R                                          | ALM               | Red    | Lights/blinks for warning. *                                                |
| O K                                            | ERR               | Red    | Lights/blinks for errors.*                                                  |
| CARD                                           | CARD              | Green  | Accessing the Compact Flash.                                                |
| BAT (                                          | BAT               | Red    | Battery alarm activated.*                                                   |
| LED2                                           | PWON              | Green  | Supplying power to the Compact Flash.                                       |
| (Mounted on the back of the CF connector.)     | TRX               | Green  | Transmitting or receiving Ethernet data.                                    |
| LED3<br>LINK                                   | LINK              | Yellow | When there is an Ethernet link.                                             |
| 100M .<br>(Built into the Ethernet connector.) | 100M              | Green  | Lit: Connected at 100 Mbps or performing auto-negotiation. Not lit: 10 Mbps |

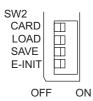

<sup>\*</sup> Refer to 8.2.3 ( 2 ) LED Indicator Meanings on the meaning of indicators.

# (3) Switch Settings

## [a] SW1

The SW1 of the DIP switch is used to set the operating conditions for the CPU-03 Module when the power supply is turned ON.

Before turning ON the power supply, set this switch. Any settings made after the power supply is turned ON are invalid.




| Pin<br>Number | Switch<br>Name | Status | Operating Mode                        | Default<br>Setting | Details                                          |     |     |                                                                                                                               |
|---------------|----------------|--------|---------------------------------------|--------------------|--------------------------------------------------|-----|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 6             | STOP           | ON     | User program stopped                  | OFF                | Stops the user program execution. Enabled only   |     |     |                                                                                                                               |
|               | 3101           | OFF    | User program running                  | OFF                | when debugging.                                  |     |     |                                                                                                                               |
| 5             | SUP            | ON     | System use                            | OFF                | Always set to OFF.                               |     |     |                                                                                                                               |
| 3             | 301            | OFF    | Normal operation                      | OFF                | Always set to OTT.                               |     |     |                                                                                                                               |
|               |                | ON     | Memory clear                          |                    | Set to ON to clear the memory. Also set to ON    |     |     |                                                                                                                               |
| 4             | INIT           | OFF    | Normal operation                      | OFF                | OFF                                              | OFF | OFF | not to save the data in the Compact Flash. If this switch is set to OFF, the program stored in flash memory will be executed. |
| 3             | CNFG           | ON     | Configuration mode                    | OFF                | Set to ON to execute self-configuration for con- |     |     |                                                                                                                               |
| 3             | CIVI G         | OFF    | Normal operation                      |                    | nected devices.                                  |     |     |                                                                                                                               |
| 2             | MON            | ON     | System use                            | OFF                | Always set to OFF.                               |     |     |                                                                                                                               |
| 2             | IVIOIN         | OFF    | Normal operation                      | Off                | Always set to Off.                               |     |     |                                                                                                                               |
| 1             | TEST           | ON     | System use (adjusted before shipment) | OFF                | Always set to OFF.                               |     |     |                                                                                                                               |
|               |                | OFF    | Normal operation                      |                    |                                                  |     |     |                                                                                                                               |

2.5.2 External Appearance, Indicators, and Switch Settings

# [b] SW2

SW2 is used to set the CF slot and Ethernet operating conditions.



| Pin<br>Number | Switch<br>Name | Status         | Operating Mode                                                                | Default<br>Setting | Details                                                                                                                                 |                                                                   |
|---------------|----------------|----------------|-------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 4             | CARD           | ON             | Compact Flash enabled.                                                        | OFF                | Turns the power supply to the Compact Flash                                                                                             |                                                                   |
| 4             | CAND           | OFF            | Compact Flash disabled.                                                       | Off                | ON or OFF.                                                                                                                              |                                                                   |
| 3             | LOAD           | ON             | Executes batch load from the Compact Flash (Compact Flash $\rightarrow$ CPU). | OFF                | Enabled when switches SW2-4 is ON (Compact Flash enabled). With the LOAD switch set to ON, a batch load from the Compact                |                                                                   |
|               |                | OFF            | Batch load is not executed.                                                   |                    | Flash is executed when the power supply is turned ON.                                                                                   |                                                                   |
| 2             | SAVE           | OFF<br>↓<br>ON | Save (CPU $\rightarrow$ Compact Flash).                                       | OFF                | Enabled when switches SW2-4 is ON (Compact Flash enabled). By turning it from OFF to ON, a batch save to the Compact Flash is executed. |                                                                   |
|               |                | ON             | Transmission parameter defaults for Ethernet                                  |                    | If E-INIT is ON, the IP address and other                                                                                               |                                                                   |
| 1             | E-INIT         | OFF            | Start up according to the Module Configuration Definitions for Ethernet.      | OFF                | OFF                                                                                                                                     | transmission parameters will be set to default values at startup. |

# 2.5.3 Hardware Specifications

The following table shows the hardware specification of the CPU-03 Module.

| Item                      | Specifi                            | cations                        |  |
|---------------------------|------------------------------------|--------------------------------|--|
| Name                      | CPU-03 Module                      |                                |  |
| Model                     | JAPMC-CP2220-E                     |                                |  |
| Abbreviation              | CPU-03                             |                                |  |
| Flash Memory              | 16 MB (User's area: 11.5 MB        | 3)                             |  |
| DDR                       | 64 MB                              |                                |  |
| SRAM                      | 4 MB (3 MB max. with batter data.) | y backup can be used for table |  |
| External Memory Interface | Compact Flash interface × 1 s      | lot                            |  |
| Communication Interface   | One Ethernet interface channel     | ol .                           |  |
| Calendar                  | Seconds to year timer (battery     | backup)                        |  |
|                           | LED1<br>RDY (green)                | LED2<br>PWON (green)           |  |
|                           | RUN (green)                        | TRX (green)                    |  |
| Indicators                | ALM (red)                          | LED3                           |  |
|                           | ERR (red)                          | LINK (yellow)                  |  |
|                           | CARD (green)                       | 100M (green)                   |  |
|                           | BAT (red)                          |                                |  |
|                           | SW1                                | SW2                            |  |
|                           | STOP                               | CARD                           |  |
|                           | SUP                                | LOAD                           |  |
| Switches                  | INIT                               | SAVE                           |  |
|                           | CNFG                               | USB1                           |  |
|                           | MON                                | E-INIT                         |  |
|                           | TEST                               |                                |  |
| Dimensions (mm)           | 125 × 95 (H × D)                   |                                |  |
| Mass                      | 86 g                               |                                |  |

Note: For information on general specifications, refer to 2.1 Specifications.

# 2.5.4 SVR Module (Virtual Motion Module)

Refer to 2.3.4 SVR Module (Virtual Motion Module).

## 2.5.5 CARD Module

Refer to 2.4.5 CARD Module.

2.5.6 218IFA Module (Ethernet)

## 2.5.6 218IFA Module (Ethernet)

### (1) Overview of 218IFA Module Functions

The 218IFA Module is a 10Base-T/100Base-TX Ethernet interface. It is a standard-feature communication interface for the CPU-03 Module.

- 100Mbps transmission speed is supported (100Base-TX).
- Supports the following various communication protocols:
  - Support for MEMOBUS protocol, Extended MEMOBUS protocol
  - Support for MELSEC protocol (A-compatible I/E frame)
  - Support for MODBUS/TCP protocol
  - Support for non-procedure communication
- An I/O message communication function enables you the data exchange in the form of I/O image when communicating with the host PLC, eliminating you from creating a ladder program.
- An automatic receive function eliminates you from creating a ladder program when connected to the indicator and the like.
- The 218IFA Module can be used as the standard interface with the MPE720 Engineering Tool. It provides a simple function for connecting to the MPE720, allowing you to connect to MPE720 without knowing the IP address of the 218IFA Module.

## (2) Specification of 218IFA Module

The following table shows the specification of the 218IFA Module.

| Iter                                      | ms                          | Description                     |  |  |
|-------------------------------------------|-----------------------------|---------------------------------|--|--|
| Communication Interface *1                |                             | 10Base-T/100Base-TX             |  |  |
| Communication Protocol *2                 |                             | TCP/UDP/IP/ARP/ICMP             |  |  |
| Maximum Number of Comr                    | nunication Connections      | 4+2 (I/O Message communication) |  |  |
| Maximum Number of Comr                    | nunication Channels         | 4+2 (I/O Message communication) |  |  |
| Message Communication (maximum)           | MEMOBUS                     | Write: 100W<br>Read: 125W       |  |  |
|                                           | Extended MEMOBUS            | Write: 2043W<br>Read: 2044W     |  |  |
|                                           | MELSEC                      | Write: 1017W<br>Read: 1017W     |  |  |
|                                           | MODBUS/TCP                  | Write: 100W<br>Read: 125W       |  |  |
|                                           | Non-procedure               | Write: 2046W                    |  |  |
| I/O Message<br>Communication<br>(maximum) | MEMOBUS                     | Write: 100W<br>Read: 125W       |  |  |
|                                           | Extended MEMOBUS            | Write: 1024W<br>Read: 1024W     |  |  |
|                                           | MELSEC                      | Write: 256W<br>Read: 256W       |  |  |
|                                           | MODBUS/TCP                  | Write: 100W<br>Read: 125W       |  |  |
| Automatic Receive                         | MEMOBUS                     | Provided                        |  |  |
|                                           | Extended MEMOBUS            | Provided                        |  |  |
|                                           | MELSEC                      | Provided                        |  |  |
|                                           | MODBUS/TCP                  | Provided                        |  |  |
| Non-procedure Receive Bu                  | ffer Mode Selection *3      | Provided                        |  |  |
| Simple Function for Connec                | cting with Engineering Tool | Provided                        |  |  |

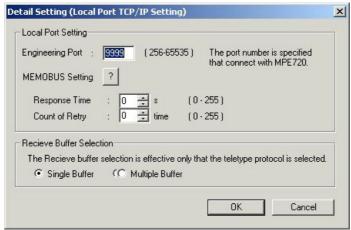
#### \* 1. Communication Interface

The discrimination between 10Base-T/100Base-TX and full-duplex/half-duplex is done by 218IFA based on the remote device. When connecting to a device without automatic negotiation function, set the remote device to half-duplex mode.

#### Correspondence of Communication Mode

|                          | Remote Device                |                                                 |                         |                                                   |                           |  |
|--------------------------|------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------|--|
| 218IFA Module            | Automatic<br>Negotiation     | 10Base-T<br>Half-duplex                         | 10Base-T<br>Full-duplex | 100Base-TX<br>Half-duplex                         | 100Base-TX<br>Full-duplex |  |
| Automatic<br>Negotiation | Depends on the remote device | Communicates in<br>10Base-T<br>half-duplex mode | Unable to communicate   | Communicates in<br>100Base-TX<br>half-duplex mode | Unable to communicate     |  |

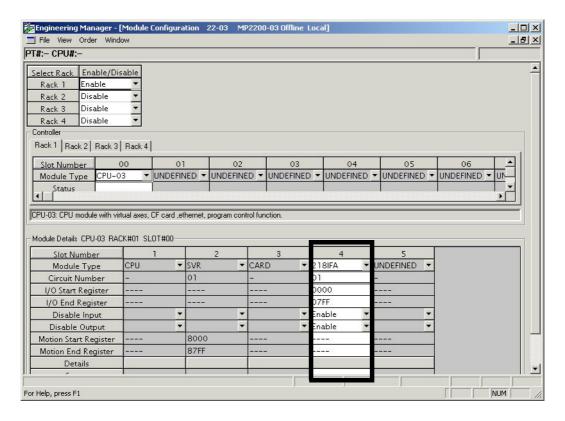
#### \* 2. Communication Protocols


- TCP(Transmission Control Protocol): Connection-oriented transport layer protocol
- UDP(User Datagram Protocol): Connectionless transport layer protocol
- IP(Internet Protocol): Protocol for establishing a communication link between computers
- ICMP(Internet Control Message Protocol): Error control protocol for IP protocol
- ARP(Address Resolution Protocol): Address resolving protocol. Protocol for converting IP address into MAC address

2.5.6 218IFA Module (Ethernet)

\* 3. Non-procedure Receive Buffer Mode Selection

When the non-procedure application protocol of the 218IFA is used, either a single buffer or multiple buffers can be selected for the receive buffers in the 218IFA.


If multiple buffers are selected, 20 data items per connection can be processed at the same time with data continuously received at an interval shorter than the startup interval of the MSG-RCV function.



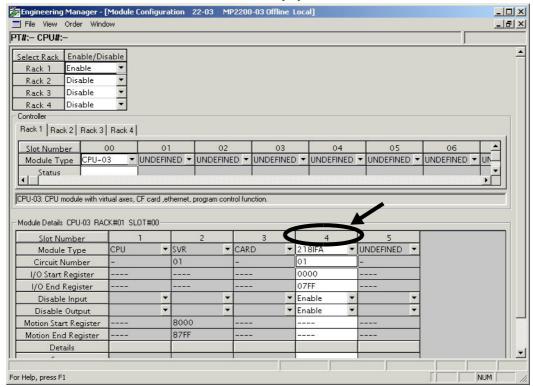
# (3) Module Configuration Definition

## [a] Module Configuration Window Details

Click **CPU-03** in the **Controller** area to display the details of the Basic Modules' functions in the **Module Details** area. The cell No.4 provides a detailed definition of 218IFA.



Items displayed in the **Module Details** area show the following meanings:

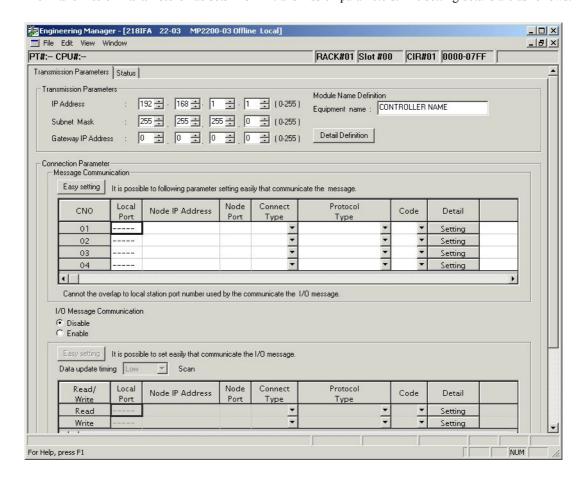

| Items                 | Descriptions                                                                                                                   | Change |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|
| Slot Number           | Sub-slot number. Double-click it to open the 218IFA detailed definition window.                                                | _      |
| Module Type           | A module name is shown. Changing the name to UNDEFINED enables you to disable 218IFA functions.                                | √      |
| Circuit Number        | Module's line number (valid range: 01-08)                                                                                      | V      |
| I/O Start Register    | Start register of the I/O register used in the I/O message communication of 218IFA (valid range: 0000-7FFFh, size: 800h words) | √      |
| I/O End Register      | End register of the I/O register used in the I/O message communication of 218IFA (valid range: 0000-7FFFh, size: 800h words)   | √      |
| Disable Input         | Input Enable/Disable.                                                                                                          | V      |
| Disable Output        | Output Enable/Disable.                                                                                                         | 1      |
| Motion Start Register | Not used. Fixed at "".                                                                                                         | _      |
| Motion End Register   | Not used. Fixed at "".                                                                                                         | -      |
| Details               | Not used.                                                                                                                      | -      |
| Status                | 218IFA module status in online mode.                                                                                           | _      |

<sup>√:</sup> Available, –: Not available

## (4) 218IFA Module Detailed Definition Window

## [a] Displaying the 218IFA Module Detailed Definition Window

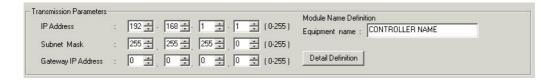
Select **CPU-03** in the **Controller** Area of the **Module Configuration** Window and then double-click the **Slot Number** cell for the 218IFA Module in the **Module Details** Area to display the detailed definition for the 218IFA Module.




#### [b] 218IFA Module Detailed Definition Window

The 218IFA Module detailed definition window is composed of **Transmission Parameter** and **Status** Tabs, and each tab is changed with a click.

#### 1. Transmission Parameters Tab

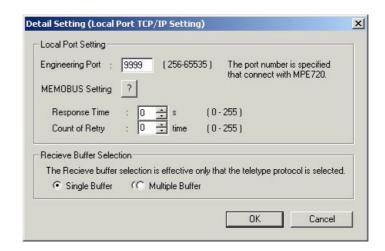

The Transmission Parameters Tab sets 218IFA transmission parameters. The setting details are as follows:



2.5.6 218IFA Module (Ethernet)

# ■ Transmission Parameters Setting Items

Sets local transmission parameters for 218IFA.

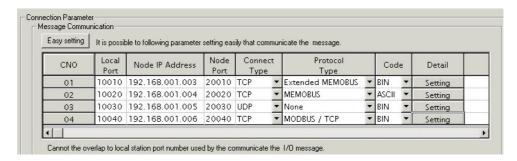



The following table shows each setting item.

| Item                                   | Setting Range                       | Details                                                                                                                                                                                                                                                                                                                                                                             | Default            |
|----------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| IP Address                             | 0.0.0.1 to<br>255.255.255.254       | Sets 218IFA IP address. However, the following addresses are excluded:  127.xxx.xxx.xxx xxx.xxx.xxx.000 xxx.xxx.xxx                                                                                                                                                                                                                                                                 | 192.168.001.001    |
| Subnet Mask                            | 0.0.0.0 to<br>255.255.255.254       | Sets the 218IFA subnet mask.                                                                                                                                                                                                                                                                                                                                                        | 255.255.255.000    |
| Gateway IP Address (router IP address) | 0.0.0.0 to<br>255.255.255.254       | Sets the 218IFA default gateway IP address. However, the following addresses are excluded:  127.xxx.xxx.xxx  xxx.xxx.xxx.000 (except 000.000.000.000)  xxx.xxx.xxx.255  When you do not use it, set it to 000.000.000.000.                                                                                                                                                          | 000.000.000.000    |
| Equipment Name                         | Up to 16 single-<br>byte characters | 218IFA can be any name.  The name specified here is displayed as a search result in the Module name field of Search Controller list when running the Search in the Communications Setting Dialog Box of MPE720 Ver.6.  **Communication Setting**  Set the communication setting Communication port **3 : Ethernet(LP) (IP:192.168.1.2) ** Setting Communication port **  IP address | CONTROLLER<br>NAME |
| Detailed Definition                    | _                                   | Opens the dialog box for setting the engineering communication with MPE720 and the MEMOBUS communication.                                                                                                                                                                                                                                                                           | -                  |

# ■ Detail Setting Dialog Box of Transmission Parameters Setting

Sets the engineering communication with MPE720 and the message communication.




The following table shows each setting item.

| Item             | Setting Range      | Details                                                                                                                                                                                                                                                                                                                                                                                                                             | Default |
|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Engineering Port | 256 to 65535       | Specify the 218IFA port number used in the engineering communication with MPE720.  Note: When changing this setting, you must also change the engineering port value in the logical port setting detailed window of the MPE720 communication process. The port number cannot be 9998 or 10000.                                                                                                                                      | 9999    |
| Response Time    | 0 to 255<br>(sec)  | Specify the wait time until a remote response is returned after sending a command, when carrying out a message communication using MSG-SND function. (value zero waits infinitely.)  If the <b>Count of Retry</b> is zero, set <b>Response Time</b> to zero.  Note: If no response is returned after the setting period expires, a time-out occurs, retry the transmission the number of times specified by <b>Count of Retry</b> . | 0       |
| Count of Retry   | 0 to 255<br>(time) | Specify the command retransmit number of times when a timeout is detected after setting period of <b>Response Time</b> expires.  Note: If no response is returned after as many retries as the retransmit number of times, an error is returned to the MSG-SND function.                                                                                                                                                            | 0       |

#### ■ Message Communication Item of Connection Parameter Setting

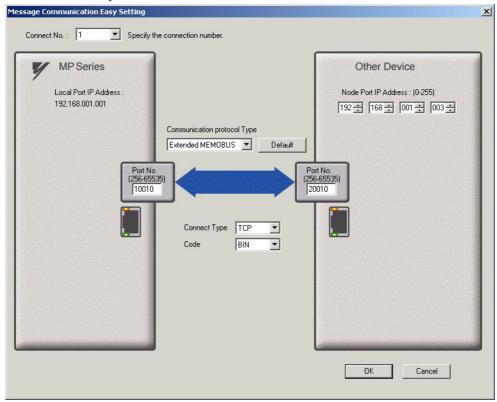
Sets the connection parameters for the message communication using MSG-SND/MSG-RCV function and the message communication using automatic receive function.



The following table shows each setting item.

| Item                            | Setting Range                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Details                                                                                                                                                                                                                                                                                                                                     | Default             |  |
|---------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Easy Setting                    | _                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Communication Easy Setting</b> Dialog Box for meters. The content of the selected connection                                                                                                                                                                                                                                             | _                   |  |
| CNO<br>(Connection Num-<br>ber) | 1 to 4                                                             | In 218IFA Ethernet<br>guished by their con<br>This connection nur<br>(PARAM02) of the<br>MSG-RCV function                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                           |                     |  |
| Local Port                      | 256 to 65535                                                       | establishes a messar<br>this port number on<br>number of this conn<br>To delete the port no                                                                                                                                                                                                                                                                                                                                                                       | Specify the 218IFA port number for each connection. 218IFA establishes a message communication with the connection with this port number only. Set an unique channel number for the port number of this connections.  To delete the port number, enter zero.  Note: When the connection type = UDP, the port number cannot be 9998 or 10000 |                     |  |
| Node IP Address                 | 0.0.0.0 to<br>255.255.255.254                                      | Set the remote IP ac<br>lowing addresses ar<br>127.xxx.xxx.xxx<br>xxx.xxx.xxx.000<br>xxx.xxx.xxx                                                                                                                                                                                                                                                                                                                                                                  | 000.000.000.0                                                                                                                                                                                                                                                                                                                               |                     |  |
| Node Port                       | 0 and<br>256 to 65535                                              | remote IP address a                                                                                                                                                                                                                                                                                                                                                                                                                                               | Specify the remote port number for each connection. A pair of remote IP address and remote port number must not be duplicated. Note: In case of "Unpassive open mode," set it to zero.                                                                                                                                                      |                     |  |
| Connect Type                    | TCP,<br>UDP                                                        | UDP: User datagr                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on control protocol ram protocol                                                                                                                                                                                                                                                                                                            | ТСР                 |  |
| Protocol Type                   | Extended<br>MEMOBUS,<br>MEMOBUS,<br>MELSEC,<br>None,<br>MODBUS/TCP | Select an application layer protocol.  Protocol Type Overview  Extended MEMOBUS Yaskawa's Extended MEMOBUS protocol.  MEMOBUS Yaskawa's MEMOBUS protocol.  Ethernet I/F protocol for the sequencer (A series) manufactured by Mitsubishi Electric Corporation.  Non-procedure General-purpose message communication.  Transmits and receives continuous data intact in the specified register.  MODBUS/TCP Industrial Ethernet protocol proposed by Modicon, Inc. |                                                                                                                                                                                                                                                                                                                                             | Extended<br>MEMOBUS |  |

# (cont'd)


| Item                                 | Setting Range                                                         |                                                                                       | Detai                                                                                                                          | ls               |                                                | Default |  |
|--------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------|---------|--|
|                                      |                                                                       |                                                                                       | Select a code type for the message communication data.  Depending on protocol type, available codes are restricted as follows: |                  |                                                |         |  |
|                                      |                                                                       | Drete eal Ture                                                                        |                                                                                                                                | Code             |                                                |         |  |
|                                      |                                                                       | Protocol Type                                                                         | ASCII                                                                                                                          | BIN              | RTU                                            |         |  |
| Code                                 | ASCII<br>BIN                                                          | Extended<br>MEMOBUS                                                                   | V                                                                                                                              | $\sqrt{}$        | -                                              | ASCII   |  |
|                                      | RTU                                                                   | MEMOBUS                                                                               | √                                                                                                                              | =                | √                                              |         |  |
|                                      |                                                                       | MELSEC                                                                                | √                                                                                                                              | $\sqrt{}$        | -                                              |         |  |
|                                      |                                                                       | Non-procedure                                                                         | √                                                                                                                              | V                | _                                              |         |  |
|                                      |                                                                       | MODBUS/TCP                                                                            | =                                                                                                                              | V                | _                                              |         |  |
|                                      |                                                                       | √ : Available, – : No                                                                 | t available                                                                                                                    |                  | <u>.                                      </u> |         |  |
| Detail<br>(Automatically<br>Receive) | -                                                                     | Opens the <b>Detail set</b> ble-click this button. Note: The automatic when the conne | receive function                                                                                                               | on is valid only |                                                | -       |  |
| Remote<br>Station Name               | Up to 32 single-<br>byte characters<br>(16 double-byte<br>characters) | Any text can be entered as a connection comment.                                      |                                                                                                                                |                  |                                                | Blank   |  |

Note: For the 218IFC of the CPU-04, the setting range for the connection number is larger, i.e., 1 to 20.

## ■ Message Communication Easy Setting Dialog Box

Graphically sets connection parameters for each connection.

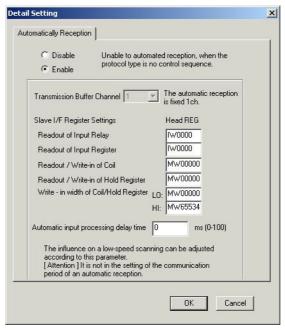
Basically, the same settings as those used for **Message Communication** in the **Connection Parameter** are used. If this dialog box is opened before the items in **Communication Parameter** have been set, the default value for each connection will be automatically stored.



The following table provides the default values for each connection stored when the items in **Communication Parameter** are not yet set and this dialog box is opened.

|                                | Default                 |                         |                         |                         |  |  |
|--------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|--|
| Item                           | Connection<br>Number 01 | Connection<br>Number 02 | Connection<br>Number 03 | Connection<br>Number 04 |  |  |
| Local Port Number              | 10001                   | 10002                   | 10003                   | 10004                   |  |  |
| Node IP Address                | 192.168.1.2             | 192.168.1.3             | 192.168.1.4             | 192.168.1.5             |  |  |
| Node Port Number               | 10001                   | 10002                   | 10003                   | 10004                   |  |  |
| Communication<br>Protocol Type | Extended MEMOBUS        |                         |                         |                         |  |  |
| Connect Type                   | TCP                     |                         |                         |                         |  |  |
| Code                           |                         | BIN                     |                         |                         |  |  |

Note: For the 218IFC of the CPU-04, the setting range for the connection number is larger, i.e., 1 to 20.


By clicking the **Default** Button, default values are set for each data code type according to the selected communication protocol type.

The following table shows the default values for **Code** (each data code type).

| Communication Protocol Type | Default for Data Code Type |
|-----------------------------|----------------------------|
| Extended MEMOBUS            | BIN                        |
| MEMOBUS                     | RTU                        |
| MELSEC                      | BIN                        |
| Non-procedure               | BIN                        |
| MODBUS/TCP                  | BIN                        |

#### ■ Automatically Reception Dialog Box for Message Communication

The automatic receive function can be enabled only for connections where the connection number = 1. The automatic receive function enables the system to automatically run a function equivalent to the MSG-RCV function.

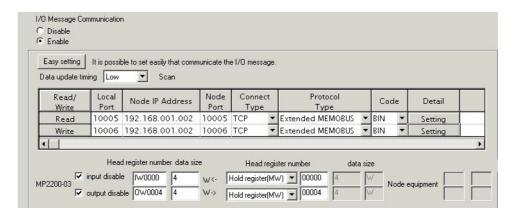


The following table explains each setting item.

| Item                                                            | Setting Range                 | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default |
|-----------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Automatically Reception Enable/Disable  The setting items below | Enable/Disable                | Note: When the local port number is not yet set, it becomes invalid regardless of the enable/disable selection.  when the Automatically Reception is set to "Enable."                                                                                                                                                                                                                                                                                                                              | Enable  |
| The county terms better                                         |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Transmission Buffer<br>Channel                                  | Cannot be set<br>(fixed to 1) | The communication buffer channel is usually used for data exchanged between the MSG-SND/MSG-RCV function and 218IFA.  The communication buffer channel is associated with the connection according to the input item "CH-NO" for the MSG-SND/MSG-RCV function and node connection number (PARAM02) setting for the parameter list (PARAM).  When automatic reception is running, the function equivalent to the MSG-RCV function is realized by using the communication buffer channel number "1." | 1       |
| Readout of Input<br>Relay                                       | IW0000 to<br>IWFFFF           | Set a start register of the input relay used for the automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                                          | IW0000  |
| Readout of Input<br>Register                                    | IW0000 to<br>IWFFFF           | Set a start register of the input register used for the automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                                       | IW0000  |
| Readout/Write-in of Coil                                        | MW00000 to<br>MW65534         | Set a start read/write register of the coil used for the automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                                      | MW00000 |
| Readout/Write-in of Hold Register                               | MW00000 to<br>MW65534         | Set a start read/write register of the holding register used for automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                              | MW00000 |
| Write-in Width of<br>Coil/Hold Register<br>(LO)                 | MW00000 to<br>MW65534         | Set a write range (LO) of the coil/holding registers used for automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                                 | MW00000 |
| Write-in Width of<br>Coil/Hold Register<br>(HI)                 | MW00000 to<br>MW65534         | Set a write range (HI) of the coil/holding registers used for the automatic reception.                                                                                                                                                                                                                                                                                                                                                                                                             | MW65534 |

# 2.5.6 218IFA Module (Ethernet)

The following table provides the valid setting items for each communication protocol type.


|                                           | Communication Protocol Type |         |           |                    |                |  |
|-------------------------------------------|-----------------------------|---------|-----------|--------------------|----------------|--|
| Setting Item                              | Extended<br>MEMOBUS         | MEMOBUS | MELSEC    | Non-proce-<br>dure | MODBUS/<br>TCP |  |
| Readout of Input Relay                    | √                           | √       | -         | -                  | V              |  |
| Readout of Input Register                 | √                           | √       | -         | -                  | $\sqrt{}$      |  |
| Readout/Write-in of Coil                  | √                           | √       | -         | -                  | $\sqrt{}$      |  |
| Readout/Write-in of Hold Register         | √                           | √       | $\sqrt{}$ | -                  | $\sqrt{}$      |  |
| Write-in Width of Coil/Hold Register (LO) | √                           | V       | $\sqrt{}$ | _                  | $\sqrt{}$      |  |
| Write-in Width of Coil/Hold Register (HI) | V                           | √       | $\sqrt{}$ | =                  | V              |  |

Note: √: Enable -: Disable

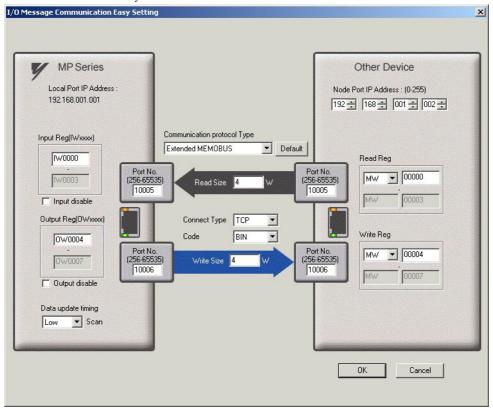
#### ■ I/O Message Communication Item Connection Parameter Setting

Sets connection parameters for I/O message communication.

I/O message communication exchanges the data using I/O images with the remote device.



The following table explains each setting item.


| Item                                           | Setting Range                                                                                  | Details                                                                                                                                                                                                                                                                                               | Default       |  |  |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
| I/O Message<br>Communication<br>Enable/Disable | Enable/Disable                                                                                 | Select whether to enable I/O message communications.                                                                                                                                                                                                                                                  | Disable       |  |  |  |
| The setting items beli                         | The setting items below can only be set when the I/O Message Communication is set to "Enable." |                                                                                                                                                                                                                                                                                                       |               |  |  |  |
| Easy Setting                                   | _                                                                                              | Opens the <b>Message Communication Easy Setting</b> Dialog Box for the read/write connection parameters.                                                                                                                                                                                              | _             |  |  |  |
| Data Update Timing                             | High Scan/ Low<br>Scan                                                                         | Set when to update the I/O data for the controller side when the I/O message communication is established.                                                                                                                                                                                            | L Scan        |  |  |  |
| Read/Write                                     | _                                                                                              | In 218IFA Ethernet communications, remote stations are distinguished by their connection numbers.  I/O message communications have a connection for each read/write.                                                                                                                                  |               |  |  |  |
| Local Port                                     | 256 to 65535                                                                                   | Specify the 218IFA port number for each read/write connection.  To delete the port number setting, enter zero.  To use only a read or a write connection, set the other port number to zero to delete the connection.  Note: When the connection type = UDP, the port number cannot be 9998 or 10000. | 0             |  |  |  |
| Node IP Address                                | 0.0.0.1 to<br>255.255.255.254                                                                  | Set a remote IP address for both read and write connections. Set a common value for both read and write. However, the following addresses cannot be used:  127.xxx.xxx.xxx xxx.xxx.xxx.000 xxx.xxx.xxx                                                                                                | 000.000.000.0 |  |  |  |
| Node Port                                      | 256 to 65535                                                                                   | Specify the remote port number for each read/write connection.  A pair of a remote IP address and remote port number must not be duplicated.                                                                                                                                                          | 0             |  |  |  |
| Connect Type                                   | TCP<br>UDP                                                                                     | Select a transport layer protocol.  TCP: Transmission control protocol  UP: User datagram protocol                                                                                                                                                                                                    | ТСР           |  |  |  |

| Item                                           | Setting Range                                     |                                                                                                                                    | Detail                                                    |                                    |                                          | (cont'd)  Default          |
|------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------------|----------------------------|
| item                                           | Setting realige                                   | Select an application                                                                                                              |                                                           | <u> </u>                           |                                          | Delault                    |
|                                                |                                                   |                                                                                                                                    | I ayer protocol.                                          | Overview                           |                                          |                            |
|                                                |                                                   | Protocol Type Extended                                                                                                             |                                                           |                                    |                                          |                            |
|                                                | Extended<br>MEMOBUS<br>MEMOBUS                    | MEMOBUS Yaskawa's Extended MEMOBUS protocol.                                                                                       |                                                           |                                    |                                          |                            |
| Protocol Type                                  |                                                   | MEMOBUS                                                                                                                            | Yaskawa's M                                               | Extended                           |                                          |                            |
| , , , , , , , , , , , , , , , , , , ,          | MELSEC<br>MEMOBUS/<br>TCP                         | MELSEC                                                                                                                             |                                                           | actured by Mi                      | e sequencer (A<br>tsubishi Elec-         | MEMOBUS                    |
|                                                |                                                   | MODBUS/TCP                                                                                                                         | Industrial Eth<br>Modieon, Inc                            | ernet protocol                     | proposed by                              |                            |
|                                                |                                                   | Select a code type fo<br>Depending on protoc<br>lows:                                                                              |                                                           |                                    |                                          |                            |
|                                                |                                                   | Protocol Type                                                                                                                      |                                                           | Code                               |                                          |                            |
|                                                | D.I.                                              |                                                                                                                                    | ASCII                                                     | BIN                                | RTU                                      |                            |
| Code                                           |                                                   | Extended<br>MEMOBUS                                                                                                                | √                                                         | $\checkmark$                       | -                                        | ASCII                      |
|                                                | RTU                                               | MEMOBUS                                                                                                                            | <b>√</b>                                                  | =                                  | <b>√</b>                                 |                            |
|                                                |                                                   | MELSEC                                                                                                                             | V                                                         | $\sqrt{}$                          | -                                        |                            |
|                                                |                                                   | MODBUS/TCP                                                                                                                         | -                                                         | $\sqrt{}$                          | -                                        |                            |
|                                                | √ : Available  -: Not available                   |                                                                                                                                    |                                                           |                                    |                                          |                            |
| Detail                                         | Up to 32 single-                                  | Any text can be enter                                                                                                              | red as a connect                                          | tion comment.                      |                                          |                            |
| (Remote Station<br>Name)                       | byte characters<br>(16 double-byte<br>characters) | -                                                                                                                                  |                                                           |                                    |                                          | Blank                      |
| Input Disable                                  | Enable/disable                                    | Select whether to uponication.                                                                                                     | date the input da                                         | ata in the I/O n                   | nessage commu-                           | enable                     |
| Output Disable                                 | Enable/disable                                    | Select whether to uponication.                                                                                                     |                                                           |                                    |                                          | enable                     |
| Head Register                                  | IW0000 to<br>IW7FFF                               | Note1: "□□□□" represents a start I/O register number specified by the 218IFA cell in the Module Details field of the <b>Module</b> |                                                           |                                    |                                          | IW□□□□<br>(Note1)          |
| Number Data Size                               |                                                   | Configuration Window.  Set a start address of the MP2200 side output register for referenc-                                        |                                                           |                                    |                                          |                            |
|                                                | OW0000 to<br>OW7FFF                               | ing the data written in Note2: "□□□□" re                                                                                           | n the remote de<br>epresents a start<br>a cell in the Mod | vice.<br>I/O register nu           |                                          | OW□□□□<br>+ 4<br>(Note2)   |
| Data Sizo                                      | Varies according                                  | Specify the data size                                                                                                              | (word) read fro                                           | m the remote                       | device.                                  | 4                          |
| Data Size                                      | to protocol type                                  | Specify the data size                                                                                                              | (word) written                                            | in the remote                      | device.                                  | 4                          |
| Head Register                                  | Varies according                                  | Specify the register to device to read.                                                                                            | ype and the star                                          | t register addre                   | ess for the remote                       | Varies accord-             |
| Number for the Node Equipment to protocol type |                                                   | Specify the register type and the start register address for the remote device to write.                                           |                                                           |                                    |                                          | ing to proto-<br>col type. |
| Data Size of the                               | Display only                                      | Generally, the same of By way of exception and a bit device such relay (M)/ link relay displayed in bits.                          | , when MELSE as input relay (                             | C is selected for (X)/ output rela | or <b>Protocol Type</b> by (Y)/ internal | 4                          |
| Node Equipment  Display only                   |                                                   | Generally, the same of By way of exception and a bit device such relay (M)/ link relay displayed in bits.                          | , when MELSE as input relay (                             | C is selected for (X)/ output rela | or <b>Protocol Type</b> by (Y)/ internal | 4                          |

# ■ I/O Message Communication Easy Setting Dialog Box

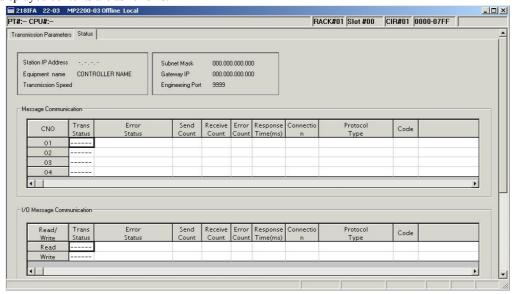
Graphically adjusts the setting for the read/write connection parameters.

Basically, the same settings as those used for I/O Message Communication in the Connection Parameter are used. If this dialog box is opened before the items in Communication Parameter have been set, the default values for read/write connection will be automatically stored.



The following table provides the default values for each connection stored when the **Connection Parameter** are not yet set and this dialog box is opened.

|                              | Item                        |       | Default                                                                                                                                  |  |  |  |
|------------------------------|-----------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                              | Local Port IP Address       |       | Values set in <b>Transmission Parameter</b> setting items are shown.                                                                     |  |  |  |
|                              | Local Port                  | Read  | 10005                                                                                                                                    |  |  |  |
|                              | Number                      | Write | 10006                                                                                                                                    |  |  |  |
| MP Series                    | Input Reg (Registe (IW□□□□) | r)    | Start I/O register number specified in the 218IFA cell in the <b>Module Details</b> field of the <b>Module Configuration</b> Window.     |  |  |  |
|                              | Input Disable               |       | Not checked (enable)                                                                                                                     |  |  |  |
| Output Reg(Register (OWDDDD) |                             | er)   | Start I/O register number specified in the 218IFA cell in the <b>Module Details</b> field of the <b>Module Configuration</b> Window + 4. |  |  |  |
|                              | Data Update Timin           | g     | Low                                                                                                                                      |  |  |  |
|                              | Node Port IP Addre          | ess   | 192.168.1.2                                                                                                                              |  |  |  |
|                              | Node Port                   | Read  | 10005                                                                                                                                    |  |  |  |
| Other Device                 | Number                      | Write | 10006                                                                                                                                    |  |  |  |
|                              | Read Reg (Registe           | er)   | MW00000                                                                                                                                  |  |  |  |
|                              | Write Reg (Registe          | er)   | MW00004                                                                                                                                  |  |  |  |
| Communication Protocol Type  |                             |       | Extended MEMOBUS                                                                                                                         |  |  |  |
| Read Size                    |                             |       | 4                                                                                                                                        |  |  |  |
| Write Size                   |                             |       | 4                                                                                                                                        |  |  |  |
| Connect Type                 |                             |       | TCP                                                                                                                                      |  |  |  |
| Code                         |                             |       | BIN                                                                                                                                      |  |  |  |


# 2.5.6 218IFA Module (Ethernet)

In addition, click the **Default** Button to set the default values for data code type, local I/O register setting, read/write size, and node read/write register setting according to the selected communication protocol type. The following table provides these default values.

| Communication       | Default           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                                       |
|---------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------|
| Protocol Type       | Data Code<br>Type | Local Input/Output Register Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Read/Write Size       | Node Read/Write Register<br>Setting                   |
| Extended<br>MEMOBUS | BIN               | $\overline{\text{IW}}$ $\overline{\text{O}}$ $\text$ | 4 (read)<br>4 (write) | MW0000 to MW0003 (read)<br>MW0004 to MW0007 (write)   |
| MEMOBUS             | RTU               | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Same as above         | Same as above                                         |
| MELSEC              | BIN               | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Same as above         | D0000 to D0003 (read)<br>D0004 to D0007 (write)       |
| MODBUS/TCP          | BIN               | Same as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Same as above         | 4X00001 to 4X0004 (read)<br>4X00005 to 4X0008 (write) |

## 2. Status Tab

In the **Status** Tab, each setting for 218IFA transmission definition and transmission status is shown. The displayed contents are as follows:



#### ■ Transmission Parameter Item

| Item               | Displayed Content                                                                                                                      | Default         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Station IP Address | Displays local IP address specified in the <b>Transmission Parameters</b> Tab.                                                         | 000.000.000.000 |
| Equipment Name     | Displays equipment name specified in the <b>Transmission Parameters</b> Tab. When the equipment name is not yet set, nothing is shown. | NULL            |
| Transmission Speed | Displays transmission rate retrieved from the status information. (Fixed at Automatic)                                                 | Automatic       |
| Subnet Mask        | Displays a subnet mask set in the <b>Transmission Parameters</b> Tab.                                                                  | 000.000.000.000 |
| Gateway IP         | Displays a default gateway IP address set in the <b>Transmission Parameters</b> Tab.                                                   | 000.000.000.000 |
| Engineering Port   | Displays a port number set in the detailed definition of the <b>Transmission Parameters</b> Tab.                                       | 9999            |

#### ■ Message Communication and I/O Message Communication Items

| Item                           | Displayed Content                                                                                                                                             | Default |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Trans (Transmission)<br>Status | Displays the transmission status for each connection.                                                                                                         | _       |
| Error Status                   | If an error is indicated in the transmission status, the error details are shown.                                                                             | _       |
| Send Count                     | Displays the number of packets transmitted to the remote station.                                                                                             | _       |
| Receive Count                  | Displays the number of packets received from the remote station.                                                                                              | _       |
| Error Count                    | Displays the number of errors that occurred in each connection.                                                                                               | _       |
| Response Time (ms)             | Displays the time taken to receive a response after issuing a command in the MSG-SND function of the message communication and the I/O message communication. | =       |
| Connection                     | Displays the connection type set in the <b>Transmission Parameters</b> Tab.                                                                                   | _       |
| Protocol Type                  | Displays the protocol of the connection parameter set in the <b>Transmission Parameters</b> Tab.                                                              | _       |
| Code                           | Displays the code type of the data set in the <b>Transmission Parameters</b> Tab.                                                                             | _       |
| Detail (Node Station<br>Name)  | Displays the remote station name set in the <b>Transmission Parameters</b> Tab.                                                                               | _       |

# 2.5.6 218IFA Module (Ethernet)

Note: 1. Trans (Transmission) Status
In online mode, displays the transmission status for each connection.

| Transmission Status | State                                                |
|---------------------|------------------------------------------------------|
| IDLE                | IDLE                                                 |
| WAIT                | WAIT (waiting for connection)                        |
| CONNECT             | CONNECT (capable of transmitting and receiving data) |
| _                   | Unused connection                                    |

#### 2. Error Status

If an error is indicated in the transmission status, the error details are shown.

| Error Status                  | State                                                                                                 | Remarks                                                                                                                                                                                                               |
|-------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No Error                      | Normal                                                                                                | _                                                                                                                                                                                                                     |
| Socket Generation Error       | System error                                                                                          | Socket generation failed                                                                                                                                                                                              |
|                               | Error in setting the local port num-                                                                  | Bind error (duplicated port number)                                                                                                                                                                                   |
| Local Port Number Error       | ber (the same address is bound while<br>disconnecting the TCP connection)                             | A bind error occurred while aborting using the MSG function and ending the connection.  The error occurs if Execute is turned ON within one minute after an Abort is completed.                                       |
|                               |                                                                                                       | Before the connection was completed, another function issued a command to the same remote station.                                                                                                                    |
| Socket Attribute Change Error | System error (in TCP)                                                                                 | An error occurred while setting a socket attribute.                                                                                                                                                                   |
| Connection Error              | Connection error (when actively open in TCP, a connection is rejected by the node station)            | Tried to connect using the MSG-SND function, but the connection was rejected by the remote station, and the command was reset.                                                                                        |
| (M-SND)                       |                                                                                                       | When disconnecting the cable, retried connecting for one minute (default value) without a response.                                                                                                                   |
| Connection Error<br>(M-RCV)   | Connection error (when passively open in TCP)                                                         | An error occurred while receiving the connection from the MSG-RCV function.                                                                                                                                           |
| System Error                  | System error                                                                                          | A socket polling (select specification) error occurred while receiving data.                                                                                                                                          |
| Data Transmit Error<br>(TCP)  | Data transmit error (in TCP, either there is no node station or a node station did not startup.)      | A response transmit error occurred in the MSG-RCV function. An error also occurred in the MSG-SND function.  An error occurred only in TCP when there was no node station to transmit or a node station was rebooted. |
| Data Transmit Error (UDP)     | Data transmit error (in UDP)                                                                          | A transmit request was issued to a nonexistent socket.                                                                                                                                                                |
| Data Receive Error (TCP)      | Data receive error (in TCP, a request to disconnect the connection is received from the node station) | An error occurred when disconnecting the connection from the node station. It also may occur even when close is processed properly.                                                                                   |
| Data Receive Error (UDP)      | Data receive error (in UDP)                                                                           | A data receive command was issued to a nonexistent socket.                                                                                                                                                            |
| Socket Option Change<br>Error | System error                                                                                          | Error when changing a socket option                                                                                                                                                                                   |
| Data Change Error             | Data change error                                                                                     | Protocol change error                                                                                                                                                                                                 |

# 2.5.7 M-EXECUTOR Module (Motion Program Executor)

This section explains the M-EXECUTOR Module (motion program executor) function and its detail window.

### (1) M-EXECUTOR Module Function Overview

The M-EXECUTOR Module is a software module that executes a motion or sequence program.

The M-EXECUTOR Module enables the following features:

#### Executing a motion program without using a ladder program

Conventionally, in order to execute a motion program, you need to incorporate an MSEE command into a ladder program. The M-EXECUTOR Module allows you to execute the motion program without incorporating the MSEE command into the ladder program.

Note: You can incorporate a MSEE command into the ladder program as ever.

#### · Controlling a motion program without using a ladder program

You can map any register to the control signal of the motion program registered in the M-EXECUTOR Module. So, without a ladder program, this allows you to directly control a motion program from a host PLC or other device.

#### · Describing sequence control in motion language

As a new programming method called sequence programming has been added to the CPU-03 Module in the MP2200 Series.

A sequence program is a scan execution type program where a process is completed with one scan. It employs a text language similar to a motion program.

You can use the sequence program as an alternative to the ladder program.

For information about commands available for sequence programming, refer to the *Machine Controller MP2000 Series Users Manual Motion Programming* (manual no.: SIEP C880700 38).

# (2) M-EXECUTOR Module Specification

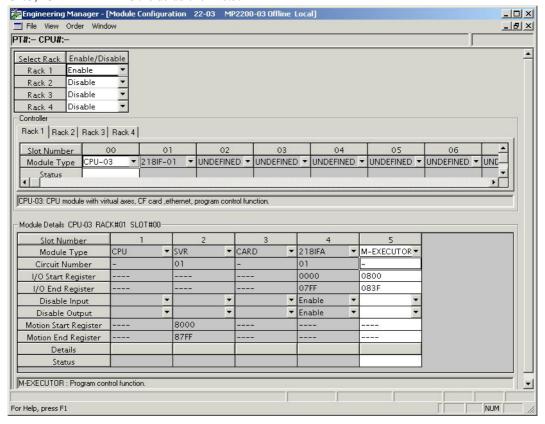
## [a] Programs Capable of Registration in M-EXECUTOR

The following table shows programs capable of registration in M-EXECUTOR.

| Program Type        |           | Number of Registrations | Remarks                      |
|---------------------|-----------|-------------------------|------------------------------|
| Motion Program      |           | 16*                     |                              |
|                     | Startup   | 1                       |                              |
| Sequence<br>Program | Interrupt | Disable                 | * Up to 16 programs in total |
|                     | H Scan    | 16*                     |                              |
|                     | L Scan    | 16*                     |                              |

# [b] Program Control Method

The following table shows the program control methods registered in M-EXECUTOR.


| Item                                                   | Motion Program                                                                                                                    | Sequence Program                                                    |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Execution Method                                       | Sequential Execution                                                                                                              | Startup: Event driven H Scan: Scan execution L Scan: Scan execution |  |
|                                                        | 1:1 correspondence between the definition number and system work (The number of program definitions is set in the MPE720 window.) |                                                                     |  |
|                                                        | Definition No.   System Work Numb                                                                                                 | per                                                                 |  |
| System Work                                            | No. 1 1                                                                                                                           |                                                                     |  |
|                                                        | No. 2 2                                                                                                                           |                                                                     |  |
|                                                        |                                                                                                                                   |                                                                     |  |
|                                                        | No. 16 16                                                                                                                         |                                                                     |  |
| Program Designation Method                             | Direct or indirect designation                                                                                                    | Direct designation                                                  |  |
| Program Startup Method                                 | Registers the program in the definition and turns ON the start signal                                                             | Starts up when registered in the definition                         |  |
| Override Setting for Interpolation                     | Yes                                                                                                                               | No                                                                  |  |
| I/O Link Definition                                    | Yes                                                                                                                               | No                                                                  |  |
| S Register Report Function of<br>Motion Program Status |                                                                                                                                   | Yes                                                                 |  |
| Number of Parallels                                    | 1 to 8 (4 main parallels × 2 sub parallel                                                                                         | s) 1                                                                |  |
| Execute an Error Drawing when Operation Error Occurred | Yes                                                                                                                               |                                                                     |  |

# (3) Module Configuration Definition

#### [a] Details of Module Configuration Window

Click **CPU-03** in the **Controller** area to display the details of the basic module functions in the **Module Details** area. The cell No.5 provides a detailed definition of M-EXECUTOR.

For CPU-03, "UNDEFINED" is the default for No.5.



Items displayed in the **Module Details** area show the following:

| Item                  | Description                                                                                       | Change       |
|-----------------------|---------------------------------------------------------------------------------------------------|--------------|
| Slot Number           | Sub-slot number. Double-click to open the M-EXECUTOR detailed definition window.                  | _            |
| Module Type           | A module name appears. Changing the name to UNDEFINED enables you to disable M-EXCUTOR functions. | √            |
| Circuit Number        | Not used. Fixed to "-".                                                                           | _            |
| I/O Start Register    | Start register of the M-EXECUTOR I/O register (valid range: 0000-7FFFh, size: 40h words)          | √            |
| I/O End Register      | End register of the M-EXECUTOR I/O register (valid range: 0000-7FFFh, size: 40h words)            | $\checkmark$ |
| Disable Input         | Not used. Fixed at "blank".                                                                       | _            |
| Disable Output        | Not used. Fixed at "blank".                                                                       | _            |
| Motion Start Register | Not used. Fixed at "".                                                                            | _            |
| Motion End Register   | Not used. Fixed at "".                                                                            | _            |
| Details               | Not used.                                                                                         | _            |
| Status                | M-EXECUTOR Module status in online mode.                                                          | _            |

 $<sup>\</sup>sqrt{ }$ : Available, – : Not available

2.5.7 M-EXECUTOR Module (Motion Program Executor)

# ■ I/O Register Details

An I/O register assigned to M-EXECUTOR is used to run a motion program and sequence program, and to monitor a sequence program.

M-EXECUTOR I/O register details are as follows:

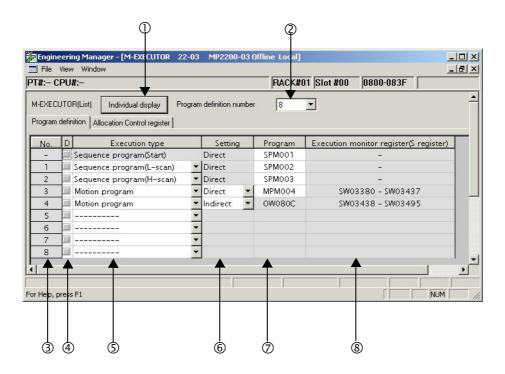
M-EXECUTOR Input Register

| M-EXECUTOR Input Register |            |        |  |
|---------------------------|------------|--------|--|
| M-EXECUTOR Input Register | Item       |        |  |
| IW□□□□ + 0                |            | Status |  |
| IW□□□□ + 1                | Definition | Spare  |  |
| IW□□□□ + 2                | No.1       | Spare  |  |
| IW□□□□ + 3                |            | Spare  |  |
| IW□□□□ + 4                |            | Status |  |
| IW□□□□ + 5                | Definition | Spare  |  |
| IW□□□□ + 6                | No.2       | Spare  |  |
| IW□□□□ + 7                |            | Spare  |  |
|                           | •          |        |  |
|                           | •          |        |  |
|                           | •          |        |  |
| IW□□□□ + 3C               |            | Status |  |
| IW□□□□ + 3D               | Definition | Spare  |  |
| IW□□□□ + 3E               | No.16      | Spare  |  |
| IW□□□□ + 3F               |            | Spare  |  |

M-EXECUTOR Output Register

| M-LALCOTON Output Negister    |            |                |  |  |
|-------------------------------|------------|----------------|--|--|
| M-EXECUTOR<br>Output Register | Item       |                |  |  |
| OW□□□□ + 0                    |            | Program number |  |  |
| OW□□□□ + 1                    | Definition | Control signal |  |  |
| OW□□□□ + 2                    | No.1       | Override       |  |  |
| OW□□□□ + 3                    |            | Spare          |  |  |
| OW□□□□ + 4                    |            | Program number |  |  |
| OW□□□□ + 5                    | Definition | Control signal |  |  |
| OW□□□□ + 6                    | No.2       | Override       |  |  |
| OW□□□□ + 7                    |            | Spare          |  |  |
|                               | •          |                |  |  |
|                               | •          |                |  |  |
|                               | •          |                |  |  |
| OW□□□□ + 3C                   |            | Program number |  |  |
| OW□□□□ + 3D                   | Definition | Control signal |  |  |
| OW□□□□ + 3E                   | No.16      | Override       |  |  |
| Ow□□□□ + 3F                   |            | Spare          |  |  |

# (4) Detailed Definition Window


This section describes the M-EXECUTOR detailed definition window.

## ■ Program Definition Tab (M-EXECUTOR (list) Window)

The **Program definition** Tab allows you to register a motion or sequence program to run.

Programs are executed according to the scan, in ascending numeric order.

A white cell can be set by the user, and a grey cell cannot be set by the user.



- ① Individual display
  Display the **Program execution registry screen** dialog box (M-EXECUTOR (individual display)).
- ② Program definition number
  Sets the number of program definitions to register in the M-EXECUTOR Module.
  The valid range is 0-16 (8 by default).
- No. Shows the program execution order. Processed according to the scan in ascending numeric order.
- ④ D Enables/disables the definition. Uncheck to enable the definition.

#### S Execution type

Sets the program execution type.

| Execution Type               | Program to Execute | Execution Conditions                                                                                                      |
|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
|                              | None               | None (select this to delete the definition)                                                                               |
| Sequence Program (startup)   |                    | Power ON (Executed once only, when power turned ON)                                                                       |
| Sequence Program (L scan)    | Sequence program   | Periodical startup (Executed each low-speed scan)                                                                         |
| Sequence Program<br>(H scan) |                    | Periodical startup (Executed each high-speed scan)                                                                        |
| Motion Program               | Motion program     | Turns ON the program operation start request of the control signal (runs when the program operation start request is ON). |

#### 6 Setting

Sets the a program designation.

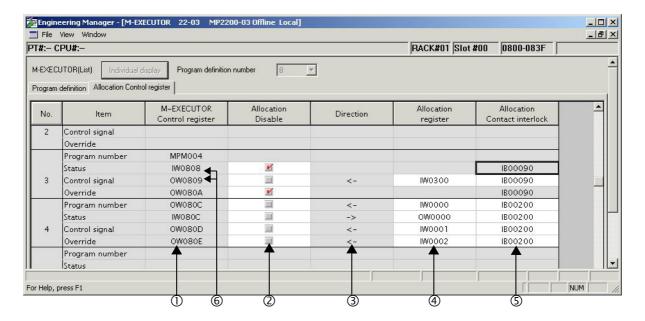
The way to designate a program may differ according to the program.

| Designa-<br>tion Method | Motion<br>Program | Sequence<br>Program | Remarks                                                                                                                               |
|-------------------------|-------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Direct                  | Enable            | Enable              | The way to designate the program number Example: MPM001, SPM002, and so on                                                            |
| Indirect                | Enable            | Disable             | The way to designate the register for storing the program number Example: OW0C0C, and so on (refers to MPM001 by storing 1 in OW0C0C) |

### ⑦ Program

Sets a program number.

| Execution Type                                | Remarks                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sequence Program<br>(startup, L scan, H scan) | Enter "1" and press ENT to automatically input "SPM001." You can save an unregistered program or exit this tab page without setting (blank), but in these cases, the program will not be executed.                                                                                                                               |
| Motion Program                                | Direct designation: Enter "1" and press ENT to automatically input "MPM001." You can save an unregistered program or exit this tab page without setting (blank), but in these cases, the program will not be executed. Indirect designation: O register of M-EXECUTOR Module is automatically set. It cannot be set by the user. |


## ® Execution monitor register (S Register)

When the execution type is set to motion program, the range of the execution monitor registers (S registers) is shown. For more information on the execution monitor register, refer to 5.2.3 (6) Monitor the Motion Program Execution Information using S register.

#### ■ Allocation Control Register Tab

The Allocation Control register Tab Page sets a allocation register.

A white cell can be set by the user, and a shaded cell cannot be set by the user.



#### M-EXECUTOR Control register

Displays an I/O register mapped to the M-EXECUTOR Module. Controls the motion program and monitors the state, using the M-EXECUTOR control register.

| M-EXECUTOR<br>Control Register | Usage                                                                                  |
|--------------------------------|----------------------------------------------------------------------------------------|
| Program Number                 | Sets a program number. This register is used only when set to an indirect designation. |
| Status                         | Monitors the program execution status.                                                 |
| Control Signal                 | Controls the program.                                                                  |
| Override                       | Sets an override value when running a move command for the interpolation system.       |

Note: For details on the M-EXECUTOR control register, refer to items (4) and (5) under 5.2.3 Motion Programs.

#### ② Allocation Disable

Enables/disables the allocation register. Uncheck to enable the definition.

#### 3 Direction

Displays the data I/O direction.

#### 2.5.7 M-EXECUTOR Module (Motion Program Executor)

#### Allocation register

Data is exchanged between mapping and M-EXECUTOR control registers in real-time. Any register can be mapped to the allocation register.

Registers that can be set as a Allocation Register
Word type I, O, M (except the motion register)

#### S Allocation Contact interlock

An allocation contact interlock is used to control the data exchange between the allocation register and M-EXECUTOR control registers. When the allocation contact interlock is ON, data can be exchanged between the allocation register and M-EXECUTOR control registers.

Any register bit can be mapped to the allocation contact interlock.

Registers that can be set as an Allocation Contact Interlock
Bit type I, O, S, M, C (except the motion register)

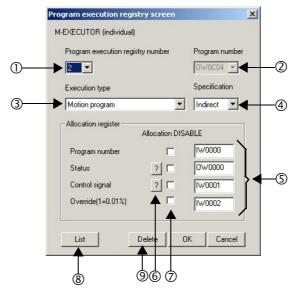
#### Caution

An allocation contact interlock is used to interlock the operation of a motion program. When setting an allocation register, be sure to set the allocation contact interlock.

#### Status, Control Signal Details

Double-click the status and control register to display the bit detail. You can check the signal sequence and status here.

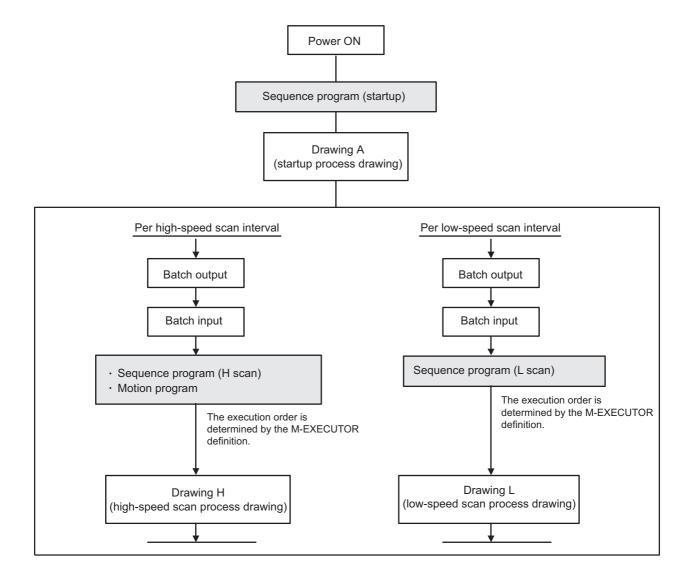
#### • Status


| □ Status                                | IW0C00<br>H0000 |
|-----------------------------------------|-----------------|
| Bit 0 : Running                         | 0               |
| Bit 1 : Pausing                         | 0               |
| Bit 2 : Stopped                         | 0               |
| Bit 4 : Stopped under single block mode | 0               |
| Bit 8 : Alarm                           | 0               |
| Bit 9 : Stopped at break point          | 0               |
| Bit B : Debugging mode                  | 0               |
| Bit D : Start request signal history    | 0               |
| Bit E : No system work error            | 0               |
| Bit F : Main program number limit error | 0               |
| 1                                       |                 |

#### Control Signal

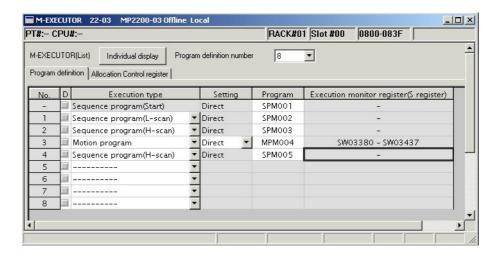
| Task                                               | Task1           |  |  |
|----------------------------------------------------|-----------------|--|--|
| Main program                                       | MPM001 🛅        |  |  |
| ☐ Motion Program Control Signals                   | OW0C01<br>H0000 |  |  |
| Bit 0 : Start request                              | ON              |  |  |
| Bit 1 : Pause request                              | ON              |  |  |
| Bit 2 : Stop request                               | OON             |  |  |
| Bit 3 : Single block mode selection                | OON             |  |  |
| Bit 4 : Single block start request                 | OON             |  |  |
| Bit 5 : Alarm reset request                        | OON             |  |  |
| Bit 6 : Program continuous operation start request | OON             |  |  |
| Bit 8 : Skip1 information                          | OON             |  |  |
| Bit 9 : Skip2 information                          | ON              |  |  |
| Bit D : System work number setting                 | ON              |  |  |
| Bit E : Interpolation override setting             | ON              |  |  |

# ■ Program execution registry screen Dialog Box (M-EXECUTOR (individual) Dialog Box)


Click the **Individual Display** Button in the M-EXECUTOR (list) window to display this dialog box. The items that can be set are similar to those in the **Program Definition** Tab Page and the **Allocation Control Register** Tab Page.

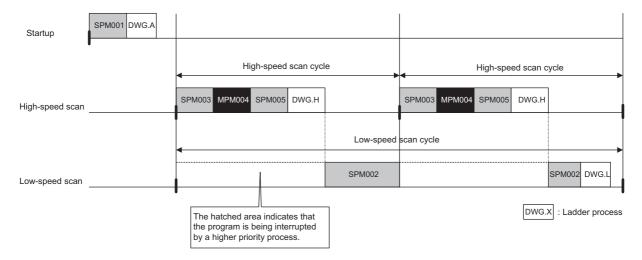


- Program execution registry number
   Selects a program execution registration No.
- Program numberSets a program number.
- ③ Execution type Sets the program execution type.
- SpecificationSets the method of designating a program.
- S Allocation registerSets an allocation register.
- Status, Control signalDisplays the status and the signal sequence of the control register.
- Allocation DISABLE
   Enables/disables the allocation register. Uncheck to enable the definition.
- Solution
  Elist
  Displays the M-EXECUTOR (list) window.
- DeleteDeletes a definition.


# (5) Execution Scheduling

Programs registered in M-EXECUTOR are executed on the basis of their priorities (execution type). Programs registered in M-EXECUTOR are executed just before the ladder process.




An execution example is as follows:

• M-EXECUTOR program definition



Execution scheduling

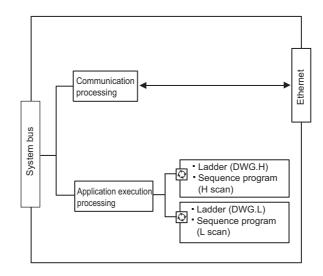
The following diagram shows the execution scheduling when set in the tab page above.



# 2.6 CPU-04 Module

#### 2.6.1 Overview of Functions

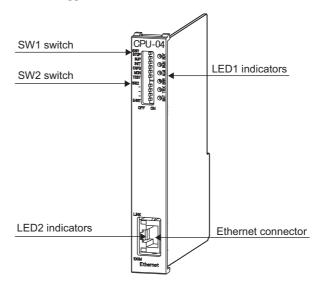
The CPU-04 Module is a special CPU Module for the MP2200. It was designed as a upper-end model to provide greater speed and easier operation than the CPU-03 Module.


The CPU-04 Module has one Ethernet interface with the following characteristics.

#### Standard-feature Ethernet (100 Mbps)

- High-speed communication can be performed with the MPE720 Engineering Tool.
- Communication can be performed with a touch panel without using ladder programming (automatic reception).
- Communication can be performed with the host PLC without using ladder programming (I/O message communication).

#### Simple Programming


- The operating procedures have been greatly streamlined through execution of motion operations.
- The motion program can be started from the host PLC without programming simply by creating a motion program and registering the execution sequence.



# 2.6.2 External Appearance, Indicators, and Switch Settings

# (1) External Appearance

The following figure shows the external appearance of the CPU-04 Module.

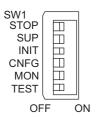


# (2) Indicators

The following table shows the indicators that show the operating status of the CPU-04 Module and error information.

| Indicators                                     | Indicator<br>Name | Color  | Significance when Lit                                                       |
|------------------------------------------------|-------------------|--------|-----------------------------------------------------------------------------|
| LED1                                           | RDY               | Green  | Unit operating normally. *                                                  |
|                                                | RUN               | Green  | User program running. *                                                     |
| ALM RIC                                        | ALM               | Red    | Lights/blinks for warning. *                                                |
| O X                                            | ERR               | Red    | Lights/blinks for errors.*                                                  |
| O\X<br>−                                       | TRX               | Green  | Transmitting or sending Ethernet data.                                      |
| O BAT                                          | BAT               | Red    | Battery alarm activated.*                                                   |
| LED2                                           | LINK              | Yellow | When there is an Ethernet link.                                             |
| LINK 100M (Built into the Ethernet connector.) | 100M              | Green  | Lit: Connected at 100 Mbps or performing auto-negotiation. Not lit: 10 Mbps |

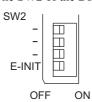
<sup>\*</sup> Refer to 8.2.3 ( 2 ) LED Indicator Meanings on the meaning of indicators.


2.6.2 External Appearance, Indicators, and Switch Settings

# (3) Switch Settings

## [a] SW1

The SW1 of the DIP switch is used to set the operating conditions for the CPU-04 Module when the power supply is turned ON.


Before turning ON the power supply, set this switch. Any settings made after the power supply is turned ON are invalid.



| Pin<br>Number | Switch<br>Name | Status | Operating Mode                        | Default<br>Setting | Details                                                                                                                       |  |
|---------------|----------------|--------|---------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| 6             | STOP           | ON     | User program stopped                  | OFF                | Stops the user program execution. Enabled only                                                                                |  |
|               | 3101           | OFF    | User program running                  | OFF                | when the power is turned ON.                                                                                                  |  |
| 5             | SUP            | ON     | System use                            | OFF                | Always set to OFF.                                                                                                            |  |
|               | 301            | OFF    | Normal operation                      | Orr                | Always set to OTT.                                                                                                            |  |
|               |                | ON     | Memory clear                          |                    | Set to ON to clear the memory. Also set to ON                                                                                 |  |
| 4             | 4 INIT         | OFF    | Normal operation                      | OFF                | not to save the data in the Compact Flash. If this switch is set to OFF, the program stored in flash memory will be executed. |  |
| 3             | CNFG           | ON     | Configuration mode                    | OFF                | Set to ON to execute self-configuration for con-                                                                              |  |
|               | CIVI G         | OFF    | Normal operation                      |                    | nected devices.                                                                                                               |  |
| 2             | MON            | ON     | System use                            | OFF                | Always set to OFF.                                                                                                            |  |
|               | IVIOIN         | OFF    | Normal operation                      | Off                |                                                                                                                               |  |
| 1             | TEST           | ON     | System use (adjusted before shipment) | OFF                | Always set to OFF.                                                                                                            |  |
|               |                |        | Normal operation                      |                    |                                                                                                                               |  |

## [b] SW2

The SW2 of the DIP switch is used to set the Ethernet operating conditions.



| Pin<br>Number | Switch<br>Name | Status    | Operating Mode                                                                  | Default<br>Setting | Details                                                               |
|---------------|----------------|-----------|---------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| 4             |                | ON<br>OFF | System use                                                                      | OFF                | Always set to OFF.                                                    |
| 3             |                | ON<br>OFF | System use                                                                      | OFF                | Always set to OFF.                                                    |
| 2             |                | ON<br>OFF | System use                                                                      | OFF                | Always set to OFF.                                                    |
|               |                | ON        | Transmission parameter defaults for Ethernet                                    |                    | If E-INIT is ON, the IP address and other                             |
| 1             | 1 E-INIT O     |           | Startup according to the<br>Module Configuration Defi-<br>nitions for Ethernet. | OFF                | transmission parameters will be set to the default values at startup. |

# 2.6.3 Hardware Specifications

The following table shows the hardware specification of the CPU-04 Module.

| Item                    | Specifi                                | cations                        |  |
|-------------------------|----------------------------------------|--------------------------------|--|
| Name                    | CPU-04 Module                          |                                |  |
| Model                   | JAPMC-CP2230-E                         |                                |  |
| Abbreviation            | CPU-04                                 |                                |  |
| Flash Memory            | 16 MB (User's area: 11.5 ME            | 3)                             |  |
| DDR                     | 64 MB                                  |                                |  |
| SRAM                    | 4 MB (3 MB max. with batter data.)     | y backup can be used for table |  |
| Communication Interface | One Ethernet interface channel         | el                             |  |
| Calendar                | Seconds to year timer (battery backup) |                                |  |
|                         | LED1                                   | LED2                           |  |
|                         | RDY (green)                            | LINK (yellow)                  |  |
|                         | RUN (green)                            | 100M (green)                   |  |
| Indicators              | ALM (red)                              |                                |  |
|                         | ERR (red)                              |                                |  |
|                         | TRX (green)                            |                                |  |
|                         | BAT (red)                              |                                |  |
|                         | SW1                                    | SW2                            |  |
|                         | STOP                                   | E-INIT                         |  |
|                         | SUP                                    |                                |  |
| Switches                | INIT                                   |                                |  |
|                         | CNFG                                   |                                |  |
|                         | MON                                    |                                |  |
|                         | TEST                                   |                                |  |
| Dimensions (mm)         | 125 × 95 (H × D)                       |                                |  |
| Mass                    | 105 g                                  |                                |  |

Note: For information on general specifications, refer to 2.1 Specifications.

# 2.6.4 SVR Module (Virtual Motion Module)

Refer to 2.3.4 SVR Module (Virtual Motion Module).

2.6.5 218IFC Module (Ethernet)

# 2.6.5 218IFC Module (Ethernet)

## (1) Overview of 218IFC Module Functions

The 218IFC Module is a 10Base-T/100Base-TX Ethernet interface. It is a standard-feature communication interface for the CPU-04 Module.

- 100Mbps transmission speed is supported (100Base-TX).
- Supports the following various communication protocols:
  - Support for MEMOBUS protocol, Extended MEMOBUS protocol
  - Support for MELSEC protocol (A-compatible 1E frames, QnA-compatible 3E frames)
  - Support for MODBUS/TCP protocol
  - · Support for OMRON protocol
  - Support for non-procedure communication
- An I/O message communication function enables you the data exchange in the form of I/O image when communicating with the host PLC, eliminating you from creating a ladder program.
- An automatic receive function eliminates you from creating a ladder program when connected to the indicator and the like.
- The 218IFC Module can be used as the standard interface with the MPE720 engineering tool. It provides a simple function for connecting to the MPE720, allowing you to connect to MPE720 without knowing the IP address of the 218IFC Module.

## (2) Specification of 218IFC Module

The following table shows the specification of the 218IFC Module.

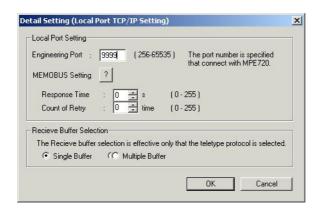
| Iter                                      | ns                                          | Description                      |  |  |
|-------------------------------------------|---------------------------------------------|----------------------------------|--|--|
| Communication Interface *1                |                                             | 10Base-T/100Base-TX              |  |  |
| Communication Protocol *2                 |                                             | TCP/UDP/IP/ARP/ICMP              |  |  |
| Maximum Number of Comm                    | nunication Connections                      | 20+2 (I/O Message communication) |  |  |
| Maximum Number of Comm                    | nunication Channels                         | 10+2 (I/O Message communication) |  |  |
|                                           | MEMOBUS                                     | Write: 100W<br>Read: 125W        |  |  |
|                                           | Extended MEMOBUS                            | Write: 2043W<br>Read: 2044W      |  |  |
| Magazaa Communication                     | MELSEC<br>(A-compatible 1E)                 | Write: 1017W<br>Read: 1017W      |  |  |
| Message Communication (maximum)           | MELSEC<br>(QnA-compatible 3E)               | Write: 960W<br>Read: 960W        |  |  |
|                                           | MODBUS/TCP                                  | Write: 100W<br>Read: 125W        |  |  |
|                                           | OMRON                                       | Write: 996W<br>Read: 999W        |  |  |
|                                           | Non-procedure                               | Write: 2046W                     |  |  |
|                                           | MEMOBUS                                     | Write: 100W<br>Read: 125W        |  |  |
|                                           | Extended MEMOBUS                            | Write: 1024W<br>Read: 1024W      |  |  |
| I/O Message<br>Communication<br>(maximum) | MELSEC (A-compatible 1E, QnA-compatible 3E) | Write: 256W<br>Read: 256W        |  |  |
| (maximum)                                 | MODBUS/TCP                                  | Write: 100W<br>Read: 125W        |  |  |
|                                           | OMRON                                       | Write: 996W<br>Read: 999W        |  |  |
|                                           | MEMOBUS                                     | Provided                         |  |  |
| Automatic Receive                         | Extended MEMOBUS                            | Provided                         |  |  |
|                                           | MELSEC (A-compatible 1E, QnA-compatible 3E) | Provided                         |  |  |
|                                           | MODBUS/TCP                                  | Provided                         |  |  |
| Non-procedure receive buff                | er mode selection *3                        | Provided                         |  |  |
| Simple Function for Connec                |                                             | Provided                         |  |  |

#### \* 1. Communication Interface

The discrimination between 10Base-T/100Base-TX and full-duplex/half-duplex is done by 218IFA based on the remote device. When connecting to a device without automatic negotiation function, set the remote device to half-duplex mode.

#### Correspondence of Communication Mode

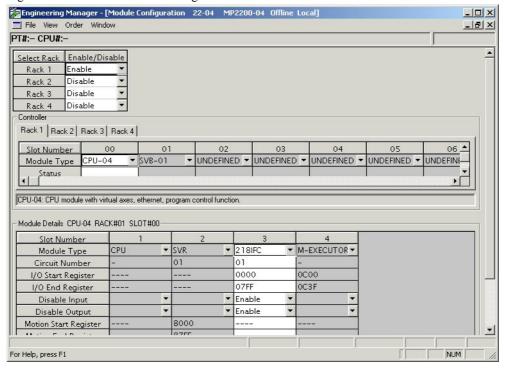
|                          | Device to be connected       |                                                 |                         |                                                   |                           |
|--------------------------|------------------------------|-------------------------------------------------|-------------------------|---------------------------------------------------|---------------------------|
| 218IFC Module            | Automatic<br>Negotiation     | 10Base-T<br>Half-duplex                         | 10Base-T<br>Full-duplex | 100Base-TX<br>Half-duplex                         | 100Base-TX<br>Full-duplex |
| Automatic<br>Negotiation | Depends on the remote device | Communicates in<br>10Base-T<br>half-duplex mode | Unable to communicate   | Communicates in<br>100Base-TX<br>half-duplex mode | Unable to communicate     |


#### \* 2. Communication protocols

- TCP(Transmission Control Protocol): Connection-oriented transport layer protocol
- UDP(User Datagram Protocol): Connectionless transport layer protocol
- IP(Internet Protocol): Protocol for establishing a communication link between computers
- ICMP(Internet Control Message Protocol): Error control protocol for IP protocol
- ARP(Address Resolution Protocol): Address resolving protocol. Protocol for converting IP address into MAC address

2.6.5 218IFC Module (Ethernet)

\* 3. When the non-procedure application protocol of the 218IFC is used, either a single buffer or multiple buffers can be selected for the receive buffers in the 218IFC.


If multiple buffers are selected, 20 data items per connection can be processed at the same time with data continuously received at an interval shorter than the startup interval of the MSG-RCV function.



## (3) Module Configuration Definition

Refer to 2.5.6 (3) Module Configuration Definition.

The following window shows the module configuration for the CPU-04.



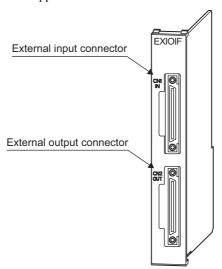
#### (4) 218IFC Module Detailed Definition Window

Refer to 2.5.6 (2) Specification of 218IFA Module.

For the 218IFC, the setting range for the connection number is larger, i.e., 1 to 20.

# 2.6.6 M-EXECUTOR Module (Motion Program Executor)

Refer to 2.5.7 M-EXECUTOR Module (Motion Program Executor).


# 2.7 EXIOIF Module

# 2.7.1 Overview of Functions

The EXIOIF Module is a special expansion rack interface for the MP2200. This Module can be used to configure an MP2200 system with up to four racks.

# 2.7.2 External Appearance

The following figure shows the external appearance of the EXIOIF Module.



# 2.7.3 Hardware Specifications

The following table shows the hardware specifications of the EXIOIF Module.

| Item                    | Specifications                                                                                                                                                                                                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Abbreviation            | EXIOIF                                                                                                                                                                                                                                                  |
| Model                   | JAPMC-EX2200                                                                                                                                                                                                                                            |
| Function                | Expansion rack interface (maximum 4-Rack configuration)                                                                                                                                                                                                 |
| Expansion Bus Connector | HDRA-EC68LFDT-SL (HONDA)                                                                                                                                                                                                                                |
| Expansion Bus Interface | IEEE-488 (GPIB): Equivalent to SN75160 (TI).                                                                                                                                                                                                            |
| Rack No. Recognition    | The CPU Module automatically recognizes rack 1 from the expansion cable connection. When nothing is connected to the IN connector, a basic unit rack (rack 1) configuration is used.  Racks 2 to 4 are in the order that racks are connected to rack 1. |
| Module Type             | MP2200 Optional Module The EXIOIF Module is recognized as an Optional Module. It can be mounted in any slot.                                                                                                                                            |
| Dimensions (mm)         | $125 \times 95 \text{ (H} \times \text{D)}$                                                                                                                                                                                                             |
| Mass                    | 80 g                                                                                                                                                                                                                                                    |

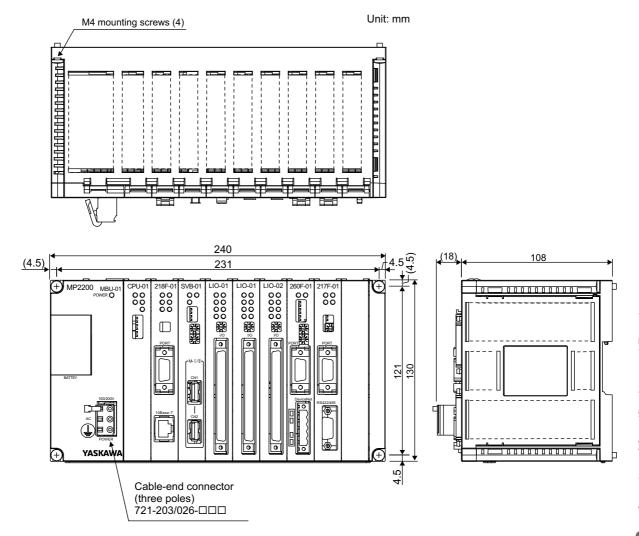
# 2.8 Optional Module

This section provides an option module overview. For more information on its specifications, functions, connections, settings, etc., refer to the following documents separately.

# 2.8.1 Optional Module Overview List

| Classification   | Optional<br>Module Name | Module Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference Manual                                                                                                         |
|------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                  | SVB-01<br>Module        | The SVB-01 Module is a motion module equipped with a MECHATROLINK supporting interface.  The adoption of MECHATROLINK enables reduced wiring and multiaxis control. In addition, the support for MECHATROLINK-II standard allows you to control position, speed, torque, and phase, realizing precise synchronous control. Also, complex mechanical operation can be achieved by changing the control mode during axis operation.  Features  Up to 21 slave stations per module are connectable (up to 16 servo axes are controllable)  Because synchronization between modules is enabled, adaptable to interpolation and synchronous control between modules  An SVB-01 Module that is used as a slave can be connected to a host controller equipped with MECHATROLINK communication.  Self-configuration function allows you to automatically map slave devices connected to MECHATROLINK.                                                                                          | Machine Controller MP2000<br>Series Built-in SVB/SVB-01<br>Motion Module User's Manual<br>(manual no.: SIEP C880700 33)  |
| Motion<br>Module | SVC-01<br>Module        | The SVC-01 Module is a motion module equipped with a MECHA-TROLINK-III interface.  The adoption of MECHATROLINK enables reduced wiring and multiaxis control. In addition, support for MECHATROLINK-III allows you to control positions, speeds, torque, and phases, realizing precise synchronous control. Also, complex mechanical operation can be achieved by changing the control mode during axis operation.  Features  Control performed in a shorter cycle but for the same maximum number of axes as with MECHATROLINK-II.  Up to 21 slave stations per module are connectable (up to 16 servo axes are controllable).  Because synchronization between modules is enabled, adaptable to interpolation and synchronous control between modules.  An SVC-01 Module that is used as a slave can be connected to a host controller equipped with MECHATROLINK-III communication.  Self-configuration allows you to automatically map slave devices connected to MECHATROLINK-III. | Machine Controller MP2000<br>Series SVC-01 Motion Module<br>User's Manual (manual no.: SIEP<br>C880700 41)               |
|                  | SVA-01<br>Module        | The SVA-01 Module is a motion control module with analog output. Capable of controlling a two-axes servo per module or an inverter. The module has two connectors (CN1, CN2) for connection to a SER-VOPACK and an external I/O. Each connector is equipped with an analog output to command speed and torque, an analog input to monitor feedback speed and torque, a pulse input phase-A, B, and C (5V differential), and a general-purpose digital input/output. The control cycle is fixed at 500μs, so precise control is enabled regardless of high-speed scan cycles.  ■ Features  • Two axes servo module with analog output  • Each axis can independently perform position control, speed command output, torque command output, and phase control functions.  • Self-configuration function allows you to automatically map modules.                                                                                                                                         | Machine Controller MP2000<br>Series SVA-01 Motion Module<br>User's Manual (manual no.: SIEP<br>C880700 32)               |
|                  | PO-01<br>Module         | The PO-01 Module is a motion module with pulse output and a four-axes interface. Applicable to connection to a stepping motor or SERVO-PACK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Machine Controller MP2000<br>Series Pulse Output Motion Mod-<br>ule PO-01 User's Manual (manual<br>no.: SIEP C880700 28) |

# 2.8.1 Optional Module Overview List


| Classification           | Optional<br>Module Name     | Module Overview                                                                                                                                                                                                                                                                                                                                                                                                      | Reference Manual                                                                                                                   |
|--------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                          | LIO-01/<br>LIO-02<br>Module | Digital I/O and pulse counter functions. As a digital I/O function, equipped with 16 digital inputs (DI), 16 digital outputs (DO) (LIO-01: sink output, LIO-02: source output). As a pulse counter function, one pulse input (PI). As for when to input/output for digital I/O and pulse counter functions, input/output for each MP2200 high-speed (High)/ low-speed (Low) scan is carried out at a constant cycle. | Machine Controller MP2000                                                                                                          |
|                          | LIO-04/<br>LIO-05<br>Module | As a digital I/O function, equipped with 32 digital inputs (DI), and 32 digital outputs (DO) (LIO-04: sink output, LIO-05: source output).                                                                                                                                                                                                                                                                           | Series I/O Module User's Manual (manual no.: SIEP C880700 34)                                                                      |
| Input/Out-<br>put Module | LIO-06<br>Module            | As digital I/O function, equipped with 8 digital inputs (DI), 8 digital outputs (DO), one analog input channel, one analog output channel, and one pulse counter input channel.                                                                                                                                                                                                                                      |                                                                                                                                    |
|                          | DO-01<br>Module             | As a digital output function, equipped with 64 digital outputs (DO) (sink output).                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |
|                          | AI-01 Module                | 8 channel analog input module. For the input, capable of selecting from three options: -10V to +10V, 0V to +10V, or 0 to 20 mA.                                                                                                                                                                                                                                                                                      | Machine Controller MP2000<br>Series Analog Input/Analog Out-                                                                       |
|                          | AO-01<br>Module             | 4 channel analog output module. For the output, select one from two options: $-10V$ to $+10V$ , or $0V$ to $+10V$ .                                                                                                                                                                                                                                                                                                  | put Module AI-01/AO-01 User's<br>Manual (manual no.: SIEP<br>C880700 26)                                                           |
|                          | CNTR-01<br>Module           | 2 channel reversible counter module. 5V differential/ 12V input is optional, and phase-A or -B/ sign/ add-subtract method is optional.                                                                                                                                                                                                                                                                               | Machine Controller MP2000<br>Series Counter Module CNTR-01<br>User's Manual (manual no.:<br>SIEP C880700 27)                       |
|                          | 218IF-01<br>Module          | Equipped with serial interface (RS-232C) and Ethernet interface. Allows you to connect to a personal computer, HMI equipment, or controller by other makers via PORT or 10Base-T connector.                                                                                                                                                                                                                          |                                                                                                                                    |
|                          | 218IF-02<br>Module          | Equipped with serial interface (RS-232C) and Ethernet interface. Allows you to connect to a personal computer, HMI equipment, or controller by other makers via PORT or 100Base-TX connector.                                                                                                                                                                                                                        |                                                                                                                                    |
|                          | 217IF-01<br>Module          | Equipped with serial interfaces (RS-232C and RS422/485). Allows you to connect to a personal computer, HMI equipment, or controller by other makers via PORT or RS422/485 connector.                                                                                                                                                                                                                                 |                                                                                                                                    |
|                          | 260IF-01<br>Module          | Equipped with serial interface (RS-232C) and DeviceNet interface. Allows you to connect to a controller by other makers via DeviceNet connector. Also, allows you to connect to a personal computer or HMI equipment by other makers via the PORT connector.                                                                                                                                                         | Machine Controller MP2□00<br>Communication Module User's<br>Manual (manual no.:SIEP                                                |
| Communi-<br>cation       | 261IF-01<br>Module          | Equipped with serial interface (RS-232C) and PROFIBUS interface. Allows you to connect to a controller by other makers via the PROFIBUS connector. Also, allows you to connect to a personal computer or HMI equipment by other makers via the PORT connector.                                                                                                                                                       | C880700 04)                                                                                                                        |
| Module                   | 215AIF-01<br>Module         | MPLINK and CP-215 specifications.  MPLINK specification is equipped with one line of our original real-time core network interface MPLINK transmission and a serial interface (RS-232C).  CP-215 specification is equipped with one line of our original real-time core network interface CP-215 transmission and a serial interface (RS-232C).                                                                      |                                                                                                                                    |
|                          | 262IF-01<br>Module          | Equipped with an FL-net interface. Allows you to connect to a personal computer, HMI, or FA controller via a 100Base-TX or 10Base-T connector.                                                                                                                                                                                                                                                                       | Machine Controller MP2000<br>Series 262IF-01 FL-net Commu-<br>nication Module User's Manual<br>(manual no: SIEP C880700 36)        |
|                          | 263IF-01<br>Module          | Equipped with an EtherNet/IP interface. Allows you to connect to a personal computer or EtherNet/IP device via the EtherNet/IP connector.                                                                                                                                                                                                                                                                            | Machine Controller MP2000<br>Series 2631F-01 EtherNet/IP<br>Communication Module User's<br>Manual (manual no.: SIEP<br>C880700 39) |

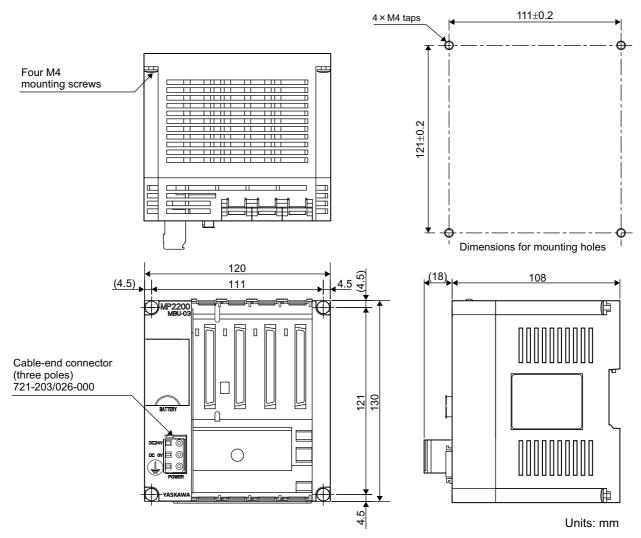
# 2.9 External Dimensions

## 2.9.1 Basic Unit

The following figure shows the external appearance of the Basic Unit.

#### (1) Nine-slot Base Unit




Note: 1. Cable-end connector is attached to the power connector.

Models: MBU-01 721-203/026-304 (Black)

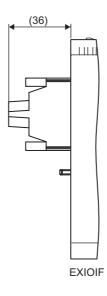
MBU-02 721-203/026-000 (White)

- 2. Attachment
  - Handle for power connector (model: 231-131)
     These handles are used when connecting a cable to the cable-end connector.

# (2) Four-slot Base Unit



Note: 1. Cable-end connector is attached to the power connector. Model: 721-203/026-000 (White)


- 2. Attachment
  - Handle for power connector (model: 231-131)
     These handles are used when connecting a cable to the cable-end connector.

# 2.9.2 Mounting Procedure for EXIOIF Connector

The EXIOIF Module has the following dimensions.

Height: 125 mm, Depth: 95 mm

The following figure shows the mounting dimensions for the connector of the EXIOIF Module.

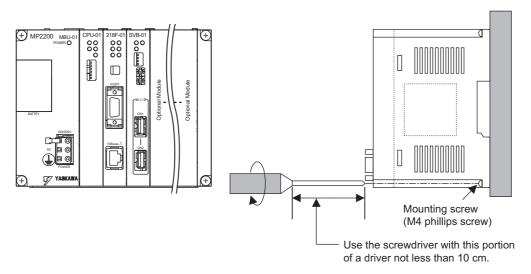


# Mounting and Wiring

This chapter explains how to handle MP2200 and the connection methods for each module.

| 3.1 Mounting MP2200                         | 3-2  |
|---------------------------------------------|------|
| 3.1.1 Method                                | 3-2  |
| 3.1.2 MP2200 Mount Direction                | 3-5  |
| 3.1.3 Installation Clearance                | 3-6  |
| 3.1.4 Replacing and Adding Optional Modules | 3-7  |
| 3.2 Connecting Basic Units                  | 3-10 |
| 3.2.1 Connecting Base Units                 | 3-10 |
| 3.2.2 CPU-02 Module Connections             | 3-13 |
| 3.2.3 CPU-03/CPU-04 Module Connections      | 3-14 |
| 3.2.4 EXIOIF Module Connections             | 3-18 |
| 3.2.5 System Connection Example             | 3-20 |

# 3.1 Mounting MP2200

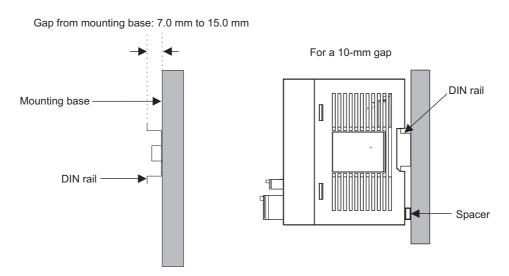

#### 3.1.1 Method

There are two methods for mounting MP2200.

- Using screws
- Using DIN rail

#### (1) Screwed Method

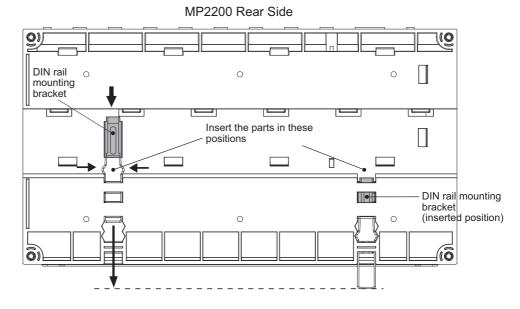
Push the MP2200 mounted clamp onto the mounting plate as shown in the following figure, and use four mounting screws to firmly secure the clamp.



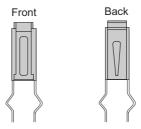

Note: Vertically mount it on the wall as shown in the figure above.

#### (2) DIN Rail Mounting

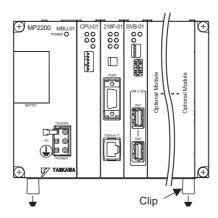
#### [a] DIN Rails and Spacer


Several types of DIN rails are available: with 7-mm to 15-mm gap from the mounting base as shown in the following diagram. If mounting a MP2200 using DIN rail with 10-mm gap, install a spacer on the rear of the MP2200 near the bottom to protect the MP2200 from vibration and shock.




#### [b] Procedure for Mounting to DIN Rail

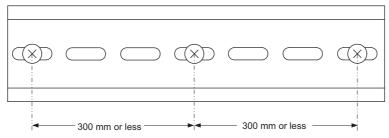
Use the following procedure to attach the DIN rail mounting parts to the MP2200 and then mount the MP2200 to the DIN rail.


1. Insert the DIN rail mounting brackets to the dotted line in the two slots on the rear of the MP2200 as shown in the following figure.

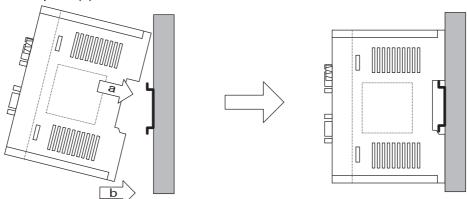


Note: The following figure shows the front and back of a mounting clip. Insert each clip so that its front faces outward.

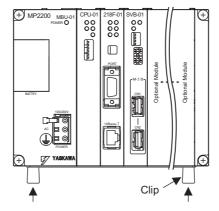



2. Pull the DIN rail mounting clips down to release them.

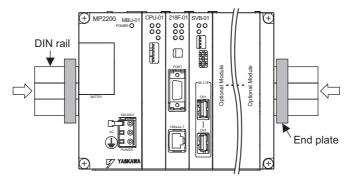



#### 3.1.1 Method

#### ■ Fixing a DIN Rail


Make sure to fix a DIN rail at 300mm or less pitch as shown in the figure below.



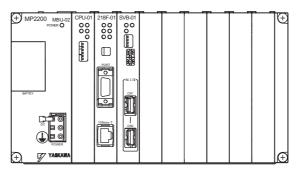

**3.** Hook the MP2200 to the top of the DIN rail (a), and then push the MP2200 towards the mounting base to secure it in place (b).



**4.** Push the DIN rail mounting clips to lock them in place..



**5.** Place end plates on both sides of the MP2200 to secure it to the DIN rail.




This completes the installation procedure.

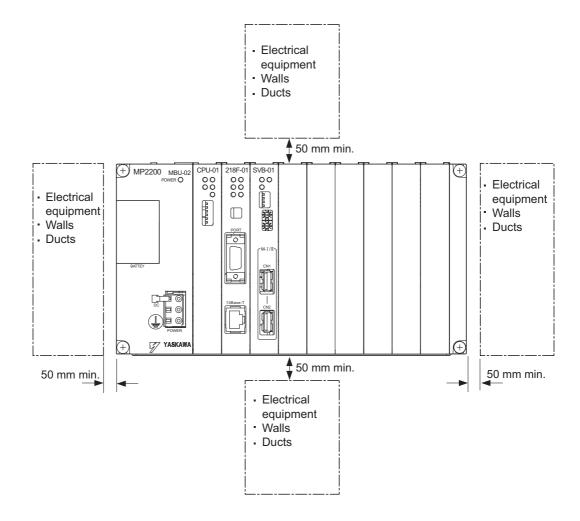
# 3.1.2 MP2200 Mount Direction

Be sure to mount the MP2200 using screwed method or DIN rail.

View from front, when attached



#### 3.1.3 Installation Clearance


To enable proper ventilation, install the MP2200 with the clearance shown in the following figure.

#### ■ Mounting Conditions

• Above and below: 50 mm min.

• Left and right: 50 mm min.

Note: This clearance applies to an ambient temperature of 55°C max.



## 3.1.4 Replacing and Adding Optional Modules

Use the following procedures to replace and add Optional Modules.

#### (1) Preparations

1. Create a backup data file.

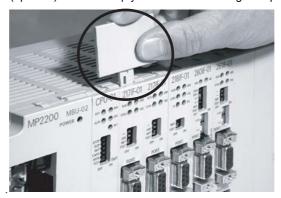
Use the MPE720 to save the MP2200 program on a computer (right-click the PLC, and select *Transfer - All Files - From Controller to MPE720*.)


2. Remove the MP2200.

Turn OFF the power supply and disconnect all cables from the MP2200. Then remove the MP2200 from the panel or rack and place on a workbench or other area with sufficient space.

#### (2) Removing Optional Modules

1. Remove the battery cover.

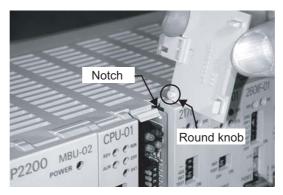

Pull the notch on the side of the MP2200 towards you to remove the battery cover.



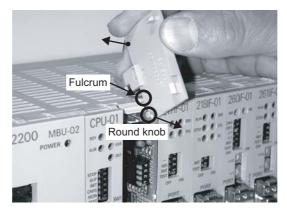
#### 2. Remove the panel of Optional Module.

Insert the protruding part of the battery cover into the slot on top of the panel of Optional Module to unhook, as shown in the diagram. Face the front of the battery cover towards you for this operation.

· Remove the front cover (optional) from the empty slot before mounting an Optional Module in an empty slot.

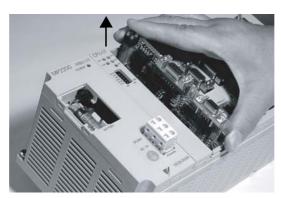



Unhook the bottom in the same way.


# 3.1.4 Replacing and Adding Optional Modules

## **3.** Remove the Optional Module from the mounting base.

Pull the top of the panel of the Optional Module towards you to remove it. A notch on the Optional Module will be visible from the gap in the cover. Hook the round knob on the battery cover, shown in the diagram, into the notch in the Optional Module.



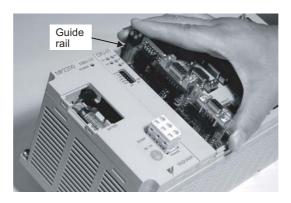

Hold the center of the battery cover as shown in the following diagram. Push the battery cover down and out, rotating from the round knob to disconnect the Module and mounting base connectors, and then pull the Optional Module forward.



#### **4.** Pull out the Optional Module.

Hold the Module on the top and bottom and pull it out straight. Hold the edges of the Module and avoid touching the parts on the Module.




Put the removed Module into the bag that was supplied with and store the Module in this bag.

#### (3) Installing Optional Modules

#### 1. Insert Optional Modules.

Hold the top and bottom of the Module to be installed, line up the Module on the left-side guide rail inside the Option Slot, and then insert it straight.

Note: The FG bar on the inside bottom of the Unit Case may be damaged if the Module is not inserted straight.



#### **2.** Mount on to the mounting base.

Once the Optional Module has been completely inserted, place your hand on the front face of the Optional Module and push hard until the Optional Module has been inserted into the mounting base connectors. The front face of the Optional Module and the hook will be aligned when the Optional Module has been installed properly.

#### **3.** Install the panel of the Optional Module.

Place the hole on the bottom of the panel of the Optional Module onto the hook on the bottom of the MP2200. Next, hook the hole at the top of the panel of the Optional Module onto the hook at the top of the MP2200.

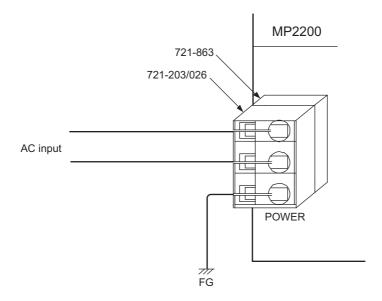


This completes the Optional Module mounting procedure.

Be sure to attach the option cover (model: JEPMC-OP2300) on the empty slot.

# 3.2 Connecting Basic Units

# 3.2.1 Connecting Base Units

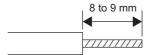

- (1) MBU-01 Power Supply Connector
  - [a] Specifications, Pin Arrangement, and Connection Procedure

Supply 100/200 VAC to the MP2200. Connect the power supply connector as shown in the following diagram.

| Name                      | Name Connector |      | No. of Connector Model |             |                               |             |  |
|---------------------------|----------------|------|------------------------|-------------|-------------------------------|-------------|--|
| Ivaille                   | Name           | Pins | Module                 | Cable       | Manufacturer                  | Cable Model |  |
| Power Supply<br>Connector | POWER          | 3    | 721-863                | 721-203/026 | WAGO Company<br>of Japan, Ltd | -           |  |

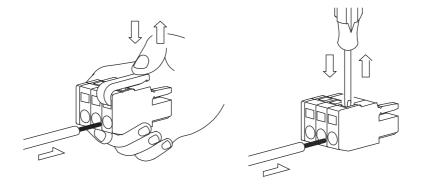


| Pin No. | Signal<br>Name | Description                                    |
|---------|----------------|------------------------------------------------|
| 3       | AC             | AC input                                       |
| 2       | AC             | AC input                                       |
| 1       | FG             | Frame ground (Ground to 100 $\Omega$ or less.) |




## [b] Making a 100/200-VAC Power Supply Cable

The power supply terminal has a removable connector. Use the following procedure to wire the terminal to the power supply connector. Use 1.5 to 2.5 mm<sup>2</sup> (AWG16 to AWG13) twisted-pair cable to connect the 100/200-VAC power supply to the power supply connector on the MP2200.


## 1. Strip the end of the cable.

Strip approx. 8 to 9 mm the end of the wires.

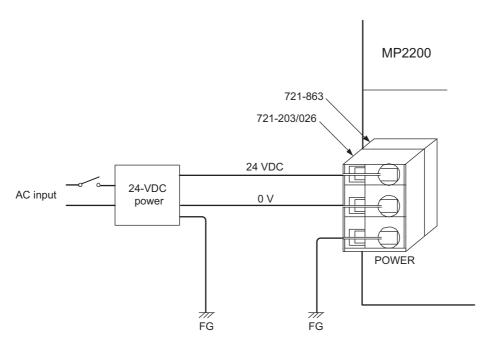


#### 2. Clamp the wires.

Insert the wires all the way to the back of the plug and clamp them securely.



#### (2) MBU-02/MBU-03 Power Supply Connector


#### [a] Specifications, Pin Arrangement, and Connection Procedure

Supply 24 VDC to the MP2200. Connect the power supply connector as shown in the following diagram.

| Name                      | Connector | No. of | Connector Model |             |                               |             |
|---------------------------|-----------|--------|-----------------|-------------|-------------------------------|-------------|
| Name                      | Name      | Pins   | Module          | Cable       | Manufacturer                  | Cable Model |
| Power Supply<br>Connector | POWER     | 3      | 721-863         | 721-203/026 | WAGO Company<br>of Japan, Ltd | -           |

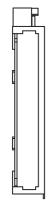


| Pin No. | Signal<br>Name | Description                                    |
|---------|----------------|------------------------------------------------|
| 3       | 24V            | 24-VDC input                                   |
| 2       | 0V             | 0-V input                                      |
| 1       | FG             | Frame ground (Ground to $100 \Omega$ or less.) |



Note: Use an insulated 24-VDC power supply. Attach the power supply switch on the AC side. If the switch is attached on the 24-VDC side, there will be an inrush current of approximately 40 A when the power is turned ON.

#### [b] Making a 24-VDC Power Supply Cable


The power supply terminal has a removable connector. Use the following procedure to wire the terminal to the power supply connector. Use 0.8 to 2.6 mm<sup>2</sup> (AWG18 to AWG13) twisted-pair cable to connect the 24-VDC power supply to the power supply connector on the MP2200.

For the procedure to make the cable, refer to 3.2.1 (1) [b] Making a 100/200-VAC Power Supply Cable.

#### 3.2.2 CPU-02 Module Connections

#### (1) CARD Module Connector Details

#### [a] Compact Flash (CF) Slot Specifications



#### Connector Specifications

| Name    | No. of | Conne                 | ctor Model |              |
|---------|--------|-----------------------|------------|--------------|
|         | Pins   | Module side           | Cable side | Manufacturer |
| CF slot | 50     | MI21A-50PD-SF-EJR(31) | _          | Hirose       |

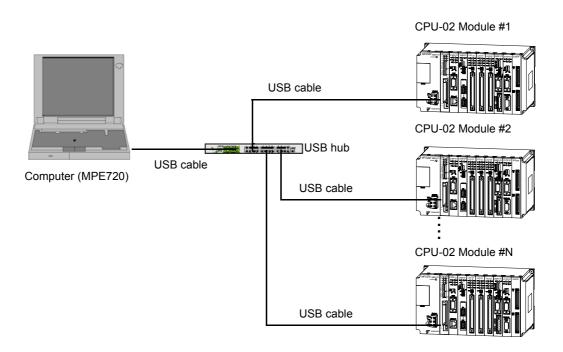
CF slot (Compact Flash not inserted)

#### (2) USB Connectors

#### [a] USB Connector Specifications

Series Mini-B plug

#### [b] USB Cable


Use a commercially-available USB cable.

Connectors:

Computer: Series A plugModule: Series Mini-B plug

#### [c] USB Interface Connection Example

The following figure shows a connection example using multiple CPU-02 Modules.



#### 3.2.3 CPU-03/CPU-04 Module Connections

#### (1) CARD Module Connector Details (except CPU-04)

Refer to 3.2.2 (1) CARD Module Connector Details.

#### (2) Ethernet Connector Details

Connects to a personal computer or HMI device by Ethernet (100Base-TX /10Base-T).

#### [a] Ethernet Connector Specification and Pin Arrangement/ Indicator Lamp

The following table provides the Ethernet connector specifications.

| Name     | Connector | Number  |                   | Connector Model |                   |
|----------|-----------|---------|-------------------|-----------------|-------------------|
| Ivallie  | Name      | of Pins | Module Side       | Cable Side      | Manufacturer      |
| Ethernet | Ethernet  | 8       | RJ-45 CAT5 Socket | RJ-45 CAT5 Plug | Pulse Engineering |

The following table provides Ethernet connector pin arrangement/ indicator lamp details.

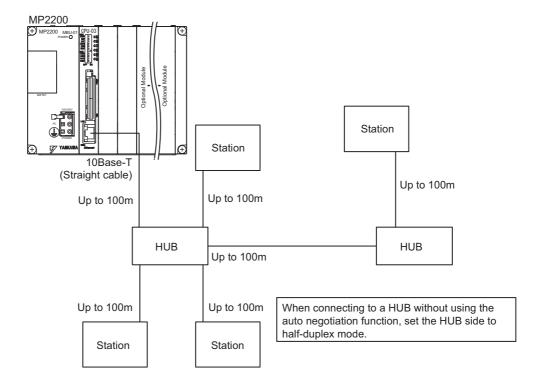


| Pin Number | Signal Name | Description             |
|------------|-------------|-------------------------|
| 1          | TXD+        | Transmitted data + side |
| 2          | TXD-        | Transmitted data – side |
| 3          | RXD+        | Received data + side    |
| 4          | _           | _                       |
| 5          | _           | _                       |
| 6          | RXD-        | Received data – side    |
| 7          | ı           | _                       |
| 8          | _           | _                       |

| Indicator Name | Indicator Color | Description                                                                        |
|----------------|-----------------|------------------------------------------------------------------------------------|
| LINK           | Yellow          | Lit: Connect<br>Unlit: Unconnected                                                 |
| 100M           | Green           | Lit: Connected at 100Mbps, or automatically negotiating Unlit: Connected at 10Mbps |

#### [b] Ethernet Cable

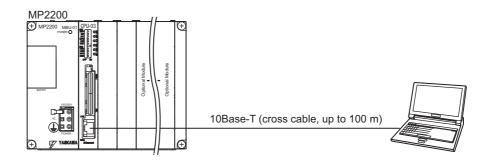
For the Ethernet cable, use a twisted pair cable with RJ-45 connector.


| Ethernet Type | Category           | Remarks                                                           |
|---------------|--------------------|-------------------------------------------------------------------|
| 10Base-T      | Category 3 or more | When connecting to remote device through a hub: Straight cable    |
| 100Base-TX    | Category 5 or more | When connecting to remote device without using a hub: Cross cable |

#### [c] Ethernet Connection Example

The following are examples of Ethernet network connections via 10Base-T cable:

#### ■ Connection Example 1

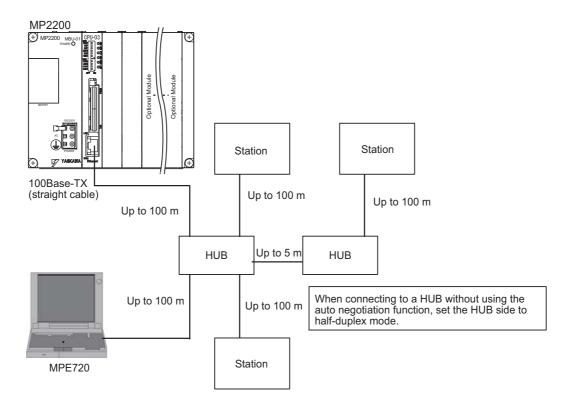

When using a repeater HUB:



#### Specification

| Item                          | When Connecting to<br>a Repeater HUB | When Connecting to a Switching HUB |  |
|-------------------------------|--------------------------------------|------------------------------------|--|
| Cable Length between Node-HUB | 100 m or less                        | 100 m or less                      |  |
| Cable Length between HUBs     | 100 m or less                        | 100 m or less                      |  |
| Number of HUBs between Nodes  | Up to four                           | Unlimited                          |  |

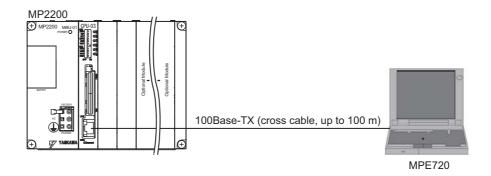
#### ■ Connection Example 2




#### 3.2.3 CPU-03/CPU-04 Module Connections

The following are examples of Ethernet network connections via 100Base-TX cable:

#### ■ Connection Example 3


When using a repeater HUB:



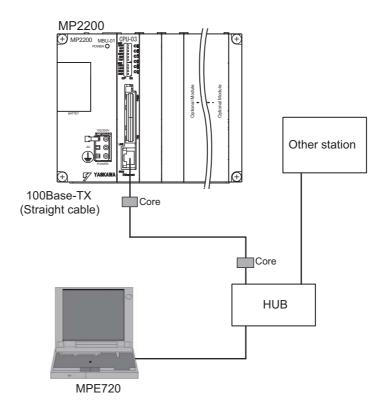
#### Specification

| Item                          | When Connecting to a Repeater HUB | When Connecting to a<br>Switching HUB |  |
|-------------------------------|-----------------------------------|---------------------------------------|--|
| Cable Length between Node-HUB | 100 m or less                     | 100 m or less                         |  |
| Cable Length between HUBs     | 5 m or less                       | 100 m or less                         |  |
| Number of HUBs between Nodes  | Up to two                         | Unlimited                             |  |

#### Connection Example 4



#### ■ Caution


High frequency wave noise from other devices in the installation environment may cause error in communications using 100Base-TX connections. When constructing a system, use MP2200 protective measures to avoid the influence of high frequency wave noise as follows:

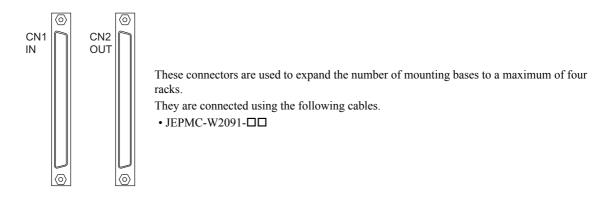
- 1 Wiring
  - Wire Ethernet cables so that they are well-separated from other cable systems, such as the main circuit or power lines.
- 2 Communication system (100Base-TX)
  - Communicate data to a remote device through TCP/IP communication.
  - If necessary, increase the number of communication retries.
- 3 Attach a ferrite core.

Attach a ferrite core in the manner described below:

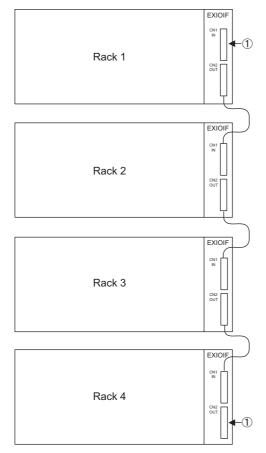
Ethernet : Attach it to the communic

: Attach it to the communication port side and the external device side of the MP2200 main unit.




Note: Recommended ferrite core

| Model:      | Manufacturer                 |
|-------------|------------------------------|
| E04SR301334 | Seiwa Electric Mfg. Co., Ltd |


#### 3.2.4 EXIOIF Module Connections

#### (1) Connectors

The following diagram shows EXIOIF Module connectors.



The following diagram shows how to connect the external I/O connectors.



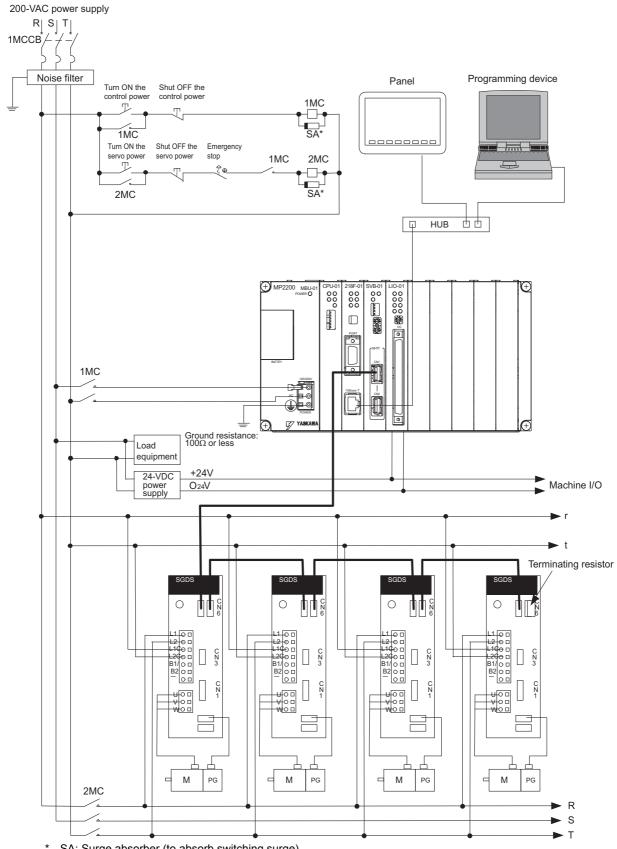
Note: Attach the enclosed dust caps to the unused connectors (1) in the above figure.

## (2) Cables

| Name                     | Model           | Length |
|--------------------------|-----------------|--------|
| Connection Cables        | JEPMC-W2091-A5  | 0.5 m  |
| (with connectors on both | JEPMC-W2091-01  | 1.0 m  |
| ends)                    | JEPMC-W2091-2A5 | 2.5 m  |

- Note: 1. The total cable length when adding expansion racks is 6.0 m max. Connect the shield to the connector shell.
  - 2. Connection method: 1:1
  - 3. Cable specifications: Shielded cable, equivalent to UL20276, 0.08 mm² (AWG28), two ferrite cores attached

# (3) Cable Appearance




## 3.2.5 System Connection Example

The following diagram shows a connection example of a system using the MP2200.

The following diagram shows a connection example for the system using a 200-VAC power supply.

Note: Select the SERVOPACK, 24-VDC power supply to use in accordance with the input power supply speci-



# System Startup

This chapter explains how to start up a model system using the programming tool MPE720 Ver.6. Note that the procedure for designing a mechanical system has been omitted here.

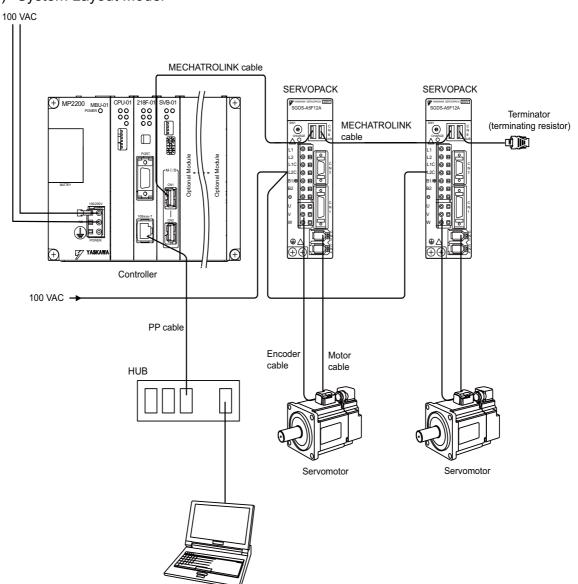
| 4.1 System Startup Overview                      | 4-2  |
|--------------------------------------------------|------|
| 4.2 Preparation                                  | 4-3  |
| 4.2.1 Wiring                                     | 4-3  |
| 4.2.2 Self Configuration                         | 4-5  |
| 4.2.3 Test Operation                             | 4-6  |
| 4.3 Programming                                  | 4-9  |
| 4.3.1 Creating a Project                         | 4-9  |
| 4.3.2 Creating Group Definitions                 | 4-10 |
| 4.3.3 Creating Motion Programs                   | 4-11 |
| 4.3.4 Registering a Motion Program for Execution | 4-12 |
| 4.3.5 Transferring a Program                     | 4-14 |
| 4.3.6 Program Debugging                          | 4-16 |
| 4.3.7 Saving a Program to Flash Memory           | 4-17 |
| 4.3.8 Executing Motions                          | 4-18 |

# 4.1 System Startup Overview

This section describes the procedure to set up a system and to confirm the execution of motion program using the program shown below.

The motion program created here is simple and has only three lines to move two axes 150,000 pulses from the current position and stop them.

| INC; | Specify an incremental mode                              |
|------|----------------------------------------------------------|
| MOV  | [A1]150000, [B1]150000; Position two-axes 150,000 pulses |
| END; |                                                          |


# 4.2 Preparation

This section explains the steps of "wiring," "self-configuration," and "test operation" for starting up the model system.

# 4.2.1 Wiring

We use the following layout model to explain the startup of the model system. Prepare each device listed on the next page and connect them as shown in the figure below.

# (1) System Layout Model

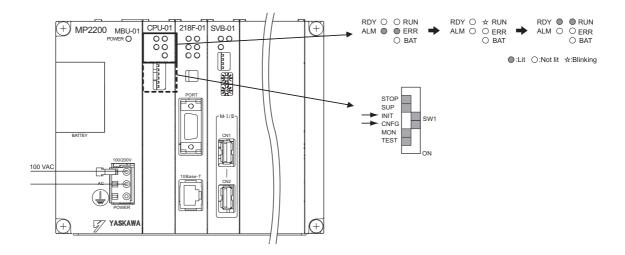


Personal computer (With MPE720 installed)

#### 4.2.1 Wiring

#### [a] Required Equipment

|                   | Product Name                   | Model                         | Q'ty |
|-------------------|--------------------------------|-------------------------------|------|
| MP2200            | Base Unit with AC power supply | JEPMC-BU2200                  | 1    |
|                   | CPU-01 Module                  | JAPMC-CP2200                  | 1    |
|                   | SVB-01 Module                  | JAPMC-MC2310                  | 1    |
|                   | 218IF-01 Module                | JAPMC-CM2300                  | 1    |
| MECHATRO          | LINK cable (0.5m)              | JEPMC-W6002-A5                | 2    |
| Terminator (t     | erminating resistor)           | JEPMC-W6022                   | 2    |
| Σ-III SERVO       | PACK                           | SGDS-A5F12A                   | 2    |
| Σ-III servomo     | otor                           | SGMAS-A5A2A21                 | 2    |
| Motor cable (3m)  |                                | JZSP-CSM01-03                 | 2    |
| Encoder cab       | le (3m)                        | JZSP-CSP05-03                 | 2    |
| HUB (commo        | ercialized product)            | LSW-TX-8EP                    | 1    |
| MPE720 Ver        | :6                             | CPMC-MPE770                   | 1    |
| LAN cable (f      | or Ethernet connection)        | Commercialized straight cable | 2    |
| Personal computer |                                | Commercialized product        | 1    |


#### ■ Caution

- Install MPE720 Ver.6 in the personal computer before starting step 1. For information on its installation, refer to the *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 Users Manual* (manual no.: SIEP C880700 30).
- Set the PC Ethernet port in advance. For the procedure to set up communication, refer to the *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 Users Manual* (manual no.: SIEP C880700 30).
- The SERVOPACK station number (SW1) is set to 1 and 2.
- In a 1:1 connection without HUB, use a cross cable as a LAN cable.

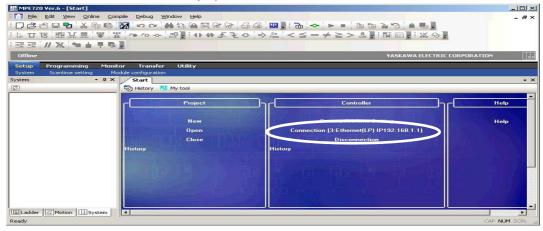
## 4.2.2 Self Configuration

Run the self configuration to automatically recognize devices connected to the MECHATROLINK connector. Steps for self configuration are as follows.

- **1.** Check that the  $\Sigma$ -III SERVOPACK power supply is ON.
- 2. Turn OFF the 100-VAC power supply to the MP2200.
- 3. Set the INIT and CNFG pins on the DIP switch (SW1) to ON on the MP2200.
- **4.** Turn ON the 100-VDC power supply to the MP2200, and confirm that the indicators change as follows:

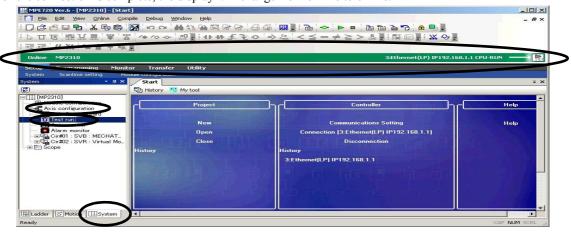


- **5.** Self configuration is complete, and MECHATROLINK slave device information has been written to a definition information file.
- **6.** Set the INIT and CNFG pins on the DIP switch (SW1) to OFF on the MP2200.

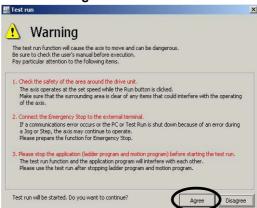

4.2.3 Test Operation

## 4.2.3 Test Operation

Confirm that the machine controller can command axis servo ON/OFF and jog operation.

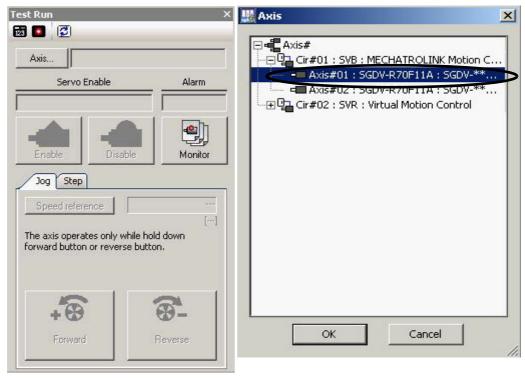

#### (1) Starting and Connecting MPE720 Ver.6

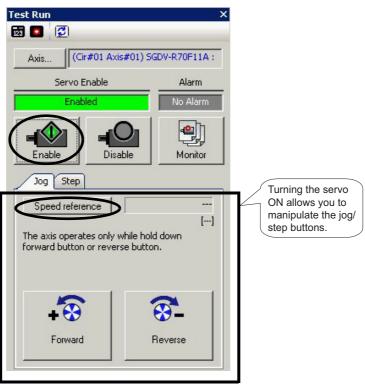
Launch MPE720Ver.6 and click "3:Ethernet(LP)192.168.1.1" to connect to the controller.




#### (2) Operating Manually in the Test Run Window

When the connection is complete, the display will change from offline to online.



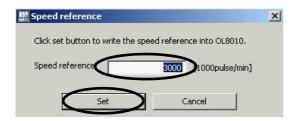


 Click System in the subwindow and double-click Axis configuration - Test run to display a warning dialog a box for the test run. Click the Agree Button.

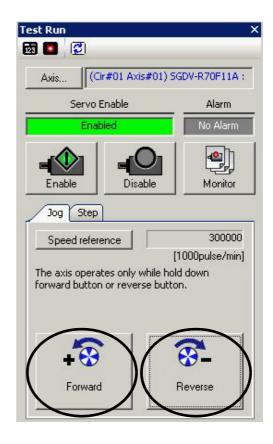


#### 2. Axis Selection and Servo ON

Set an axis number in the Axis Window and click the Enable (Servo ON) Button in the Test Run Window.







#### 4.2.3 Test Operation

#### 3. Jog Operation

Click the **Speed reference** Icon and set a speed reference value, and check that the axis rotates normally while the **Forward** Button or **Reverse** Button is pressed.

Speed reference



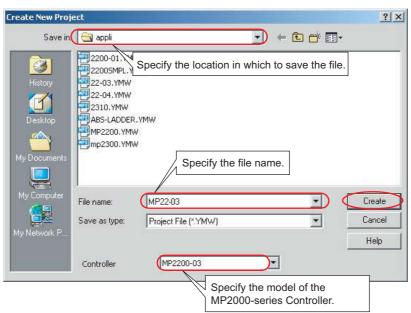


The operation check of the first axis is complete.

Press the Axis ... Button to change to "Axis #02" in the Axis Window, and perform the steps 1 to 3 above.

# 4.3 Programming

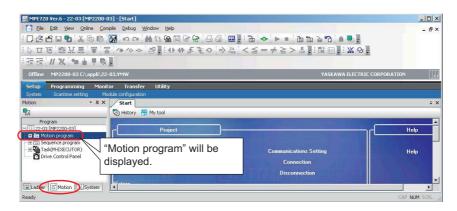
# 4.3.1 Creating a Project


1. Double-click the icon on the personal computer desktop to start MPE720 version 6.

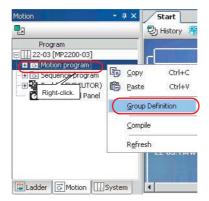


2. Once MPE720 version 6 has started, click New.

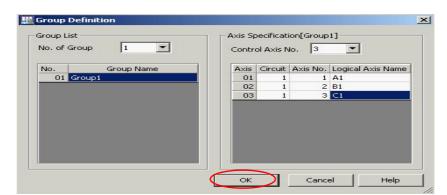



**3.** Specify the file name, location in which to save the file, and Controller model, and then click the **Create** Button.




#### 4.3.2 Creating Group Definitions

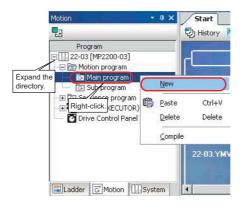
Before creating the motion program, organize the axes into groups according to the machine configuration.


1. Click the Motion Tab in the subwindow to display Motion program in the subwindow.



**2.** Right-click **Motion program** in the left subwindow, and then select **Group Definition** from the pop-up menu.

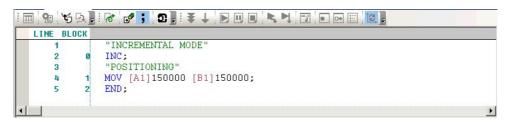



**3.** Click the **OK** Button. For more information, refer to 7.3 *Group Definition* in the *Machine Controller MP2000 Series Users Manual Motion Programming* (manual no.: SIEP C880700 38).




### 4.3.3 Creating Motion Programs

Start the Motion Editor to enter the motion program.


1. The motion program tree will expand in the subwindow. Right-click **Main program**, and then click **New** in the pop-up menu.



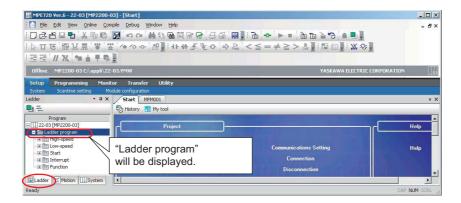
2. Click the OK Button.



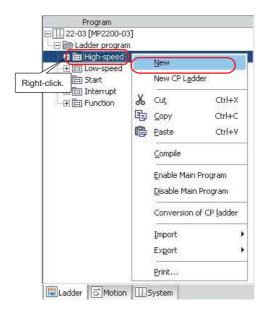
**3.** Enter the motion program example given at the beginning of this section.



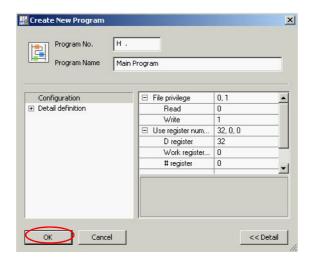
**4.** Click the loon in the Motion Editor to perform compiling. Once the motion program has been compiled, it will be automatically saved.


■ Caution

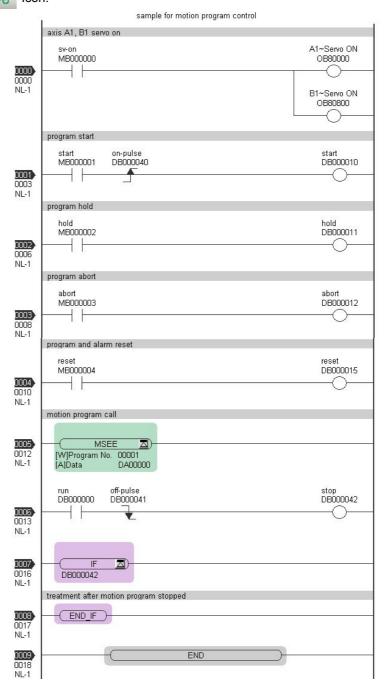
If the Error List Dialog Box is displayed when the motion program is being compiled, the program will not be saved.


## 4.3.4 Registering a Motion Program for Execution

Call the motion program that you created from DWG.H by using an MSEE command. For details, refer to 5.2.3 (2) How to Run a Motion Program.


1. Click the Ladder Tab in the subwindow. Ladder program will be displayed in the subwindow.




2. Right-click **High-speed** in the subwindow, and then click **New** in the pop-up menu.



3. Click the OK Button.

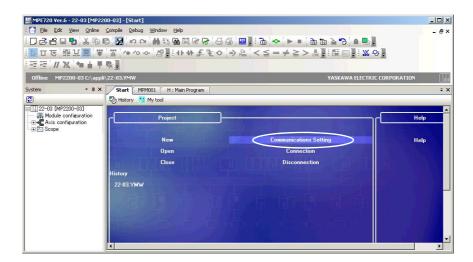


**4.** Create the following ladder program. After entering the program, compile it by pressing the F8 Key or clicking the loon.



#### ■ Caution

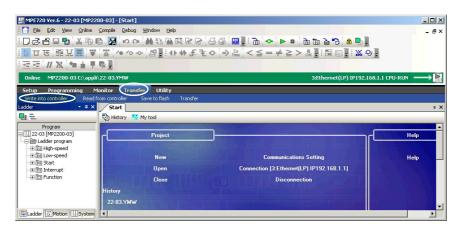
- Confirm that Machine Controller Operation Ready (motion monitoring parameter IWxx00 bit 0) is ON, and then turn ON the Servo ON Command (MB000000).
- · If Machine Controller Operation Ready is OFF, the Servo ON Command will not be accepted.


#### ■ Complement

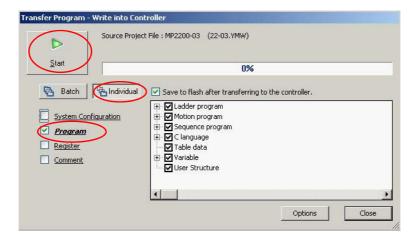
If you use the CPU-03 or CPU-04, you can register the program in the M-EXECUTOR program execution definitions rather than creating the ladder program described above. For information on the registration procedure, refer to 7.4.1 Registering Program Execution.

## 4.3.5 Transferring a Program

Transfer the motion program to the MP2000-series Controller. This procedure is not required if the motion program is made online.

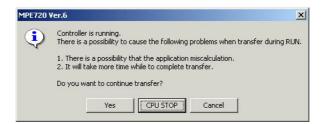

1. Click Communications Setting in the following window.




2. Select the communications port that was set in 4.2 Preparation, and then click the Connection Button.



**3.** After you are online, click *Transfer - Write into controller*.




4. Click the Individual Button, and then select Program Check Box. Click the Start Button.

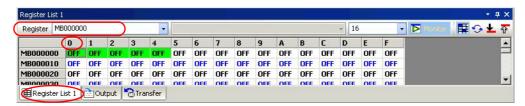


#### ■ Caution

- If an individual transfer is performed, the same file in the Controller will be overwritten with the selected project file data.
- If batch transfer is performed, the RAM of the MP2000-series Controller will be cleared before transfer, and then the project file data will be batch-written.
- 5. Click the CPU STOP Button. The transfer will start.



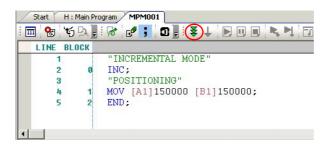
**6.** Select the **Yes** Button in the following dialog box to start the Controller.



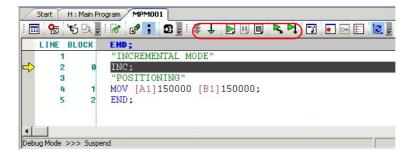

4.3.6 Program Debugging

## 4.3.6 Program Debugging

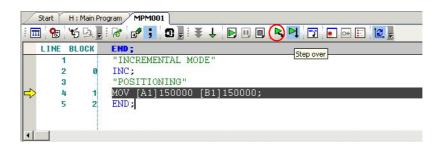
Debug the program that you created. For details on debugging, refer to 9.4 Debugging Operation in the Machine Controller MP2000 Series User's Manual Motion Programming (manual no: SIEP C880700 38).


**1.** Double-click the **Register List 1** Tab to display the register list. Specify MB000000 for the register. Set MB000000 to ON as shown in the following figure to turn ON the servo.




#### ■ Complement

The CPU-03 and CPU-04 turn ON the servo by directly using the motion setting parameters if the M-EXECUTOR was used in the procedure given in 4.3.4 Registering a Motion Program for Execution.

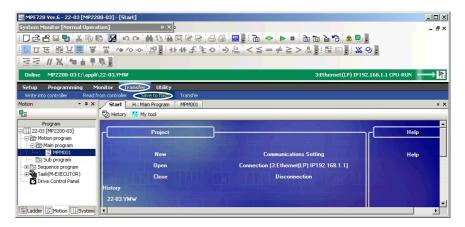

2. Click the [ (Debug Mode) Icon.



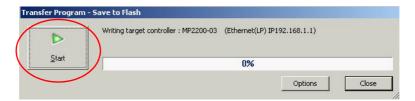
3. Debug Mode will be entered.



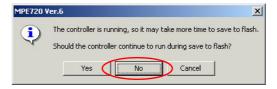
**4.** Click the (Step In) Icon to check program operation by executing program lines one at a time.




**5.** The program will be executed until the END command, and the servo will turn OFF after the debugging operation has been completed.


## 4.3.7 Saving a Program to Flash Memory

Use the following procedure to save the data in the RAM in the MP2000-series Controller to the flash memory in the MP2000-series Controller.


1. Click *Transfer - Save to flash* in the following window.

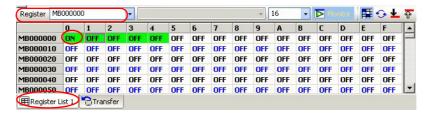


2. Click the Start Button.

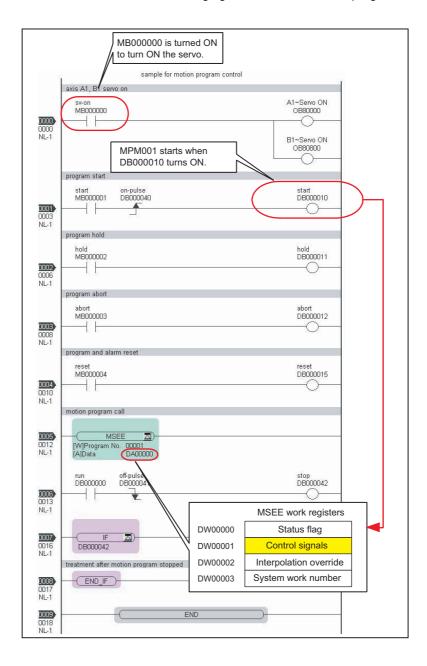


**3.** Click the **No** Button. The transfer will start.




**4.** Select the **Yes** Button in the following dialog box to start the Controller.




## 4.3.8 Executing Motions

Execute the program that you created using the actual system. To execute the motion program, turn ON a program operation start request by using the control signal.

**1.** Double-click the **Register List 1** Tab to display the register list. Specify MB000000 for the register. Set MB000000 to ON as shown in the following figure to turn ON the servo.

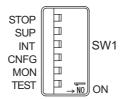


**2.** Set MB000001 to ON as shown in the following figure to execute motion program MPM001.



# Overview of System Operation

This chapter describes the basic operation of MP2200 Machine Control Systems and provides an outline of user programs and registers.

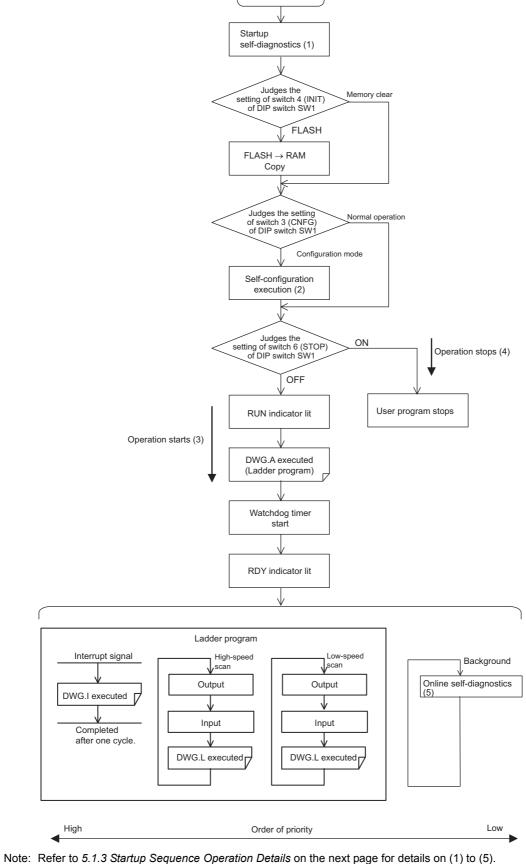

| 5.1 Startup Sequence and Basic Operation                        | 5-2  |
|-----------------------------------------------------------------|------|
| 5.1.1 DIP Switch Settings                                       | 5-2  |
| 5.1.2 Startup Sequence                                          | 5-3  |
| 5.1.3 Startup Sequence Operation Details                        | 5-4  |
| 5.1.4 LED Indicator Details                                     | 5-5  |
| 5.2 User Programs                                               | 5-6  |
| 5.2.1 Types and Execution Timing of User Program                | 5-6  |
| 5.2.2 Ladder Program                                            |      |
| 5.2.3 Motion Programs                                           | 5-12 |
| 5.2.4 Sequence Program (Supported by CPU-03 and CPU-04.)        | 5-33 |
| 5.3 Registers                                                   | 5-36 |
| 5.3.1 Types of Registers                                        | 5-36 |
| 5.3.2 Data Types                                                | 5-39 |
| 5.3.3 How to Use Subscripts i, j                                | 5-40 |
| 5.3.4 Register Designation                                      | 5-4′ |
| 5.4 Self-configuration                                          | 5-42 |
| 5.4.1 How to Execute Self-Configuration                         | 5-43 |
| 5.4.2 Definition Information Updated with Self-Configuration    | 5-5´ |
| 5.5 Application Precautions                                     | 5-55 |
| 5.5.1 Setting or Changing User Definition Files                 | 5-55 |
| 5.5.2 Setting or Changing Module Configuration Definition Files |      |
| 5.5.3 Setting and Changing the Scan Time                        |      |

# 5.1 Startup Sequence and Basic Operation

This section describes the MP2200 startup sequence and basic operation together with the DIP switch settings, self-diagnosis at startup, and LED indicator patterns.

## 5.1.1 DIP Switch Settings

Set the DIP switch (SW1) on the Basic Module to control operations of the startup sequence. The six switches are provided on the DIP switch (SW1) on the Basic Module as shown in the following figure. The following table lists the functions of six switches.




| No.       | Switch<br>Name | Status           | Operating Mode                              | Default<br>Setting                                                          | Remarks                                                        |
|-----------|----------------|------------------|---------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|
| S1-6      | STOP           | ON               | User program stops                          | OFF                                                                         | Set to ON to stop user program operation.                      |
| 31-0      | 0101           | OFF              | User program operation                      | 011                                                                         | Set to ON to stop user program operation.                      |
| S1-5      | SUP            | ON               | System load                                 | OFF                                                                         | If set to ON, starts up in the mode that can renew the version |
| 31-3      | 001            | OFF              | Normal operation                            | 011                                                                         | of the farmware.                                               |
|           |                | ON               | Memory clear                                |                                                                             | Set to ON to clear memory.                                     |
| S1-4 INIT | OFF            | Normal operation | OFF                                         | Programs stored in flash memory will be run when this switch is set to OFF. |                                                                |
| S1-3      | S1-3 CNFG ON   |                  | Self-configuration mode                     | OFF                                                                         | Set to ON for self-configuration of connected devices.         |
| 31-3      | 01110          | OFF              | Normal operation                            | 011                                                                         | Set to Oiv for sen-configuration of conficeted devices.        |
| S1-2      | MON            | ON               | System use                                  | OFF                                                                         | Always set to OFF.                                             |
| 31-2      | IVIOIN         | OFF              | Normal operation                            | OFF                                                                         | Always set to Off.                                             |
| S1-1      | TEST           | ON               | System use<br>(Adjusted before<br>shipment) | OFF                                                                         | Always set to OFF.                                             |
|           |                | OFF              | Normal operation                            |                                                                             |                                                                |

## 5.1.2 Startup Sequence

The startup sequence for the MP2200 from the moment when the power has been turned ON is shown in the following

Power ON



## 5.1.3 Startup Sequence Operation Details

#### (1) Self-diagnosis at Startup

Self-diagnosis is performed on the following items after the power is turned ON.

- Read/write diagnosis of memory (RAM)
- System program (ROM) diagnosis
- Main processor (CPU) function diagnosis
- Floating Point Unit (FPU) function diagnosis

If diagnosis results in an error, the ALM and ERR LED indicators will blink red for the specified number of times. Refer to 5.1.4 LED Indicator Details.

## (2) Self-configuration

Self-configuration automatically recognizes the connected Optional Modules, and automatically creates a definitions file. For details, refer to *5.4 Self-configuration*.

The RUN LED indicator will blink green during execution of self-configuration.

## (3) Operation Start

When the STOP switch is set to OFF (RUN), the CPU will execute the ladder program in DWG.A. (Refer to 5.2.2 Ladder Program for information on DWG.A, the startup processing drawing.)

First scan processing is executed once DWG.A has been completed and the high-speed or low-speed scan time has elapsed. System I/O are executed from the first scan.

### (4) Operation Stop

MP2200 stops motion control operation when the STOP switch is ON (STOP) and in the following circumstances.

| Cause                     | Restart method                                                                          |  |
|---------------------------|-----------------------------------------------------------------------------------------|--|
| Power supply turned OFF   | Turn ON the power again.                                                                |  |
| Power interruption        |                                                                                         |  |
| Fatal error               | Check the LED indicator for the cause of the error and then turn the power OFF then ON. |  |
| STOP executed from MPE720 | Execute RUN from MPE720.                                                                |  |

#### (5) Online Self-diagnosis

Self-diagnosis is performed on the following items during scan processing.

- System program (ROM) diagnosis
- Read/write diagnosis of memory (RAM)

If diagnosis results in an error, the ERR indicators will blink red. (Refer to the next page.)

## 5.1.4 LED Indicator Details

The MP2200 performs a variety of diagnostics at startup. If an error is found, the ERR LED indicator blinks red. The number of times the indicators blink differs depending on the error details, so error details can be determined from counting the number of blinks. The following table shows details of MP2200 LED indicator.

Note: 1. MPE720 cannot be operated when the indicators are blinking.

2. For information on errors and countermeasures, refer to *Chapter 8 Maintenance, Inspection, and Troubleshooting.* 

| Type    |         | LED     | Indicator | Name     |         | Indicator Details                                                                                                                                                                                                                                                                                                                                                                                                                                        | Remarks                                                                                 |
|---------|---------|---------|-----------|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Туре    | RDY     | RUN     | ALM       | ERR      | BAT     | mulcator Details                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                                                 |
|         | Not lit | Not lit | Lit       | Lit      | Not lit | Hardware reset status                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         |
|         | Not lit | Not lit | Not lit   | Not lit  | Not lit | Initializing                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                       |
| <u></u> | Not lit | Lit     | Not lit   | Not lit  | Not lit | Executing DWG.A                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         |
| Normal  | Lit     | Not lit | Not lit   | Not lit  | Not lit | User program stopped<br>(Offline stop mode)                                                                                                                                                                                                                                                                                                                                                                                                              | User program stops when the DIP switch or MPE720 is used to execute the STOP operation. |
|         | Lit     | Lit     | Not lit   | Not lit  | Not lit | User program executing normally (Online operation mode)                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                       |
|         | Not lit | Not lit | Not lit   | Lit      | Not lit | Major damage has occurred                                                                                                                                                                                                                                                                                                                                                                                                                                | The ERR LED indicator is lit red when the CPU is down.                                  |
| Error   | Not lit | Not lit | Not lit   | Blinking | Not lit | (Software error) No. of blinks 3: Address error (read) exception 4: Address error (write) exception 5: FPU exception 6: Illegal general command error 7: Illegal slot command error 8: General FPU inhibited error 9: Slot FPU inhibited error 10: TLB duplicated bit error 11: TLB mistake error (read) 12: TLB mistake error (write) 13: TLB protection violation error (read) 14: TLB protection violation error (write) 15: Initial page write error | The ERR LED indicator will blink red when an exception error has occurred.              |
|         | Not lit | Not lit | Blinking  | Blinking | Not lit | (Hardware errors) No. of blinks 2: RAM diagnosis error 3: ROM diagnosis error 4: CPU function diagnosis error 5: FPU function diagnosis error                                                                                                                                                                                                                                                                                                            | The ALM and ERR LED indicators will blink red if there is a self-diagnosis failure.     |
| E       | _       | _       | -         | _        | Lit     | Battery alarm                                                                                                                                                                                                                                                                                                                                                                                                                                            | The BAT LED indicator will be lit when the battery voltage drops.                       |
| Alam    | Lit     | Not lit | Lit       | Not lit  | Not lit | Operation error I/O error                                                                                                                                                                                                                                                                                                                                                                                                                                | The ALM LED indicator will be lit red when an operation or I/O error is detected.       |

## 5.2 User Programs

This section describes the basic operation and other information about user programs.

- · For programming details, refer to the following manuals.
  - Machine Controller MP900/MP2000 Series User's Manual Ladder Programming (manual no.: SIEZ-C887-1.2)
  - Machine Controller MP2000 Series User's Manual Motion Programming (manual no.: SIEP C880700 38)
  - Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Programming Instructions

(manual no.: SIEZ-C887-13.1)

- Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Operation (manual no.: SIEZ-C887-13.2)
- Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual (manual no.: SIEP C880700 30).

## 5.2.1 Types and Execution Timing of User Program

The following table shows the types and execution timing of MP2200 user program.

| User Program                           |                            | Execution Timing                                                                                                     |  |  |
|----------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Motion Program High-speed Scan Process |                            | Turns ON the program operation start request of the control signal (runs when program operation start request is ON) |  |  |
|                                        | Startup Process            | Power-up (during power-up, runs only once)                                                                           |  |  |
| Sequence Program*                      | High-speed Scan<br>Process | Periodical startup (runs each time a high-speed scan is performed)                                                   |  |  |
|                                        | Low-speed Scan<br>Process  | Periodical startup (runs each time a low-speed scan is performed)                                                    |  |  |
|                                        | Startup Process            | Power-up (during power-up, runs only once)                                                                           |  |  |
|                                        | Interrupt Process          | Runs on external interrupt (runs on DI interrupt of Optional Module and counter match interrupt)                     |  |  |
| Ladder Program                         | High-speed Scan<br>Process | Periodical startup (runs each time a high-speed scan is performed)                                                   |  |  |
|                                        | Low-speed Scan<br>Process  | Periodical startup (runs each time a low-speed scan is performed)                                                    |  |  |

<sup>\*</sup> Sequence program is supported by the CPU-03 at CPU-04.

For more information on the user program, refer to the next page and after.

## 5.2.2 Ladder Program

## (1) Types of Drawings (DWG)

Ladder programs are managed in units of ladder drawings, which are identified by drawing numbers. These drawings form the basis of user programs.

Ladder drawings include parent drawings, child drawings, grandchild drawings, and operation error processing drawings. In addition to drawings, there are functions that can be freely accessed from each drawing.

· Parent Drawings

Parent drawings are automatically executed by the system program when the execution conditions, outlined in the table below, are met.

· Child Drawings

Child drawings are accessed using a SEE command from a parent drawing.

· Grandchild Drawings

Grandchild drawings are accessed using a SEE command from a child drawing.

• Operation Error Processing Drawings

Operation error processing drawings are automatically executed by the system program when an operation error occurs.

• Functions

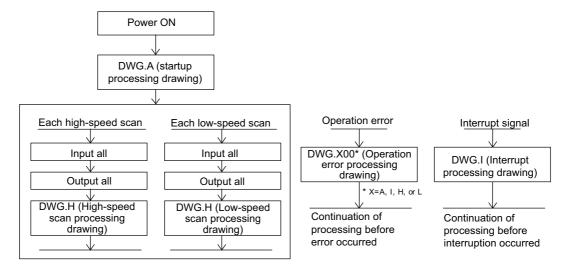
Functions are accessed and executed from parent, child, and grandchild drawings using the FUNC command.

## [a] Drawing Types and Order of Priority

Drawings are classified by their first letter (A, I, H, or L) based on the processing purpose. The following table outlines the order of priority and execution conditions for these drawings.

| Type of Parent<br>Drawing              | Function            | Priority | Execution Conditions                                                                     | Max. No. of<br>Drawings |
|----------------------------------------|---------------------|----------|------------------------------------------------------------------------------------------|-------------------------|
| DWG.A<br>(Drawing A)                   | Startup processing  | 1        | Power ON (Executed once only, when power turns ON)                                       | 64                      |
| DWG.I (Drawing I) Interrupt processing |                     | 2        | External interrupt (executed by Optional Module DI interrupt or counter match interrupt) | 64                      |
| DWG.H<br>(Drawing H)                   | ingh speed sean pro |          | Periodical startup<br>(Executed each high-speed scan)                                    | 200                     |
| DWG.L<br>(Drawing L)                   | Low-speed scan      | 4        | Periodical startup (Executed each low-speed scan)                                        | 500                     |

Note: Lower values have higher order of priority.


The following table provides details of the number of drawings for each drawing.

| Drawing                                | Number of Drawings |                |                 |                 |  |  |
|----------------------------------------|--------------------|----------------|-----------------|-----------------|--|--|
| Drawing                                | DWG.A              | DWG.I          | DWG.H           | DWG.L           |  |  |
| Parent Drawings                        | 1 (A)              | 1 (I)          | 1 (H)           | 1 (L)           |  |  |
| Operation Error<br>Processing Drawings | 1 (A00)            | 1 (I00)        | 1 (H00)         | 1 (L00)         |  |  |
| Child Drawings                         | Total: 62 max.     | Total: 62 max. | Total: 198 max. | Total: 498 max. |  |  |
| Grandchild Drawings                    | iotai. 02 max.     | Total. 02 max. | 10tai. 196 Max. | 10tai. 490 Max. |  |  |

## (2) Execution Control of Drawings

## [a] Execution Control

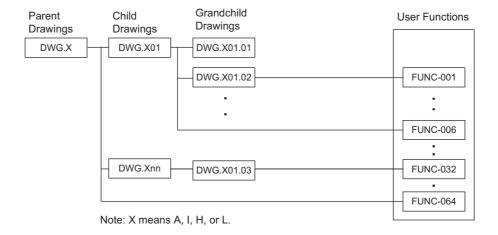
The following table shows a flow chart of how each drawing is executed based on the order of priority.

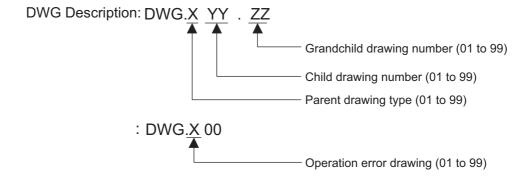


#### [b] Execution Schedule for Scan Processing Drawings

The scan processing drawings are not executed simultaneously. As shown in the following figure, the execution of each drawing is scheduled based on the order of priority and time sharing.




Background processing is used to execute internal system processing, e.g., communication processing.

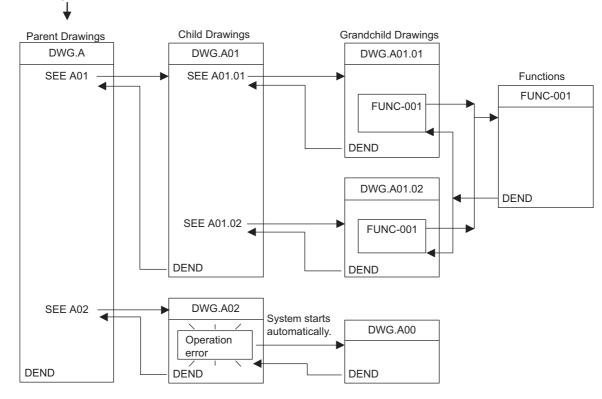

Low-speed scan processing is executed in spare processing time of the high-speed scan. Set the time of the high-speed scan to approximately double the total execution time for DWG.H.

## [c] Hierarchical Structure of Drawings

Each processing program is made up of parent drawings, child drawings, and grandchild drawings. Parent drawings cannot call child drawings from a different type of drawing and child drawings cannot call grandchild drawings from a different type of drawing. Also, parent drawings cannot directly call grandchild drawings. Child drawings are always called from parent drawings and grandchild drawings are always called from child drawings. This is the hierarchical structure of drawings.

As shown in the following figure, each processing program is created from a hierarchy of parent, child, and grandchild drawings.






#### [d] Drawing Execution Processing Method

The execution processing of hierarchical drawings are performed by calling lower-level drawings from higher-level drawings.

The following figure shows the execution processing for drawings, using DWG.A as an example.

System programs are started according to execution conditions.



Note: 1. Parent drawing is automatically called and executed by system. Therefore, you can execute the child and grandchild drawings by programming a DWG reference command (SEE command) in the parent and child drawings.

- 2. Functions can be referenced from any drawing. Functions can also be referenced from other functions.
- 3. When an operation error occurs, the operation error processing drawing for that drawing will be started.

## (3) Functions

Functions are executed by calling them from parent, child, or grandchild drawings using the FUNC command. Functions can be called from any drawing, and the same function can be called at the same time from different types of drawings and from different levels of drawings. Another completed functions can also be called from functions. Using functions has the following advantages.

- · Easier creation of user program components
- · Easier writing and maintenance of user programs

Functions include standard system functions that are already in the system and user functions that are defined by the user.

#### [a] Standard System Functions

The transmission and other functions listed below are already created as standard system functions. Standard system functions cannot be changed by users.

| Type      | Name                                | Symbol  | Contents                                                   |
|-----------|-------------------------------------|---------|------------------------------------------------------------|
|           | Counter                             | COUNTER | Incremental/decremental counter                            |
| SU        | First in/first out                  | FINFOUT | First in/first out                                         |
| functions | Trace function                      | TRACE   | Data trace execution control                               |
|           | Data trace read                     | DTRC-RD | Reads data from data trace memory to user memory           |
| System    | Inverter trace read function        | ITRC-RD | Reads trace data from inverter trace memory to user memory |
| Sy        | Message send MSG-SND Sends messages |         | Sends messages to external communication devices           |
|           | Message receive                     | MSG-RCV | Receives messages from external communication devices      |

#### [b] User Functions

The functions (programs) and the function definitions can be changed (programmed) freely by users. The maximum number of user functions that can be defined is 500 drawings.

- Refer to the following manual for information on defining functions.
  - Machine Controller MP900/MP2000 Series User's Manual Ladder Programming (manual no.: SIEZ-C887-1.2)
  - Machine Controller MP2000 Series User's Manual Motion Programming (manual no.: SIEP C880700 38)
  - Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Programming Instructions

(manual no.: SIEZ-C887-13.1)

- Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Operation (manual no.: SIEZ-C887-13.2)
- Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual (manual no.: SIEP C880700 30).

## 5.2.3 Motion Programs

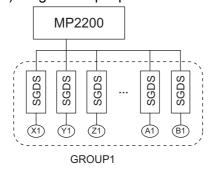
Motion programs are programs written in a text-based language called motion language. The following table shows the two types of motion programs.

| Type Specification Method |                                                                                                             | Features                                                                             | No. of Programs                                                                                                   |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Main Program              | $\begin{array}{c} MPM \square \square \\ (\square \square \square = 1 \text{ to } 256) \end{array}$         | Accessed from DWG.H     Accessed from M-EXECUTOR     Program Execution Definitions*1 | Up to 256 programs including the following programs can be created.  • Motion main programs  • Motion subprograms |  |
| Subprogram                | $\begin{array}{c} MPS \square \square \square \\ (\square \square \square = 1 \text{ to } 256) \end{array}$ | Accessed from main programs                                                          | Sequence main programs* Sequence subprograms*                                                                     |  |

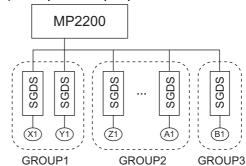
Sequence program is supported by the CPU-03 at CPU-04.

- The program numbers of motion programs are managed in the same manner as the sequence program numbers. (See note.) Assign a unique number for each program number.
  - Program number of Motion program MPM □□□, MPS □□□
  - Program number of Sequence program SPM  $\square \square \square$ , SPS  $\square \square \square$  (See note 1.)

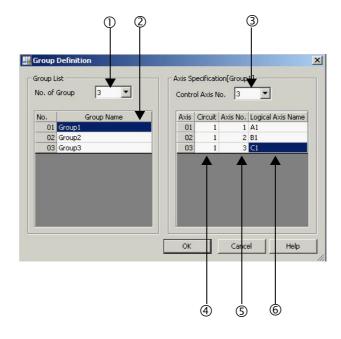
Note: Sequence program is supported by the CPU-03 at CPU-04.


- The MP2200 can execute up to 16 motion programs simultaneously. An alarm (no system work error) will occur if 17 or more programs are executed simultaneously.
  - No system work error: Bit E of the leading word in the MSEE work registers

## (1) Groups


A group of axes with related operations can be treated as one group by motion programs and programs can be executed for each group. This allows one MP2200 to independently control multiple machines using group operation. Group operation can be single group operation or multiple group operation.

Definitions for axes to be grouped together are made under Group Definitions.


#### (a) Single Group Operation



#### (b) Multiple Group Operation



This section explains the **Group Definition** window.



#### ① No. of Group

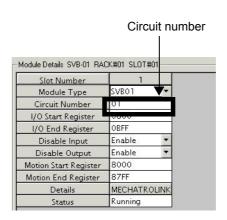
Set a number for the group operation.

Set it to 1 for the single group operation.

Set it to the number of group operation for the multiple group operation.

#### ② Group Name

Define a group name.

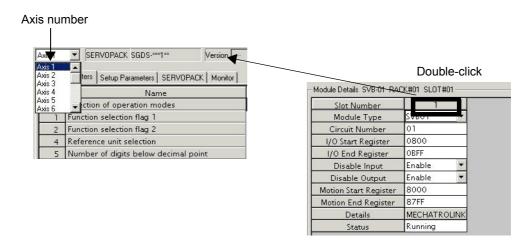

#### 3 Control Axis No.

Set the number of axes controlled in the group.

## 4 Circuit

Set a circuit number for the used motion module.

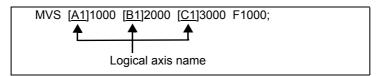
The circuit number can be checked in the **Module Configuration** Window.




#### 5.2.3 Motion Programs

#### S Axis No.

Set an axis number for the used axis.


The axis number can be checked in the detailed window of the used motion module.



#### 6 Logical Axis Name

Define a name for the specified axis number.

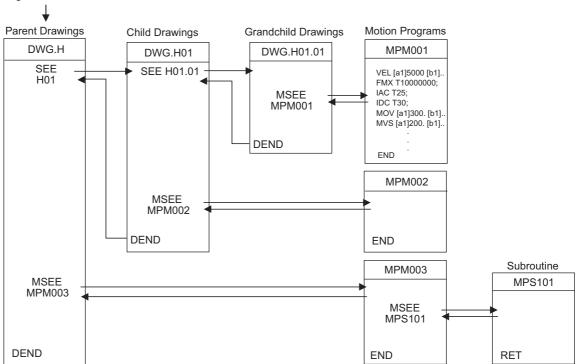
The name defined here is used when programming a motion program.



### (2) How to Run a Motion Program

The following two methods are available for running a motion program.

- Executing programs using a MSEE command from a ladder program of H drawing
- Registering programs in the Program definition Tab Page of the M-EXECUTOR Window (Supported by CPU-03 and CPU-04.)


Now, this section explains each way to run a motion program:

## [a] Executing H Drawings by MSEE Command

Motion programs are always called from H drawings using the MSEE command (motion program call command). Motion programs can be called from any parent, child, or grandchild drawing in an H drawing.

The following figure shows an example of motion program execution.

System programs are started according to execution conditions.



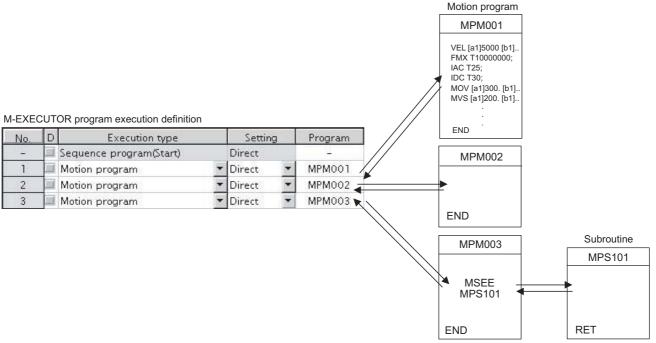
H drawing ladder commands are executed in hierarchical order i.e., parent drawings, child drawings, then grandchild drawings each high-speed scan cycle.

The above method is a preparation for running a motion program. When a MSEE command is built in, the motion program does not start up. To start up the motion program, after the MSEE command is incorporated, use a control signal to turn on the request for the program operation startup.

Motion programs are also called each scan cycle, but unlike ladder programs, all motion programs cannot be executed in one scan. For this reason, motion programs are executed and controlled by special system's motion management function.

#### ■ Caution

When running a motion program, pay attention to the followings:


- Multiple motion programs with the same number cannot be executed using a MSEE command.
- A subroutine (MPS □□□) cannot be executed from a MSEE command in a ladder.
   It can only be referenced from a motion program (MPM □□□, MPS □□□).
- The same subroutine cannot be referenced at the same time.
- A motion program registered in M-EXECUTOR cannot be executed using a MSEE command (CPU-03/CPU-04).
- Sequence programs (SPM \( \square\) and SPS \( \square\) cannot be executed using a MSEE command (CPU-03/CPU-04).

#### 5.2.3 Motion Programs

# [ b ] Registering Programs in the M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

After creating a motion program, register it in the **Program definition** Tab Page of the **M-EXECUTOR** Window. The programs registered in the **Program definition** Tab Page of the **M-EXECUTOR** Window are executed in ascending numeric order.

The execution example is shown in the figure below.



The above method is a preparation for running a motion program. When registered in the M-EXECUTOR program execution definition, a motion program does not start up. To start up the motion program, after the motion program registration, use a control signal to turn ON the request for the program operation startup.

The motion program registered in M-EXECUTOR is executed at a scan cycle, but similar to a ladder, the whole program cannot be executed at a single scan. In case of the motion program, a motion management function in the system carries out an execution control exclusive for the motion programs.

#### ■ Caution

When registering a motion program to M-EXECUTOR, pay attention to the followings:

- Multiple motion programs with the same number cannot be registered.
- · Multiple motion programs with the same number cannot be referenced using an indirect designation.

## (3) How to Designate a Motion Program

The following two methods are available for designating a motion program.

- · Using a direct designation to call a motion program
- Using a indirect designation to call a motion program

Now, this section explains each way to designate a motion program.

#### [a] Using a Direct Designation to Call a Motion Program

A direct designation method designates a motion program to call using a program number (MPM  $\square\square\square$ ).

■ Motion Program Referenced by a MSEE Command from a Ladder Program

Set a program number to Program No. (□□□□□) in the MSEE command.

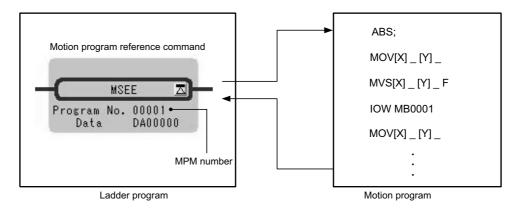



Fig. 5.1 Calling a Motion Program Using a Direct Designation -1

■ Motion Program Registered in M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

Select *Direct* for the Setting and set a program number (MPM  $\Box\Box\Box$ ).

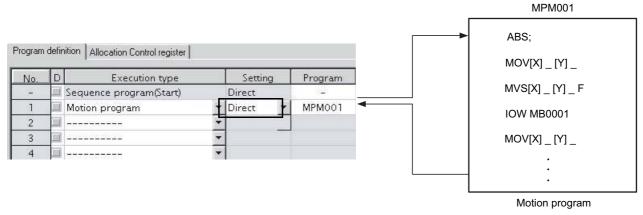



Fig. 5.2 Calling a Motion Program Using a Direct Designation - 2

#### [b] Using an Indirect Designation to Call a Motion Program

An indirect designation method designates a motion program to call using a register. In this method, a program (MPM  $\Box\Box\Box$ ) coinciding with value stored in the register is called.

## ■ Motion Program Referenced by a MSEE Command from a Ladder Program

Specify any register (M or D register) used for an indirect designation for Program No. in the MSEE command.

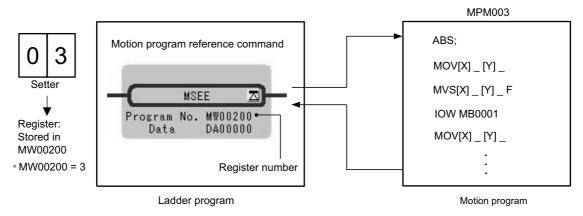



Fig. 5.3 Calling a Motion Program Using an Indirect Designation -1

Motion Program Registered in M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

Select *Indirect* for the Setting. A register for the indirect designation is automatically mapped.

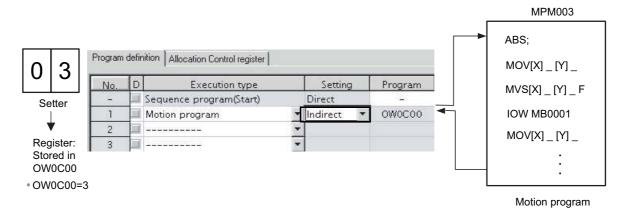
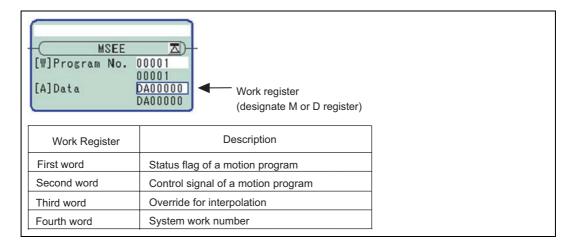


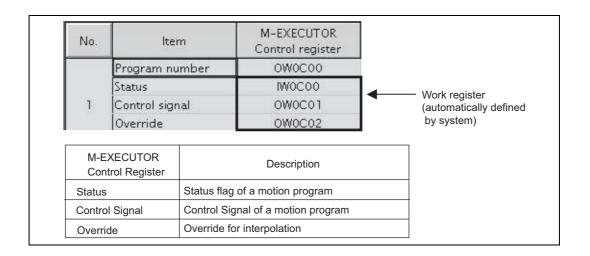

Fig. 5.4 Calling a Motion Program Using an Indirect Designation - 2

## (4) Work Register


Configure and monitor a motion program via a work register.

The work register constitution for motion programs referenced by a MSEE command from a ladder program differs from that for motion programs registered in the M-EXECUTOR program execution definition.

The work register constitution in each case is as follows:


#### Motion Program Executed by a MSEE Command from a Ladder Program

Use a MSEE command of a ladder program to designate the work register (M or D register). The work register constitution is as follows:



## Motion Program Registered in M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

The work register is assigned to a M-EXECUTOR control register. (automatically defined by system) The M-EXECUTOR control register constitution is as follows:



For more information on the work register, refer to the subsequent pages.

## [a] Status Flag of a Motion Program

The motion program status flag shows the execution status of the motion program.

The following table shows details of status flag.

## [Status Flag]

| Bit No. | Status                                           |  |  |  |
|---------|--------------------------------------------------|--|--|--|
| 0       | Program running                                  |  |  |  |
| 1       | Program paused                                   |  |  |  |
| 2       | Program stopped by stop request (used by system) |  |  |  |
| 3       | (Reserved)                                       |  |  |  |
| 4       | Single program block operation stopped           |  |  |  |
| 5       | (Reserved)                                       |  |  |  |
| 6       | (Reserved)                                       |  |  |  |
| 7       | (Reserved)                                       |  |  |  |
| 8       | Program alarm                                    |  |  |  |
| 9       | Stopped by brake point                           |  |  |  |
| Α       | (Reserved)                                       |  |  |  |
| В       | In debug mode (EWS debugging operation)          |  |  |  |
| С       | Program type 0: Motion program                   |  |  |  |
| D       | Start request signal history                     |  |  |  |
| E       | No system work error                             |  |  |  |
| F       | Main program number exceeded error               |  |  |  |

When program alarm has occurred, the error details of the motion program are stored in the error information window and S registers.

## [b] Control Signal

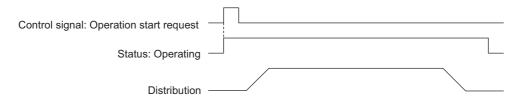
Program control signals (e.g., program operation start requests and program stop requests) need to be entered to execute the motion program.

The following types of signals for controlling motion programs are available.

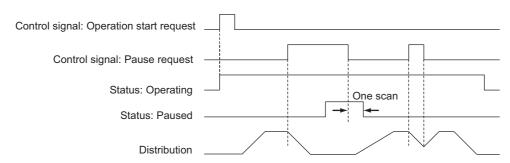
| Bit No. | Signal Name                                | Signal Type                      |
|---------|--------------------------------------------|----------------------------------|
| 0       | Program operation start request            | Differential or NO contact input |
| 1       | Program pause request                      | NO contact                       |
| 2       | Program stop request                       | NO contact                       |
| 3       | Program single block mode selection        | NO contact                       |
| 4       | Program single block start request         | Differential or NO contact input |
| 5       | Alarm reset request                        | NO contact                       |
| 6       | Program continuous operation start request | Differential or NO contact input |
| 7       | (Reserved)                                 |                                  |
| 8       | Skip 1 information                         | NO contact                       |
| 9       | Skip 2 information                         | NO contact                       |
| Α       | (Reserved)                                 |                                  |
| В       | (Reserved)                                 |                                  |
| С       | (Reserved)                                 |                                  |
| D       | System work number setting*1               | NO contact                       |
| E       | Override setting for interpolation*2       | NO contact                       |
| F       | (reserved)                                 |                                  |

#### \* 1. System work number setting

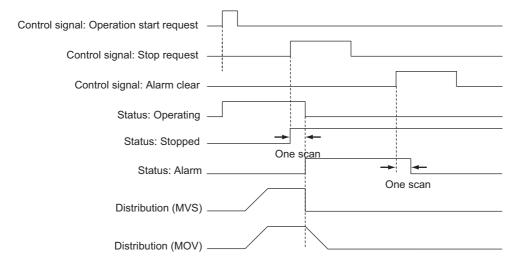
- When a motion program is registered in M-EXECUTOR:
  - Unable to designate it. The same system work number as No. defined in the system is used.
- When a motion program is called by a MSEE command from a ladder program:
  - OFF: A system work automatically retrieved by system is used. The system work number may differ in each case.
  - ON: A work with the designated system work number is used.
    - However, when a work occupied by M-EXECUTOR is designated, "BitE: No system work error" is reported to the status.
- \* 2. Override setting for interpolation
  - OFF: 100% fixed at an override for interpolation
  - ON: Depends on the designated override for interpolation.


Use signals conforming to the above signal types when writing ladder programs.

Note: Motion programs are executed if the program operation start request signal is ON when the power is turned ON.


#### ■ Timing Chart for Motion Program Control Signals

The following figure shows an example of a timing chart for motion program control signals.


· Program Operation Start Request



#### · Pause Request



#### · Stop Request

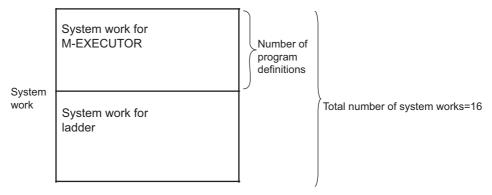


Note: An alarm will occur if the stop request is turned ON during axis operation using a motion command.

#### [c] Interpolation Override

The override when executing interpolation move commands (setting; unit: 1 = 0.01%) is set.

This interpolation override is enabled only when the motion program control signal bit E (interpolation override setting) is ON.


## [d] System Work Number

If a motion program is executed by a ladder MSEE command, the system work number n (setting range: 1 to 16) used when executing motion programs can be set.

Note: System work numbers cannot be set for motion programs registered in the M-EXECUTOR detailed definition window (supported by CPU-03 and CPU-04).

#### ■ System Works for M-EXECUTOR (Supported by CPU-03 and CPU-04)

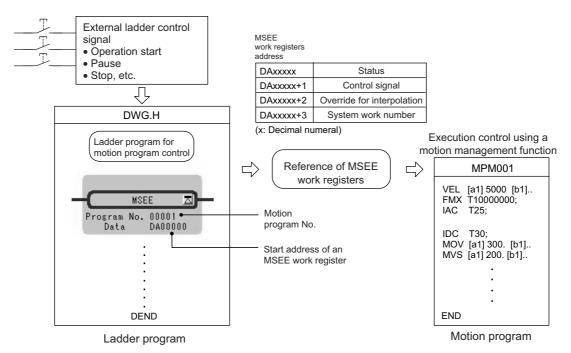
The total number of system works of a motion program is 16 for both M-EXECUTOR and ladder. The number set for **Program definition number** in the M-EXECUTOR detailed definition window is the number of the system works for M-EXECUTOR.



- 1. A work not occupied by M-EXECUTOR can execute a motion program using a MSEE command from a ladder program.
- 2. When the number of a system work occupied by M-EXECUTOR is specified by a ladder program, an alarm (No system work error) occurs. Therefore, when the number of program definitions is set to 16 in the M-EXECUTOR detailed definition window, a motion program cannot be executed by a ladder MSEE command.
  - No system work error: Status flag Bit E of the motion program

## (5) How to Operate a Work Register

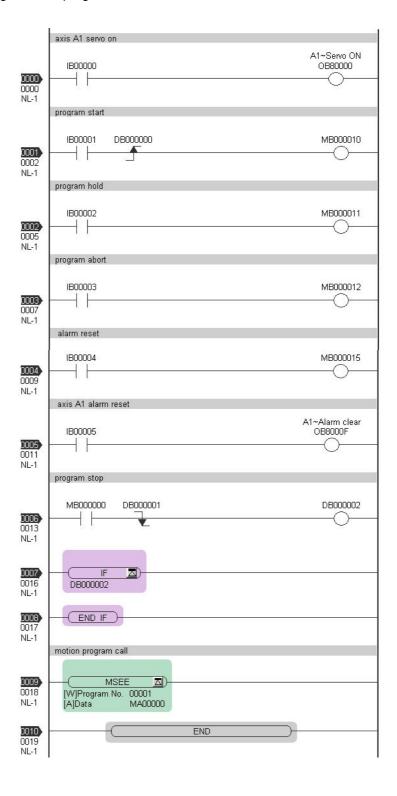
The way to operate a work register of a motion program referenced by a MSEE command from a ladder program differs from that of a motion program registered in the M-EXECUTOR program execution definition.


The way to operate it in each case is shown as follows:

## [a] Motion Program Referenced by a MSEE Command from a Ladder Program

When a motion program is referenced by a MSEE command from a ladder program, the motion program is controlled by a sequence or ladder program.

To use this execution processing, incorporate a MSEE command in the ladder H drawing. In this case, MSEE work register configures and monitors the motion program.


The following figure shows a setting example in this method.



· For information about the meaning and estimation of the register number, refer to 5.3 Registers.

An example of using a ladder program to control motion program is provided on the next page.

## ■ Example using a ladder program



## 5.2.3 Motion Programs

# [ b ] Motion Program Registered in M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

When a motion program is registered in M-EXECUTOR program execution definition, select one from the following two execution processings.

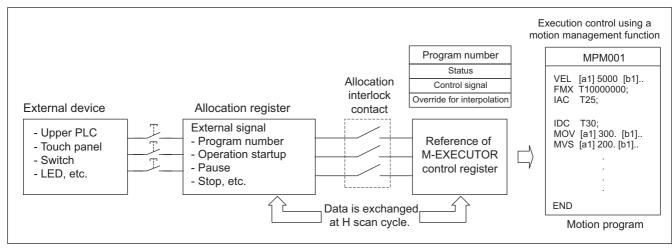
- A way to immediately control a motion program from external device
- A way to control a motion program via a sequence or ladder program

Now, this section explains each execution processing in the subsequent pages.

#### ■ A Way to Immediately Control a Motion Program from External Device

M-EXECUTOR has a function which allocates any register to an M-EXECUTOR control register.

Using this function allows you to automatically exchange data between an M-EXECUTOR control register and an I/O register connected to an external device. This allows you to immediately control the motion program from the external device.


The following figure shows a setting example in this method.

#### Window for allocating the M-EXECUTOR register

| No. | ltem           | M-EXECUTOR<br>Control register | Allocation<br>Disable | Direction | Allocation register | Allocation<br>Contact interlock |
|-----|----------------|--------------------------------|-----------------------|-----------|---------------------|---------------------------------|
|     | Program number | MPM001                         |                       |           | 100                 | i)                              |
|     | Status         | IW0C00                         |                       | ->        | OW0000              | IB00020                         |
|     | Control signal | OWOC01                         |                       | <-        | IW0000              | IB00020                         |
|     | Override       | OWOC02                         |                       | <-        | IW0001              | IB00020                         |



Specify any registers for allocation register and mapping interlock contact.



■ An allocation contact interlock is used to interlock the operation of a motion program. When setting an allocation register, be sure to set an allocation contact interlock.

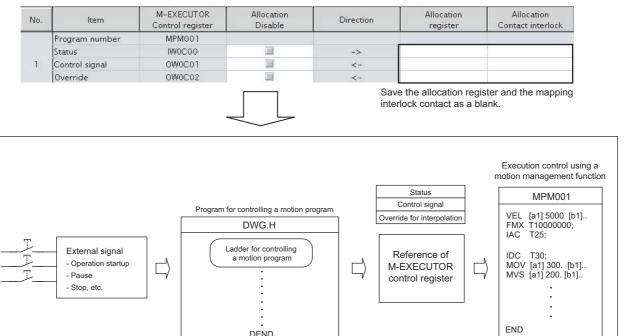
It is processed, as shown below, by turning ON/OFF an allocation contact interlock:

- When an allocation contact interlock contact is ON, data is exchanged between an allocation register and M-EXECUTOR control register at H scan cycle. Now, the motion program becomes executable.
- When an allocation contact interlock is OFF, data is not exchanged between an allocation register and M-EXECUTOR control register. Now, the motion program becomes unexecutable.
- When an allocation contact interlock is switched from ON to OFF while running a motion program, the running motion program stops and an axis in operation also stops. Now, the motion program falls into the alarm "1Bh: Executing an emergency stop command" state, and the status "Bit8: Program alarm is occurring" is turned ON.

Again, to execute a motion program, follow the procedure below for operation:

- 1. Switch the interlock contact from OFF to ON.
- 2. Turn ON a control signal "Bit5: Alarm reset request."
- 3. Make sure that the status "Bit8: Program alarm is occurring" is turned OFF.
- 4. Turn OFF the control signal "Bit5: Alarm reset request."
- 5. Turn ON a control signal "Bit0: Request for the program operation startup."

## A Way to Control a Motion Program via a Sequence or Ladder Program


Without using the allocating function of the above mentioned M-EXECUTOR control register, controls a motion program via a sequence or ladder program.

To use this execution processing, save the blank Allocation register and the blank Allocation interlock contact as a blank.

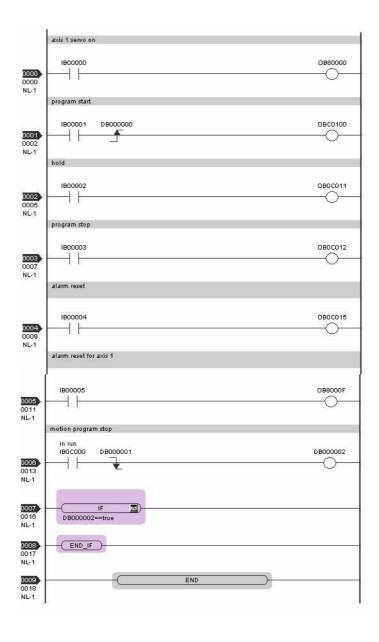
In this case, set and monitor the motion program by using the M-EXECUTOR control register configures.

The following figure shows a setting example in this method.

#### M-EXECUTOR program execution definition



Each example which uses a sequence program and ladder program respectively as a program for controlling the motion program is shown as follows:


Motion program

Ladder program

## 1. Example using a sequence program

```
OB80000 = IB00000;
                                        "axis 1 servo on"
OB0C010 = PON( IB00001 DB000000 );
                                       "program start"
                                       "hold"
OB0C011 = IB00002;
OB0C012 = IB00003;
                                       "program stop"
OB0C015 = IB00004:
                                       "alarm reset"
OB8000F = IB00005;
                                       "Turn ON a single axis servo"
IF NON( IB0C000 DB000001 ) == 1;
                                       "Is the program operation OFF?"
                                       "Process when program operation is stopped"
IEND;
END;
```

## 2. Example using a ladder program



#### (6) Monitor the Motion Program Execution Information using S register

Using S register (SW03200 to SW04191) allows you to monitor the motion program execution information. The way to monitor the execution information for a motion program referenced by an MSEE command from a ladder program differs from that for a motion program registered in the M-EXECUTOR program execution definition (supported by CPU-03 and CPU-04).

The way to monitor it in each case is shown as follows:

#### [a] Motion Program Referenced by an MSEE Command from a Ladder Program

When a motion program is referenced by an MSEE command from a ladder program, the way differs, depending on the "BitD" setting (system work number setting) of the motion program control signal, as follows:

■ The motion program control signal "BitD, System Work Number Setting" = ON

The execution information is reported to "Program Information Using Work n" register (SW03264-SW04191). For example, when "System Work Number"=1, the motion program execution information can be monitored in SW03264-SW03321 "Program Information Using Work 1".

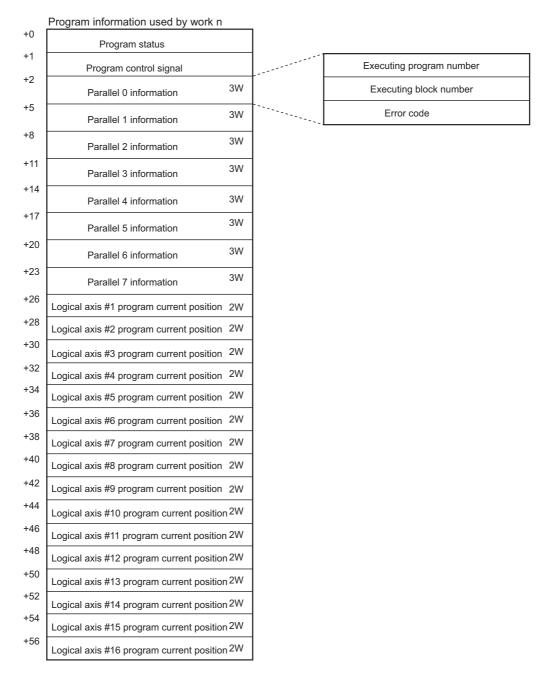
■ The motion program control signal "BitD, System Work Number Setting" = OFF

The used system work is automatically decided by system. Thus, to check which work is used, refer to "Running Program Number" (=SW03200 to SW03215).

For example, when you want to monitor the motion program MPM001 and SW03202=001, as used the work number=3, the execution information for the motion program MPM001 can be monitored in "Program Information Using Work 3" (=SW03380 to SW03437).

# [ b ] Motion Program Registered in M-EXECUTOR Program Execution Definitions (Supported by CPU-03 and CPU-04.)

When a motion program is registered in the M-EXECUTOR program execution definition, the same system work number as the definition No. is used.


For example, a motion program is registered as "Definition No." =3, the used system work number is "System Work"=3. In this case, the execution information for the motion program can be monitored in "Program Information Using Work 3" (=SW03380 to SW03437).

For more information on the register area of the motion program execution information, refer to the subsequent pages.

# ■ Register Areas for Motion Program Execution Information Motion program execution information

| N         | Notion program execution infor                          | matio      | n                                      | Executing program number        |
|-----------|---------------------------------------------------------|------------|----------------------------------------|---------------------------------|
| SW03200   | Executing program number                                |            | SW03200                                | Program number used by work 1   |
|           | (No. of main program curren executing)                  | tly<br>16W | SW03201                                | Program number used by work 2   |
| SW03216   |                                                         | 16W        | SW03202                                | Program number used by work 3   |
| SW03232   | , ,                                                     | 1011       | , `\ SW03203                           | Program number used by work 4   |
|           | Executing Program Bit<br>(Executing when corresponding) | ng         | `\ `\ SW03204                          | Program number used by work 5   |
| SW03248   |                                                         | 16W        | SW03205                                | Program number used by work 6   |
| SW03264   | Reserved by the system.                                 | 16W        | SW03206                                | Program number used by work 7   |
| 01100204  | Program information used by work 1                      | 58W        | SW03207                                | Program number used by work 8   |
| SW03322   | December in factors of the control line                 |            | \ \ \ SW03208                          | Program number used by work 9   |
|           | Program information used by work 2                      | 58W        | \ \\ SW03209                           | Program number used by work 10  |
| SW03380   | Program information used by                             | 58W        | \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Program number used by work 11  |
| SW03438   | work 3                                                  |            | SW03211                                | Program number used by work 12  |
| 01100100  | Program information used by work 4                      | 58W        | SW03212                                | Program number used by work 13  |
| SW03496   |                                                         |            | SW03213                                | Program number used by work 14  |
|           | Program information used by work 5                      | 58W        | SW03214                                | Program number used by work 15  |
| SW03554   | Program information used by work 6                      | 58W        | SW03215\                               | Program number used by work 16  |
| SW03612   |                                                         | 58W        |                                        |                                 |
| SW03670   | Program information used by work 8                      | 58W        |                                        | Executing program bit           |
| SW03728   | Program information used by                             | F0\4/      | SW03232                                | MP□016 (Bit15) to MP□001 (Bit0) |
|           | work 9                                                  | 58W        | SW03233                                | MP□032 (Bit15) to MP□017 (Bit0) |
| SW03786   | Program information used by work 10                     | 58W        | SW03234                                | MP□048 (Bit15) to MP□033 (Bit0) |
| SW03844   |                                                         |            | SW03235                                | MP□054 (Bit15) to MP□049 (Bit0) |
|           | Program information used by work 11                     | 58W        | SW03236                                | MP□080 (Bit15) to MP□055 (Bit0) |
| SW03902   | Program information used by                             | 50\A/      | SW03237                                | MP□096 (Bit15) to MP□081 (Bit0) |
| 014/02000 | work 12                                                 | 58W        | SW03238                                | MP□112 (Bit15) to MP□097 (Bit0) |
| SW03960   | Program information used by work 13                     | 58W        | SW03239                                | MP□128 (Bit15) to MP□113 (Bit0) |
| SW04018   |                                                         |            | SW03240                                | MP□144 (Bit15) to MP□129 (Bit0) |
|           | Program information used by work 14                     | 58W        | SW03241                                | MP□160 (Bit15) to MP□145 (Bit0) |
| SW04076   | Program information used by                             | 58W        | SW03242                                | MP□176 (Bit15) to MP□161 (Bit0) |
|           | work 15                                                 | 3000       | SW03243                                | MP□192 (Bit15) to MP□177 (Bit0) |
| SW04134   | Program information used by work 16                     | 58W        | SW03244                                | MP□208 (Bit15) to MP□193 (Bit0) |
| SW04192   | WOIK IO                                                 |            | SW03245                                | MP□224 (Bit15) to MP□209 (Bit0) |
|           | Reserved by the system. 9                               | 28W        | SW03246                                | MP□240 (Bit15) to MP□225 (Bit0) |
|           |                                                         |            | SW03247                                | MP□256 (Bit15) to MP□241 (Bit0) |
| SW05120   | Reserved by the system.                                 | 64W        |                                        | Note: □ indicates M or S.       |

#### Details of Program Information Used by Work n



### 5.2.4 Sequence Program (Supported by CPU-03 and CPU-04.)

A sequence program is a program described with motion language of text format. The following table shows two types of sequence programs.

| Category     | Designation<br>Method    | Features                                                 | Number of Programs                                                                                                            |
|--------------|--------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Main program | SPM□□□<br>(□□□=1 to 256) | Calling from the M-EXECUTOR program execution definition | Up to 256 programs of the following types can be created:                                                                     |
| Subprogram   | SPS□□□<br>(□□□=1 to 256) | Calling from the main program                            | <ul><li> Motion main program</li><li> Motion subprogram</li><li> Sequence main program</li><li> Sequence subprogram</li></ul> |

- The program numbers of sequence programs are managed in the same manner as the motion program numbers. Assign a different number for each program number.
  - Motion program MPM□□□: Program number of MPS□□□
  - Sequence program SPM□□□: Program number of SPS□□□

#### (1) How to Run a Sequence Program

A sequence program is executed by registering it in the M-EXECUTOR program execution definition. Sequence programs are executed in ascending numeric order.

The following figure shows an execution example.



When the execution type is set to "Sequence program (H scan)" or "Sequence program (L scan)", the program is executed at the time the definition is saved. When the execution type is set to Sequence program (Start), the program is executed when the power supply is turned ON again next time.

5.2.4 Sequence Program (Supported by CPU-03 and CPU-04.)

#### (2) How to Designate a Sequence Program

You can only designate a sequence program directly. Indirect designation is unavailable. Use the program number ( $SPM\square\square\square$ ) when designating a sequence program to execute.

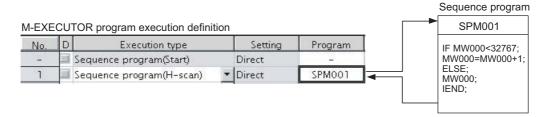



Fig. 5.5 Calling a Sequence Program

#### (3) Work Register

Monitor a sequence program through a work register.

A work register, similar to the motion program registered in M-EXECUTOR, has status flags in the M-EXECUTOR control register.

The following table shows the work register configuration of the sequence program.

| Work Register | Content                           |
|---------------|-----------------------------------|
| Status        | Status flag of a sequence program |

#### [a] Status Flag of Sequence Program

The status flags of a sequence program allow you to know the execution status of the sequence program. The following table explains the detailed contents of status flags.

[Status]

| Bit No. | Status                              |  |  |
|---------|-------------------------------------|--|--|
| 0       | Program running                     |  |  |
| 1       | (Reserved)                          |  |  |
| 2       | (Reserved)                          |  |  |
| 3       | (Reserved)                          |  |  |
| 4       | (Reserved)                          |  |  |
| 5       | (Reserved)                          |  |  |
| 6       | (Reserved)                          |  |  |
| 7       | (Reserved)                          |  |  |
| 8       | Program alarm is occurring          |  |  |
| 9       | Stopping at breakpoint              |  |  |
| Α       | (Reserved)                          |  |  |
| В       | In debug mode (EWS debug operation) |  |  |
| С       | Program type 1: Sequence program    |  |  |
| D       | Start request history               |  |  |
| E       | (Reserved)                          |  |  |
| F       | (Reserved)                          |  |  |

#### ■ Sequence program alarm

When referencing a sequence subprogram (SSEE command execution) and an error is detected, "Bit8: Program alarm is occurring" is turned ON. If the error is cleared, it is turned OFF.

Error details are as follows:

| Error Details                                                |  |  |
|--------------------------------------------------------------|--|--|
| Called program is unregistered                               |  |  |
| Called program is not a sequence program                     |  |  |
| Called program is not a sub program (main program is called) |  |  |
| Called program number is over                                |  |  |
| Nest over error                                              |  |  |

# 5.3 Registers

This section describes the types of registers used in MP2200 user programs (mainly ladder programs) and how to use them.

#### 5.3.1 Types of Registers

#### (1) DWG Registers

Registers used by ladder programs (ladder drawings; DWG). Each drawing can use the registers outlined in the following table.

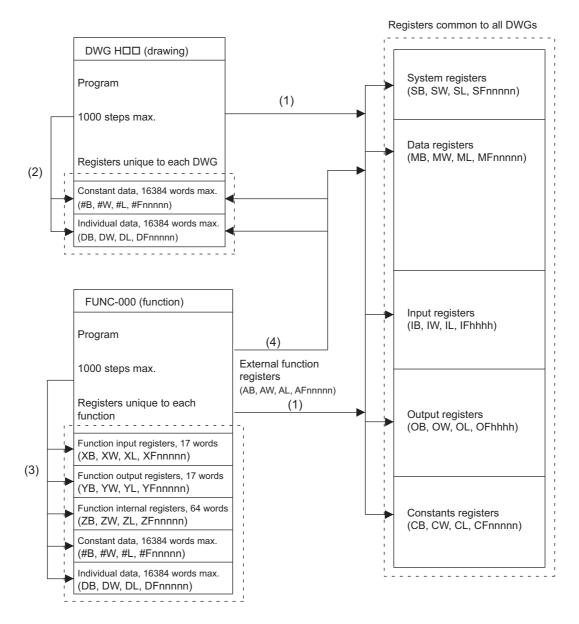
| Type | Name                | Specification Method                | Range                 | Details                                                                                                                                 | Characteristics |
|------|---------------------|-------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| S    | System registers    | SB, SW, SL, SFnnnnn<br>(SAnnnnn)    | SW00000 to<br>SW08191 | Registers provided by the system. SW00000 to SW00049 are cleared to all zeros when the system starts.                                   |                 |
| М    | Data registers      | MB, MW, ML,<br>MFnnnnn<br>(MAnnnnn) | MW00000 to<br>MW65534 | Registers shared by all drawings. Used, e.g., as an interface between drawings.                                                         | Common to all   |
| I    | Input registers     | IB, IW, IL, IFhhhh<br>(IAhhhh)      | IW0000 to<br>IW7FFF   | Registers used for input data.                                                                                                          | drawings        |
| 0    | Output registers    | OB, OW, OL, OFhhhh<br>(OAhhhh)      | OW0000 to<br>OW7FFF   | Registers used for output data.                                                                                                         |                 |
| С    | Constants registers | CB, CW, CL, CFnnnnn<br>(CAnnnnn)    | CW00000 to<br>CW16383 | Registers that can only be called from programs.                                                                                        |                 |
| #    | # registers         | #B, #W, #L, #Fnnnnn<br>(#Annnnn)    | #W00000 to<br>#W16383 | Call-only registers Can be called only by corresponding drawing. The usage range is set by the user using MPE720.                       | Unique to each  |
| D    | D registers         | DB, DW, DL,<br>DFnnnnn<br>(DAnnnnn) | DW00000 to<br>DW16383 | Internal registers unique to each drawing. Can be used only by corresponding drawing.  The usage range is set by the user using MPE720. | drawing         |

Note: 1. n: Decimal number; h: Hexadecimal number

- 2. B, W, L, F, and A: Data type (B: Bit, W: Integer, L: Double-length integer, F: Real number, A: Address. Refer to 5.3.2 Data Types.)
- 3. Up to 32 D registers (32 words, DW0000 to DW0031) can be used when creating drawings, but this can be changed in the MPE720 Drawings Properties Window. Refer to the *Machine Controller MP900/MP2000 Series User's Manual MPE720 Software for Programming Device (manual no.: SIEP C880700 05)* or, refer to *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual* (manual no.: SIEP C880700 30) for details.
- 4. S and M register data has a battery backup to ensure the data is held even if the MP2200 power is turned OFF and ON.
  - It is recommended that data to be held regardless of whether or not the power is turned OFF and ON should be written to M registers if possible.

# (2) Function Registers

The following table shows the registers that can be used with each function.

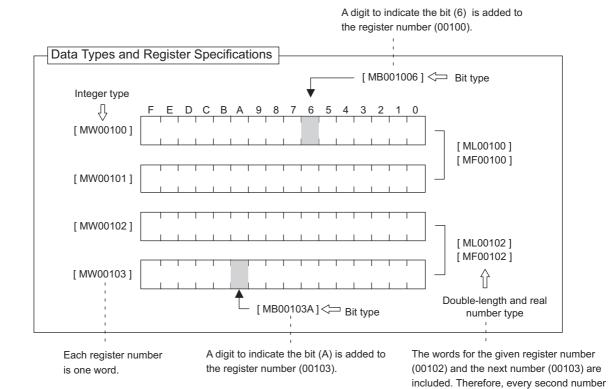

| Type | Name                        | Specification Method                | Range                 | Details                                                                                                                                    | Characteristics         |
|------|-----------------------------|-------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| х    | Function input registers    | XB, XW, XL, XFnnnnn                 | XW00000 to<br>XW00016 | Input to functions Bit input: XB000000 to XB00000F Integer input: XW00001 to XW00016 Double-length integer input: XL00001 to XL00015       |                         |
| Y    | Function output registers   | YB, YW, YL, YFnnnnn                 | YW00000 to<br>YW00016 | Output from functions Bit output: YB000000 to YB00000F Integer output: YW00001 to YW00016 Double-length integer output: YL00001 to YL00015 |                         |
| Z    | Internal function registers | ZB, ZW, ZL, ZFnnnnn                 | ZW0000 to<br>ZW00063  | Internal registers unique to each function<br>Can be used for function internal process-<br>ing.                                           | Unique to each function |
| А    | External function registers | AB, AW, AL, AFhhhh                  | AW0000 to<br>AW32767  | External registers with the address input value as the base address. For linking with S, M, I, O, #, and DAnnnnn.                          | runction                |
| #    | # registers                 | #B, #W, #L, #Fnnnnn<br>(#Annnnn)    | #W00000 to<br>#W16383 | Call-only registers Can be called only from the relevant function. The usage range is set by the user using MPE720.                        |                         |
| D    | D registers                 | DB, DW, DL, DFnnnnn<br>(DAnnnnn)    | DW00000 to<br>DW16383 | Internal registers unique to each function. Can be called only the relevant function. The usage range is set by the user using MPE720.     |                         |
| S    | System registers            | SB, SW, SL, SFnnnnn<br>(SAnnnnn)    |                       |                                                                                                                                            |                         |
| М    | Data registers              | MB, MW, ML,<br>MFnnnnn<br>(MAnnnnn) | Same as DWG           | registers.                                                                                                                                 |                         |
| I    | Input registers             | IB, IW, IL, IFhhhh (IAh-<br>hhh)    | how thes              | gisters are shared by drawings and functions. I<br>se registers are to be used when calling the sam                                        |                         |
| 0    | Output registers            | OB, OW, OL, OFhhhh<br>(OAhhhh)      | drawing               | of a different priority level.                                                                                                             |                         |
| С    | Constants registers         | CB, CW, CL, CFnnnnn<br>(CAnnnnn)    |                       |                                                                                                                                            |                         |

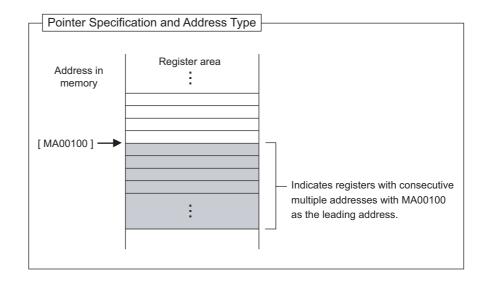
Note: 1. n: Decimal number; h: Hexadecimal number

- 2. B, W, L, F, and A: Data type (B: Bit, W: Integer, L: Double-length integer, F: Real number, A: Address. Refer to *5.3.2 Data Types*.)
- 3. SA, MA, IA, OA, DA, #A, and CA registers can be used within functions.

#### (3) Register Ranges in Programs

The following figure shows DWG programs, function programs, and register call ranges.





- (1): Registers that are common to all drawings can be called from any drawing or function.
- (2): Registers that are unique to each drawing can be called only from within the drawing.
- (3): Registers that are unique to each function can be called only from within the function.
- (4): Registers that are common to all drawings and registers that are unique to each drawing can be called from functions using the external function registers.

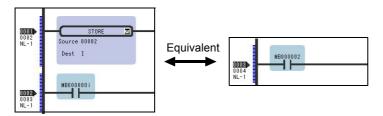
#### 5.3.2 Data Types

There are five kinds of data: Bit, integer, double-length integer, real number, and address data. Each is used differently depending on the application. Address data, however, is used only inside functions when specifying pointers. The following table shows the types of data.

| Туре | Data types            | Numeric Value Range                                  | Remarks                                                                                               |
|------|-----------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| В    | Bit                   | ON, OFF                                              | Used by relay circuits.                                                                               |
| W    | Integer               | -32768 to +32767<br>(8000H) (7FFFH)                  | Used for numeric value operations. The values in parentheses ( ) are for use with logical operations. |
| L    | Double-length integer | -2147483648 to +2147483647<br>(80000000H) (7FFFFFFH) | Used for numeric value operations. The values in parentheses ( ) are for use with logical operations. |
| F    | Real number           | $\pm$ (1.175E-38 to 3.402E+38), 0                    | Used for numeric value operations.                                                                    |
| Α    | Address               | 0 to 32767                                           | Used only when specifying pointers.                                                                   |

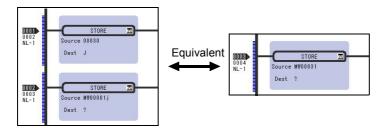





is used.

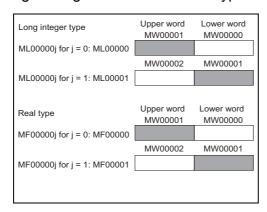
5.3.3 How to Use Subscripts i, i

#### 5.3.3 How to Use Subscripts i, j


Two type of registers (i, j) are available as dedicated registers to modify the relay and register numbers. Both i and j have the same function. They are used when you want to handle a register number as a variable. An example for each register data type is given as explanation.

#### (1) Bit Type Attached with a Subscript



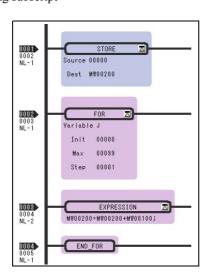

The result is a relay number added with i or j value. For example, MB000000i for i=2 is the same as MB000002. Also, MB000000j for j=27 is the same as MB00001B.

#### (2) Integer Type Attached with a Subscript



The result is a register number added with i or j value. For example, MW00010i for i=3 is the same as MW00013. Also, MW00001j for j=30 is the same as MW00031.

#### (3) Double-length Integer or Real Number Type Attached with a Subscript



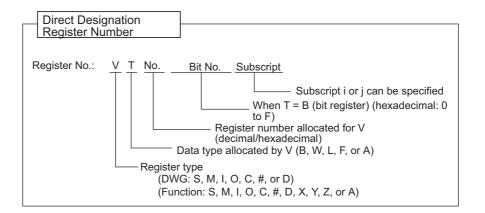

The result is a register number with an added i or j value.

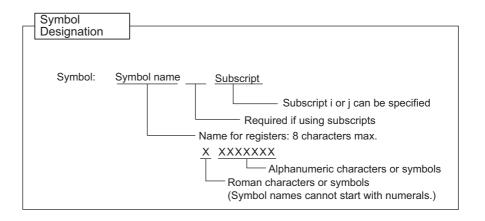
For example, "ML00000j for j=1" is the same as ML00001. Also, "MF00000j for j=1" is the same as MF00001.

However, as a word indicated by a register number is the lower word for a double-length integer/real number type, for the same ML00001 and MF00001, be aware that an upper/lower word of ML00001 and MF00001 for j=0 may differ from those of. ML00001 and MF00001 for j=1.

Program example using subscript



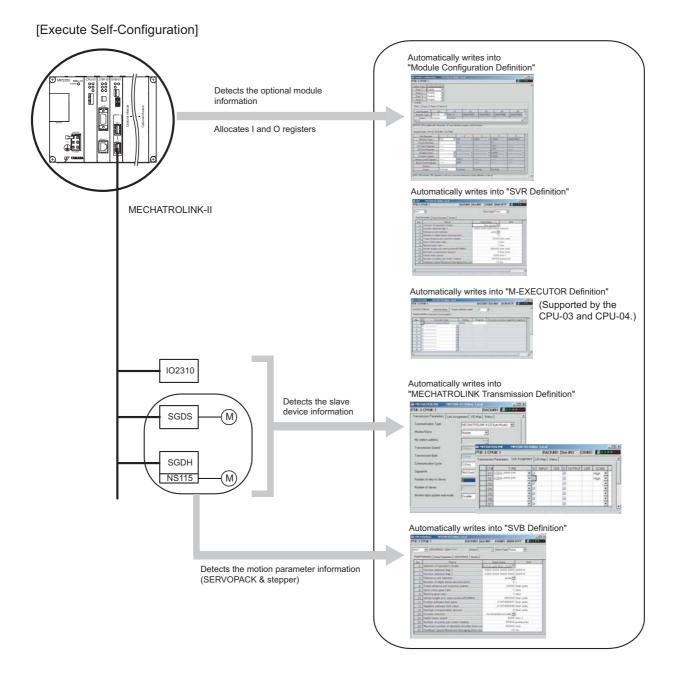

The left program uses a subscript j and calculates the total amount of a hundred registers from MW00100 to MW00199, and stores the total amount in MW00200.


#### 5.3.4 Register Designation

Registers can be specified directly by register number or by symbol (register name). A combination of both of these register designation methods can be used in ladder programs.

When using the symbol specification method, the relationship between symbols and register numbers must be defined. The following table shows the register specification methods.

| Designation<br>Method                       | Designation Example for Each Data Type                                                                                                                                            |                                                                                                                                                                     |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Register<br>Number<br>Direct<br>Designation | Bit register: Integer register: Double-length integer register: Real number register: Address register: X: When specifying subscripts, su                                         | MB00100AX MW00100X ML00100X MF00100X MA00100X bscript i or j is added after the register number.                                                                    |  |
| Symbol<br>Designation                       | Bit register: Integer register: Double-length integer registers: Real number registers: Address registers:  X: When specifying subscripts, a particle characters max.) and then a | RESET1-A.X STIME-H.X POS-REF.X IN-DEF.X PID-DATA.X        8 alphanumeric characters max.  period (.) is added after the symbol (8 alphanusubscript i or j is added. |  |






# 5.4 Self-configuration

The self-configuration function automatically recognizes the Optional Modules mounted to the MP2200 Basic Module and all slave data for slaves connected to the MECHATROLINK network, and automatically generates a definition file. Self-configuration greatly simplifies the procedure needed to start the system.

Refer to 5.4.2 Definition Information Updated with Self-Configuration for items that are automatically generated.



#### 5.4.1 How to Execute Self-Configuration

The following two methods are available for executing the self-configuration.

- Execute the self-configuration (from DIP switch)
- Execute the self configuration (from MPE720)

Now, this section explains each way to execute the self-configuration:

#### (1) Procedure Using the DIP Switch

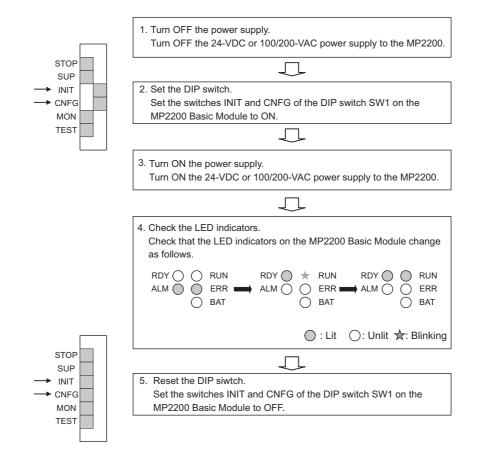
The following two methods are available for executing the self-configuration.

- When executing the self-configuration first time after connecting a device
- When executing the self-configuration after adding devices such as SERVOPACKs

Self-configuration can be executed from the Basic Module DIP switch.

Now, this section explains each way to execute the self-configuration:

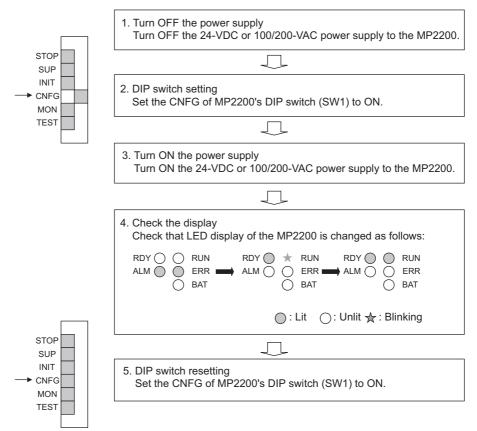
#### [a] When Executing the Self-Configuration First Time after Connecting a Device


By performing the operation below, the self-configuration for all modules is newly executed, and all new definition files are created.

Before performing the operation, turn ON the power supply of a device such as SERVOPACK.

#### ■ Caution

Note that this operation can clear the following data in MP2200.


· All definition files, all user programs, and all registers



#### [b] When Executing the Self-Configuration after Adding Devices Such as SERVOPACKs

By performing the following operation, a definition for an axis newly detected in the MECHATROLINK transmission is created. The definitions for already mapped axes are not updated.

Before performing the operation, turn ON the power supply of devices such as SERVOPACK.



Note: Since a register mapping was manually changed after the self-configuration was last executed last time, input/output addresses may be changed by executing subsequent self-configurations.

Also, when SVR is set to Disable, SVR may be reset to Enable.

To retain the changed register mapping, etc., manually map a register to the additional devices instead of using self-configuration, and then update the definition file.

#### ■ INIT Switch and RAM Data

RAM data will be cleared if the INIT switch of the DIP switch on the MP2200 Basic Module is ON and the power is turned ON. Flash memory data is read and overwritten when the INIT switch is OFF and the power is turned ON. Therefore, to protect RAM data, always save data to the MP2200 flash memory before turning OFF the power when writing or editing programs.

#### ■ Turning OFF Power After Executing Self-configuration

Do not turn OFF the 24-VDC or 100/200-VAC power supply to the MP2200 after executing self-configuration until the definitions data has been saved to flash memory in the MP2200. If the power is somehow turned OFF before the data is saved to flash memory, re-execute the self-configuration.

#### (2) Procedure Using MPE720

Executing self-configuration from MPE720 allows self-configuration for individual Modules as well as for all modules.

When self-configuration is carried out from MPE720, a definition for any axis newly detected in the MECHA-TROLINK transmission is created. The definitions for already mapped axes are not updated.

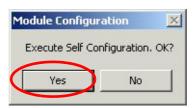
This section explains each way to execute the self-configuration:

#### [a] Self-configuration for All the Modules

By performing the following operation, the self-configuration for MP2200 Basic Units and Optional Modules is executed.

Before performing the operation, turn ON the power supply of devices such as SERVOPACK.

1. Double-click System - Module configuration.



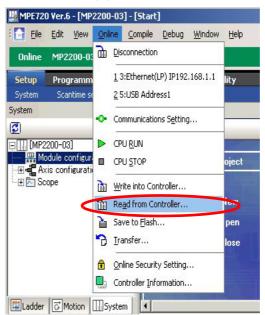

The Engineering Manager Window will open and the Module Configuration Window will appear.

2. Select Order - Self Configure All Modules to execute self-configuration.

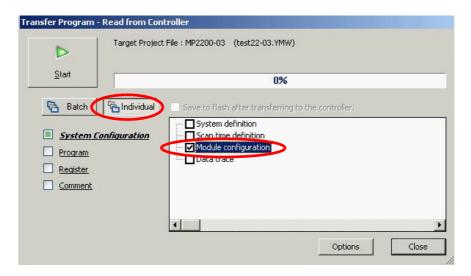


**3.** Click **Yes** for the following message.

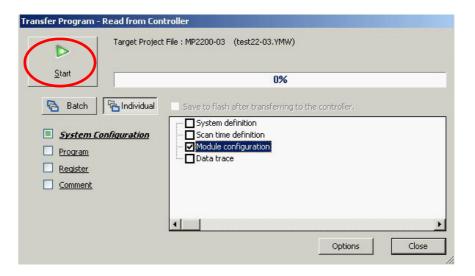



**4.** While running the self-configuration, the following message is shown.




**5.** If the following warning message is shown after performing step 4, the module configuration definitions for CPU and MPE720 may differ from each other. Continue to perform step 6. When the message is not shown, go to step 9.




6. Select Online(O) - Read from Controller(A).



7. Click Individual, and only check Module configuration.

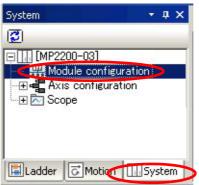


8. Click Start to read the module configuration definition from a controller.



9. Click the Save & FLASH Save Button to flash save the definition information.



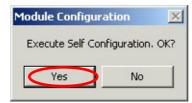

10. Check that the definition is successfully created in the Module Configuration Window.

#### [b] Self Configuration of Each Module

If modules or devices are added, self-configuration can be executed separately for the Module (port) that has been changed.

By performing the following operation, self-configuration will be executed for the selected slot. Before performing the operation, turn ON the power supply of devices such as SERVOPACK.

1. Double-click System - Module configuration.



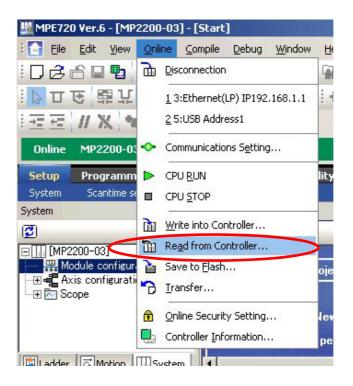

The Engineering Manager Window will start and the Module Configuration Window will appear.


**2.** Right-click the Module for which devices have been added and select **Module Self Configuration** from the pop menu to execute self-configuration.

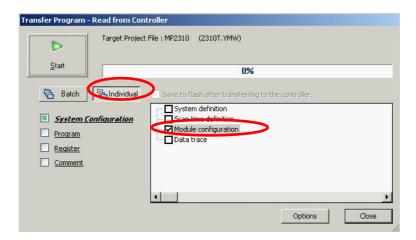


3. Click Yes for the following message.

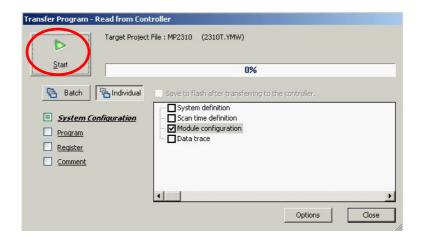



**4.** While running the self-configuration, the following message is shown.




**5.** If the following warning message is shown after performing step 4, the module configuration definitions for CPU and MPE720 may differ from each other. Continue to perform step 6. When the message is not shown, go to step 9.




6. Select Online(O) - Read from Controller(A).



7. Click Individual, and only check Module configuration.



8. Click Start to read the module configuration definition from a controller.



**9.** Click the **Save & FLASH Save** Button to flash save the definition information.



**10.** In the **Module Configuration** Window, check that the definition has been created.

# 5.4.2 Definition Information Updated with Self-Configuration

Now, the definition information updated during executing the self-configuration and the module configuration definition example based on the module combination are as follows:

# (1) Definition Information of CPU-01 and CPU-02 Module

#### [a] I/O Allocations

| Item |                  | Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SVR  | Motion Parameter | The last circuit number of the Motion Module will be allocated, and the input and output registers will be allocated according to the results.  Example 1: SVA-01, SVB-01, SVC-01, and PO-1 Not Mounted  Start motion register: IW8000/OW8000  End motion register: IW87FF/OW87FF (Input register: IW8000 to IW87FF Output register: OW8000 to OW87FF)  Example 2: One SVB-01 Mounted  Start motion register: IW8800/OW8800  End motion register: IW8FFF/OW8FFF (Input register: IW8800 to IW8FFF) Output register: OW8800 to OW8FFF) |  |

# [b] SVR Definition

| Туре              | No.    | Name                                                      | Allocation                             |
|-------------------|--------|-----------------------------------------------------------|----------------------------------------|
|                   | 0      | Selection of Operation Modes                              | Axis unused                            |
|                   | 1      | Function Selection Flag 1                                 | 0000h                                  |
|                   | 4      | Reference Unit Selection                                  | pulse                                  |
|                   | 5      | Number of Digits below Decimal Point                      | 3                                      |
|                   | 6      | Travel Distance per Machine Rotation                      | 10000 reference unit                   |
| Fixed Parameter   | 8      | Servo Motor Gear Ratio                                    | 1 rev (rotation)                       |
| Tixed Faranteter  | 9      | Machine Gear Ratio                                        | 1 rev (rotation)                       |
|                   | 10     | Infinite Length Axis Reset Position (POSMAX)              | 360000 reference unit                  |
|                   | 34     | Rated Motor Speed                                         | 3000 min <sup>-1</sup>                 |
|                   | 36     | Number of Pulses per Motor Rotation                       | 65536 pulse/rev                        |
|                   | 42     | Feedback Speed Movement Averaging Time<br>Constant        | 10 ms                                  |
|                   | OW□□00 | RUN Command Setting                                       | 0000h                                  |
|                   | OW□□03 | Function Setting 1                                        | 0011h                                  |
|                   | OW□□08 | Motion Command                                            | 0: No command                          |
|                   | OW□□09 | Motion Command Control Flag                               | 0000h                                  |
|                   | OW□□0A | Motion Subcommand                                         | 0: No command                          |
|                   | OL□□0C | Torque/Thrust Reference Setting                           | 0.00 %                                 |
|                   | OL□□10 | Speed Reference Setting                                   | $3000 \times 10**n$ reference unit/min |
|                   | OL□□16 | Secondly Speed Compensation                               | 0.00 %                                 |
|                   | OL□□1C | Position Reference Setting                                | 0 reference unit                       |
|                   | OW□□31 | Speed Compensation                                        | 0.00 %                                 |
| Setting Parameter | OL□□36 | Straight Line Acceleration/ Acceleration Time<br>Constant | 0 ms                                   |
|                   | OL□□38 | Straight Line Deceleration/ Deceleration Time<br>Constant | 0 ms                                   |
|                   | OW□□3A | Filter Time Constant                                      | 0.0 ms                                 |
|                   | OW□□3B | Bias Speed for Index Deceleration/Acceleration<br>Filter  | 0 reference unit/s                     |
|                   | OW□□3D | Width of Starting Point Position Output                   | 100 reference unit                     |
|                   | OL□□44 | STEP Travel Distance                                      | 1000 reference unit                    |
|                   | OL□□48 | Zero Point Position in Machine Coordinate System Offset   | 0 reference unit                       |
|                   | OL□□4A | Work Coordinate System Offset                             | 0 reference unit                       |
|                   | OL□□4C | Number of POSMAX Turns Presetting Data                    | 0 turn                                 |
|                   | OW□□5C | Fixed Parameter Number                                    | 0                                      |

5.4.2 Definition Information Updated with Self-Configuration

# (2) Definition Information of CPU-03 and CPU-04 Module

# [a] I/O Allocations

| Item          |                  | Allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|---------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SVR           | Motion Parameter | The last circuit number of the Motion Module will be allocated, and the input and output registers will be allocated according to the results.  Example 1: SVA-01, SVB-01, SVC-01, and PO-1 Not Mounted • Start motion register: IW8000/OW8000 • End motion register: IW87FF/OW87FF (Input register: IW8000 to IW87FF Output register: OW8000 to OW87FF) Example 2: One SVB-01 Mounted • Start motion register: IW8800/OW8800 • End motion register: IW8FFF/OW8FFF (Input register: IW8800 to IW8FFF) Output register: OW8800 to OW8FFF) |  |
| 218IFA/218IFC |                  | Start I/O register: IW0000/OW0000     End I/O register: IW07FF/OW07FF     (Input register: IW0000 to IW07FF     Output register: OW0000 to OW07FF)                                                                                                                                                                                                                                                                                                                                                                                       |  |
| M-EXECUTOR    |                  | UNDEFINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

#### [b] SVR Definition

| Туре              | No.                     | Name                                                    | Allocation                              |
|-------------------|-------------------------|---------------------------------------------------------|-----------------------------------------|
| Fixed Parameter   | 0                       | Selection of Operation Modes                            | Axis unused                             |
|                   | 1                       | Function Selection Flag 1                               | 0000h                                   |
|                   | 4                       | Reference Unit Selection                                | pulse                                   |
|                   | 5                       | Number of Digits below Decimal Point                    | 3                                       |
|                   | 6                       | Travel Distance per Machine Rotation                    | 10000 reference unit                    |
|                   | 8                       | Servo Motor Gear Ratio                                  | 1 rev (rotation)                        |
|                   | 9                       | Machine Gear Ratio                                      | 1 rev (rotation)                        |
|                   | 10                      | Infinite Length Axis Reset Position (POSMAX)            | 360000 reference unit                   |
|                   | 34                      | Rated Motor Speed                                       | 3000 min <sup>-1</sup>                  |
|                   | 36                      | Number of Pulses per Motor Rotation                     | 65536 pulse/rev                         |
|                   | 42                      | Feedback Speed Movement Averaging Time Constant         | 10 ms                                   |
|                   | $OW \square \square 00$ | RUN Command Setting                                     | 0000h                                   |
|                   | OW□□03                  | Function Setting 1                                      | 0011h                                   |
|                   | OW□□08                  | Motion Command                                          | 0: No command                           |
|                   | OW□□09                  | Motion Command Control Flag                             | 0000h                                   |
|                   | OW□□0A                  | Motion Subcommand                                       | 0: No command                           |
|                   | OL□□0C                  | Torque/Thrust Reference Setting                         | 0.00 %                                  |
|                   | OL□□10                  | Speed Reference Setting                                 | $3000 \times 10^{n}$ reference unit/min |
|                   | OL□□16                  | Secondly Speed Compensation                             | 0.00 %                                  |
|                   | OL□□1C                  | Position Reference Setting                              | 0 reference unit                        |
| Setting Parameter | OW□□31                  | Speed Compensation                                      | 0.00 %                                  |
| Octung Farameter  | OL□□36                  | Straight Line Acceleration/ Acceleration Time Constant  | 0 ms                                    |
|                   | OL□□38                  | Straight Line Deceleration/ Deceleration Time Constant  | 0 ms                                    |
|                   | OW□□3A                  | Filter Time Constant                                    | 0.0 ms                                  |
|                   | OW□□3B                  | Bias Speed for Index Deceleration/ Acceleration Filter  | 0 reference unit/s                      |
|                   | OW□□3D                  | Width of Starting Point Position Output                 | 100 reference unit                      |
|                   | OL□□44                  | STEP Travel Distance                                    | 1000 reference unit                     |
|                   | OL□□48                  | Zero Point Position in Machine Coordinate System Offset | 0 reference unit                        |
|                   | OL□□4A                  | Work Coordinate System Offset                           | 0 reference unit                        |
|                   | OL□□4C                  | Number of POSMAX Turns Presetting Data                  | 0 turn                                  |
|                   | OW□□5C                  | Fixed Parameter Number                                  | 0                                       |

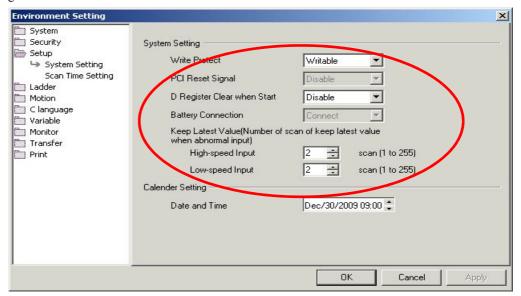
#### [c] 218IFA/218IFC Definition

| Item                                                     | Allocation        |
|----------------------------------------------------------|-------------------|
| IP Address                                               | 192.168.1.1       |
| Subnet Mask                                              | 255.255.255.0     |
| Gateway IP Address                                       | 0.0.0.0           |
| Equipment Name                                           | "CONTROLLER NAME" |
| Engineering Port                                         | 9999 (UDP)        |
| Response Time (Check & Monitor Time of MEMOBUS response) | 0 s               |
| Count or Retry                                           | 0                 |

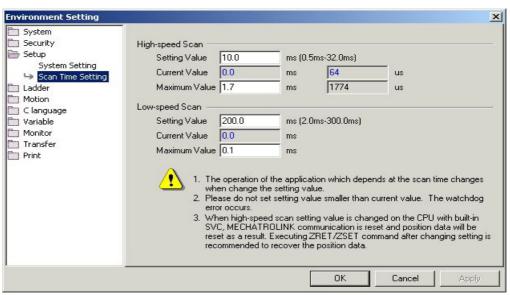
Note: The self-configuration allows you to connect with MPE720 for engineering transmission. In order to carry out MEMOBUS message transmission, manually use an automatic reception and I/O message communication separately, or MSG-SND/MSG-RCV functions are required.

#### [d] M-EXECUTOR Definition

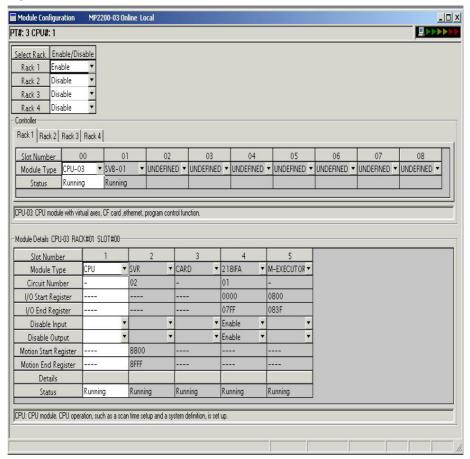
Note: M-EXECUTOR is not defined for use with the MP2200. For details on how to define the M-EXECUTOR, refer to 7.3.1 *Initializing the M-EXECUTOR Module*.


# 5.5 Application Precautions

This section explains precautions when a user definition file is configured/changed and when setting a scan time.


#### 5.5.1 Setting or Changing User Definition Files

System settings, scan time settings, and module configuration definitions must be saved in flash memory (flash save). When a system setting, scan time setting, or module configuration definition is configured/changed, be sure to use MPE720 to flash save it. Note that when the MP2200 power supply is turn ON again without flash saving, the configured/changed data may be lost.


· System Setting



· Scan Time Setting



• Module Configuration Definition



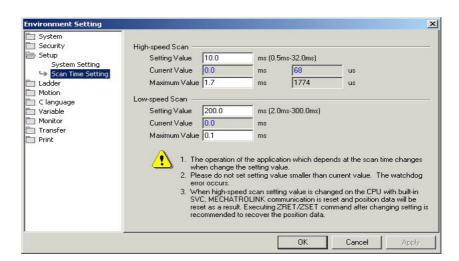
# 5.5.2 Setting or Changing Module Configuration Definition Files

Observe the following precautions when setting or changing module configuration definition files.

- Always check to make sure that the mounted Module is the one that is defined.
- Be sure to save any new settings or changes to flash memory.
- After the settings or changes have been completed, turn the power supply to the MP2200 OFF and ON.

#### 5.5.3 Setting and Changing the Scan Time

#### (1) Precautions When Setting or Changing the Scan Time


The scan time can be set and changed in the **Scan Time Setting** Window in the **Environmental Setting** Dialog Box on the MPE720.

Observe the following precautions when setting or changing the scan time.

• Set the set values of the scan time for both the high-speed (H) and low-speed (L) scans to at least the maximum time required to execute the scans. We recommend setting the set values of the scan time using the formula (set value − maximum time to execute scan) ≥ (0.2 × set values of the scan time), i.e., setting the set values of the scan time to at least 1.25 times the maximum times required to execute the scans.

Note: If the scan time is set too close to the maximum execution time for the scan, the refresh time for the window on the MPE720 will be very slow and communication timeouts may occur. If the maximum execution time exceeds the scan time set value, a watchdog timer timeout error will occur and the MP2200 system will stop.

- Do not change the scan time set value while the Servo is ON. Never change the setting while the axis is moving (while the motor is running). Otherwise an error may occur during motor operation (e.g., high-speed rotation).
- When the scan time is set or changed, be sure to save the data to flash memory.



5.5.3 Setting and Changing the Scan Time

- (2) Scan Time Set Value Examples (Settings Are the Same for the Low-speed Scan.)
  - 0.8-ms Maximum Scan Time and 1-ms Communication Cycle (MECHATROLINK-II Only)

```
High-speed scan set value \geq (1.25 × 0.8) = 1 ms
High-speed scan set value = 1 ms, 2 ms, 3 ms... (integers starting from 1)
```

■ 1.4-ms Maximum Scan Time and 1-ms Communication Cycle (MECHATROLINK-II Only)

```
High-speed scan set value \ge (1.25 \times 1.4) = 1.75 ms
High-speed scan set value = 2 ms, 3 ms . . . (integers starting from 2)
```

 0.8-ms Maximum Scan Time and 2-ms Communication Cycle (MECHATROLINK-I/MECHA-TROLINK-II Only)

```
High-speed scan set value \ge 1.25 \times 0.8) = 1 ms
High-speed scan set value = 1 ms, 2 ms, 4 ms...(1 ms and integer multiples of 2 ms starting from 2 ms)
```

■ 1.4-ms Maximum Scan Time and 2-ms Communication Cycle (MECHATROLINK-I/MECHATROLINK-II Only)

```
High-speed scan set value \ge (1.25 \times 1.4) = 1.75 ms
High-speed scan set value = 2 ms, 4 ms . . . (integer multiples of 2 ms starting from 2 ms)
```

# Built-in Ethernet Communication (Supported by the CPU-03 and CPU-04)

This chapter explains how to communicate with devices (PLCs, touch panels, etc.) connected to the CPU-03/CPU-04 in an MP2200-series Controller by Ethernet.

| 6.1 Communication Methods                                                       | 6-2  |
|---------------------------------------------------------------------------------|------|
| 6.2 Communication with Other MP Series                                          | 6-3  |
| 6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used) | 6-3  |
| 6.2.2 When the CPU-03/CPU-04 Acts as a Slave                                    |      |
| (ladder program which uses a MSG-RCV function)                                  | 6-16 |
| 6.2.3 When CPU-03/CPU-04 Acts as Master                                         |      |
| (I/O message communication function is used)                                    | 6-34 |
| 6.2.4 When the CPU-03/CPU-04 Acts as Master (ladder program                     |      |
| which uses MSG-SND function)                                                    | 6-47 |
| 6.3 Communication with Touch Panel                                              | 6-63 |
| 6.3.1 When CPU-03/CPU-04 Acts as Slave (automatic receive function is used)     | 6-63 |
| 6.4 Communication with PLC Manufactured                                         |      |
| by Mitsubishi Electric Corporation (MELSEC protocol)                            | 6-73 |
| 6.4.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used) | 6-73 |
| 6.4.2 When the CPU-03/CPU-04 Acts as Master                                     |      |
| (I/O message communication function is used)                                    | 6-80 |

# 6.1 Communication Methods

The following table provides the appropriate mode of communication for each remote device and purpose.

| Remote<br>Device                                                  | Purpose                                                                                                                                                 | Communication Method                                                                                                                                                                                                                                                                                                                                                                       | Remarks                                                                                                           |  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Other MP<br>Series                                                | When other MP series device reads/writes the coil state or register content of CPU-03/CPU-04                                                            | Uses the Extended MEMOBUS communication protocol.  The remote device (master) side creates a ladder program using a MSG-SND function.  The CPU-03/CPU-04 (slave) side uses an automatic receive function. (You do not need to create a ladder program.)  ⇒ Refer to 6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)                                        | CPU-03/CPU-04 can communicate with only one master using the automatic receive function.                          |  |
|                                                                   |                                                                                                                                                         | Uses the Extended MEMOBUS communication protocol.  The remote device (master) side creates a ladder program using a MSG-SND function.  The CPU-03/CPU-04 (slave) side creates a ladder program using a MSG-RCV function.  ⇒ Refer to 6.2.2 When the CPU-03/CPU-04 Acts as a Slave (ladder)                                                                                                 | Communication with multiple masters is possible.                                                                  |  |
|                                                                   |                                                                                                                                                         | program which uses a MSG-RCV function)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                   |  |
|                                                                   | When CPU-03/CPU-04 reads/writes the coil state or register content of other MP series equipment                                                         | Uses the Extended MEMOBUS communication protocol. The CPU-03/CPU-04 (master) side uses an I/O message communication function. (You do not need to create a ladder program.) The remote device (slave) side creates a ladder program using a MSG-RCV function.                                                                                                                              | Only the holding register (M register) is capable of reading/writing using an I/O message communication function. |  |
|                                                                   |                                                                                                                                                         | ⇒ Refer to 6.2.3 When CPU-03/CPU-04 Acts as Master (I/O message communication function is used)                                                                                                                                                                                                                                                                                            | It can communicate with only one slave.                                                                           |  |
|                                                                   |                                                                                                                                                         | Uses the Extended MEMOBUS communication protocol. A ladder program is created in the CPU-03/CPU-04 (master) using the MSG-SND function. The remote device (slave) side creates a ladder program using a MSG-RCV function.                                                                                                                                                                  | Registers other than<br>the holding register<br>are capable of reading/<br>writing.<br>Communication with         |  |
|                                                                   |                                                                                                                                                         | ⇒ Refer to 6.2.4 When the CPU-03/CPU-04 Acts as Master (ladder program which uses MSG-SND function)                                                                                                                                                                                                                                                                                        | multiple slaves is enabled.                                                                                       |  |
| Touch Panel                                                       | When a touch panel reads/writes the coil state or register content of CPU-03/CPU-04                                                                     | Uses the Extended MEMOBUS communication protocol. Set the protocol for the touch panel side to the Extended MEMOBUS protocol. The CPU-03/CPU-04 (slave) side uses an automatic receive function. (You do not need to create a ladder program.)                                                                                                                                             | The CPU-03/CPU-04 can communicate with only one master using the automatic reception function.                    |  |
|                                                                   |                                                                                                                                                         | ⇒ Refer to 6.3 Communication with Touch Panel.  Uses the MELSEC communication protocol.                                                                                                                                                                                                                                                                                                    |                                                                                                                   |  |
| PLC Manu-<br>factured by<br>Mitsubishi<br>Electric<br>Corporation | When a PLC Manufactured by Mitsubishi<br>Electric Corporation<br>reads/writes the CPU-<br>03/CPU-04 register<br>content.                                | The remote device (master) side creates a ladder program using a BUFSND function.  The CPU-03/CPU-04 (slave) side uses an automatic receive function. (You do not need to create a ladder program.)  ⇒ Refer to 6.4.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)                                                                                            | The CPU-03/CPU-04 can communicate with only one master when using the automatic receive function.                 |  |
|                                                                   | When an CPU-03/<br>CPU-04 reads/writes<br>the relay state or regis-<br>ter content of PLC<br>Manufactured by Mit-<br>subishi Electric Corpo-<br>ration. | Uses the MELSEC communication protocol.  The CPU-03/CPU-04 (master) side uses an I/O message communication function. (You do not need to create a ladder program.)  The remote device (slave) side needs to set the network parameters. (You do not need to create a ladder program.)  ⇒ Refer to 6.4.2 When the CPU-03/CPU-04 Acts as Master (I/O message communication function is used) | The MP2200 can communicate with only one slave when using the I/O message communication function.                 |  |

Note: For information on applications where the remote device is a PLC or Windows computer, refer to the Machine Controller MP2300S/MP2310/MP2400 Basic Module Supplement for Ethernet Communications (manual no: SIEP C880700 37). You can download this manual from the Yaskawa e-mechatronics website (http://www.e-mechatronics.com).

6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)

# 6.2 Communication with Other MP Series

When Ethernet communication is carried out between the CPU-03/CPU-04 and other MP series, the Extended MEMO-BUS protocol is used as a communication protocol. The Extended MEMOBUS protocol allows the master to read/ write the slave register contents.

This section explains communications when the CPU-03/CPU-04 acts as a slave and a master respectively.

When the CPU-03/CPU-04 acts as a slave, this chapter explains communications using an automatic receive function and a ladder program with the MSG-RCV function.

When the CPU-03/CPU-04 acts as a master, this chapter explains communications using an I/O message communication function and a ladder program with the MSG-SND function.

#### 6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)

This section explains how to communicate with the MP2300 message send function (MSG-SND) using the CPU-03/ CPU-04 automatic receive function.

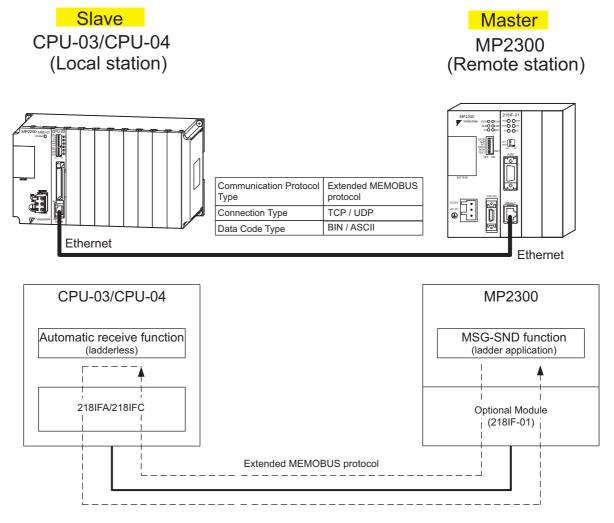
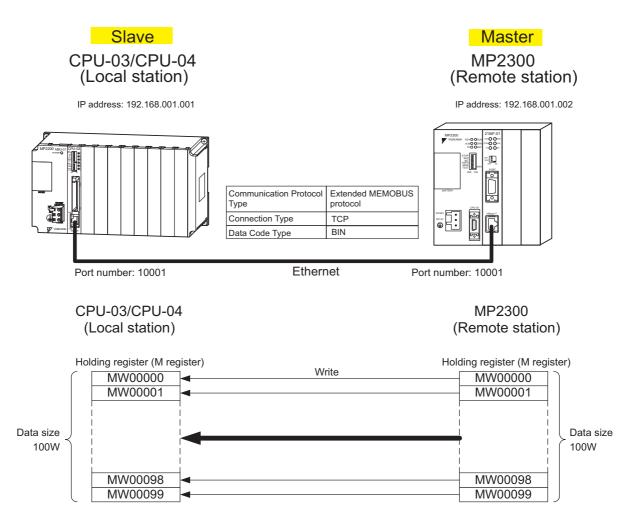
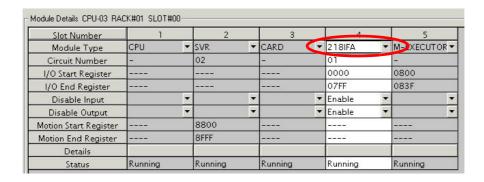




Fig. 6.1 Message Flow with MP2300 when Automatic Receive Function Is Used

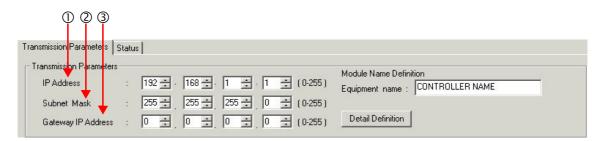
#### ■ Setting Example

The following figure illustrates how the content of the MP2300 (master) holding register (MW00000 to MW00099) is written into the CPU-03/CPU-04 (slave) holding register (MW00000 to MW00099).




The setup procedure is explained in the following pages.

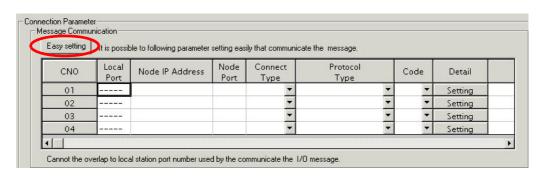
6.2.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)

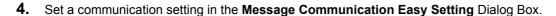

#### (1) How to Set up the CPU-03/CPU-04 Side

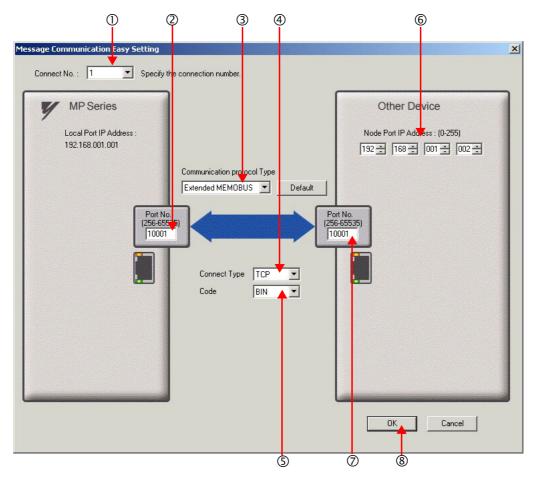
If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.




Set transmission parameters.





- How to set up transmission parameters
  - ① Set IP Address (to "192.168.001.001," for example).
  - ② Set Subnet Mask (to "255.255.255.000," for example).
  - 3 Set Gateway IP Address (to "000.000.000," for example).
- Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

Click the Easy Setting Button in the Message Communication Area of the connection parameter setting.



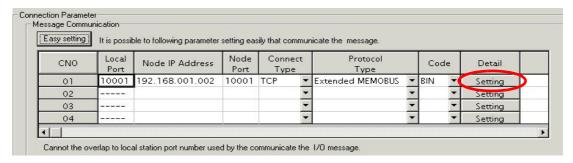




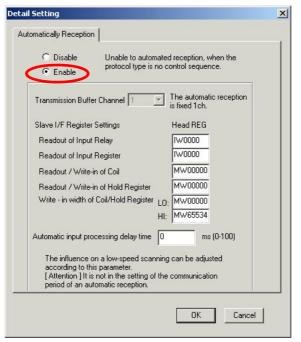
#### ■ How to set up in the Message Communication Easy Setting Dialog Box

- ① When automatic receive function is used, select "1" for the Connect No.
- ② Set Port No. of the CPU-03/CPU-04 side ("10001," for example).
- 3 Select Extended MEMOBUS for the Communication protocol Type, and click Default Button.
- Select Connect Type (TCP, for example).
- ⑤ Select Code (BIN, for example).
- © Set **Node Port IP Address** of the other device (MP2300) to be connected (to "192.168.001.002," for example).
- ② Set **Port No.** of the other device (MP2300) to be connected (to "10001," for example).
- ® Click **OK** Button.

#### ■ Caution


When message functions (MSG-SND, MSG-RCV) are used with the connection number 01, disable the automatic receive function. If message functions are used while the automatic receive function is enabled, communications will not function properly.

Note: The automatic receive function with a connection number 01 is set to "Enable" by default.


#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the confirmation dialog of the parameter setting, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

**6.** Check the setting value and click the **Setting** Button in the **Detail** Column.



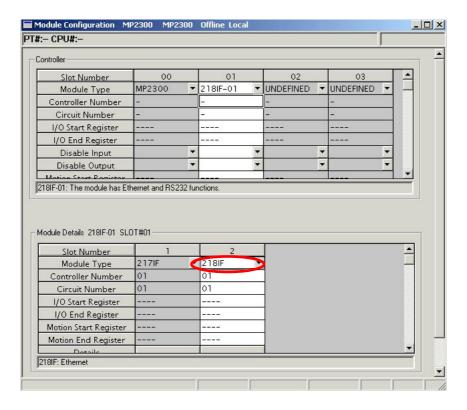
7. Select the Enable Option on the Automatically Reception Tab Page of the Detail Setting Dialog Box and then click the OK Button.



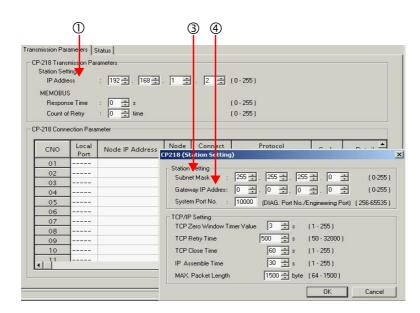
Note: For more information on Slave I/F Register Settings and Automatic input precessing delay time, refer to 2.5.6 (4) [b] ■ Automatically Reception Dialog Box for Message Communication.

Now, the automatic receive function is set up when the CPU-03/CPU-04 acts as a slave.

#### Caution


When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power is turned ON again.

6


# (2) How to Set up the Remote Device (MP2300) to Be Connected

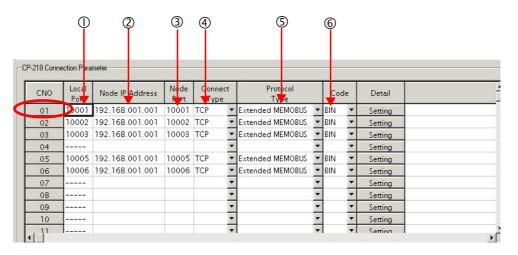
If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IF Tab in the Module Details Area of the Module Configuration Window.



Set transmission parameters.




#### ■ How to set up transmission parameters

- ① Set **IP Address** ("192.168.001.001," for example).
- ② Select *Edit Local Station: TCP/IP Setting* in the Engineering Manager Window the **Detail Setting** Dialog Box will appear.
- ③ Set Subnet Mask ("255.255.255.000," for example).
- ① Set Gateway IP Address ("000.000.000.000," for example).

#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

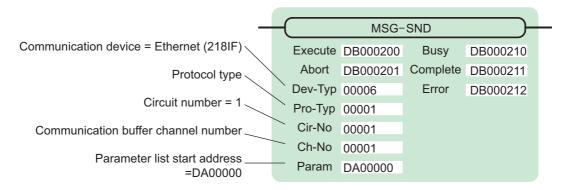
#### **3.** Set connection parameters.



#### ■ How to set up with a connection number 01 in the CP-218 Connection Parameter Area

- ① Set **Local Port** to the port number used in the MP2300 side ("10001," for example).
- ② Set Node IP Address to the IP address configured in the CPU-03/CPU-04 side.
- ③ Set **Node Port** to the port number configured in the CPU-03/CPU-04 side ("10001," for example).
- Select Connect Type (TCP, for example).
- **⑤** Select Extended MEMOBUS for Protocol Type.
- © Select Code (BIN, for example).

#### ■ Caution


When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power turned is ON again.

#### 4. Create a ladder program with a message send function (MSG-SND).

A ladder program for transmitting messages to/from the remote device (MP2300) side is shown as follows:

## ■ Message send function (MSG-SND)

This system function is required for transmitting messages. Message transmission is carried out by describing and executing this message send function in a ladder program.



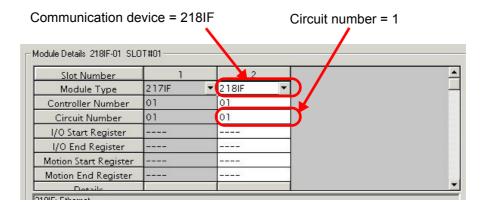



Fig. 6.2 MPE720 Module Configuration Window

# ■ Input/output definitions for message send function

The input/output definitions for the message send function are explained as follows:

Table 6.1 Input/Output Definitions for Message Send Function

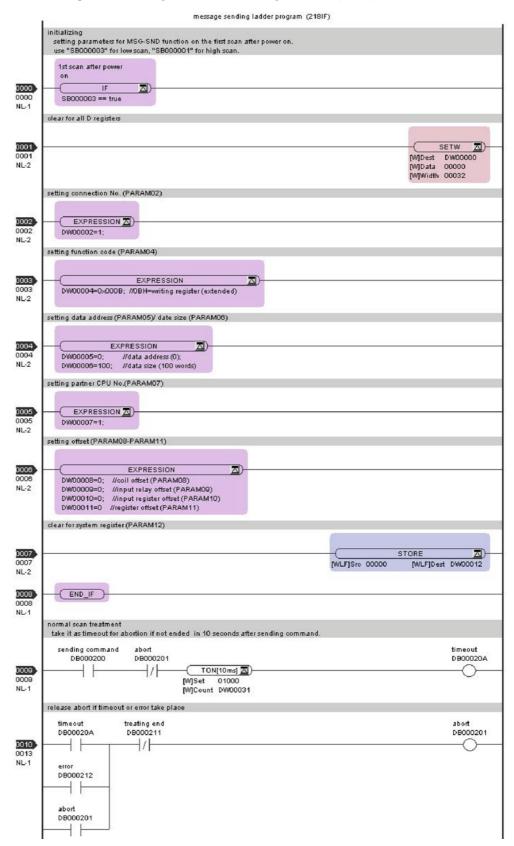
| I/O<br>Definition | No. | Name             | Setting<br>Example | Explanation                                                                                                                                                                                                                    |
|-------------------|-----|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 1   | Execute DB000200 |                    | Executes a transmission When the Execute is ON, the message is transmitted.                                                                                                                                                    |
|                   | 2   | Abort            | DB000201           | Aborts a transmission When the Abort is ON, the message transmission is forcibly stopped.                                                                                                                                      |
|                   | 3   | Dev-Typ          | 00006              | Communication device type Specify the type of the communication device used in transmission. When Ethernet (218IF) is used, specify "6".                                                                                       |
|                   | 4   | Pro-Typ          | 00001              | Communication protocol Specify the type of the communication protocol.  MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3                                                                                      |
| Input Item        | 5   | Cir-No 00001     |                    | Circuit number Specify the circuit number of the communication device. Specify it in accordance with the circuit number displayed in the MPE720 Module Configuration Window.                                                   |
|                   | 6   | 6 Ch-No 00001    |                    | Communication buffer channel number Specify the channel number of the communication buffer. When Ethernet (218IF) is used, specify it in the range between "1" and "10".  Note: Set up a unique channel number in the circuit. |
|                   | 7   | Param            | DA00000            | Parameter list start address Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address.                                                         |
|                   | 1   | Busy             | DB000210           | In process  Busy is turned ON while executing a message transmission or forced abort process.                                                                                                                                  |
| Output Item       | 2   | Complete         | DB000211           | Process completed When a message transmission or abort process is properly completed, Complete will turn ON only for one scan.                                                                                                 |
|                   | 3   | Error            | DB000212           | Error occurred When an error occurs, the Error will turn ON only for one scan.                                                                                                                                                 |

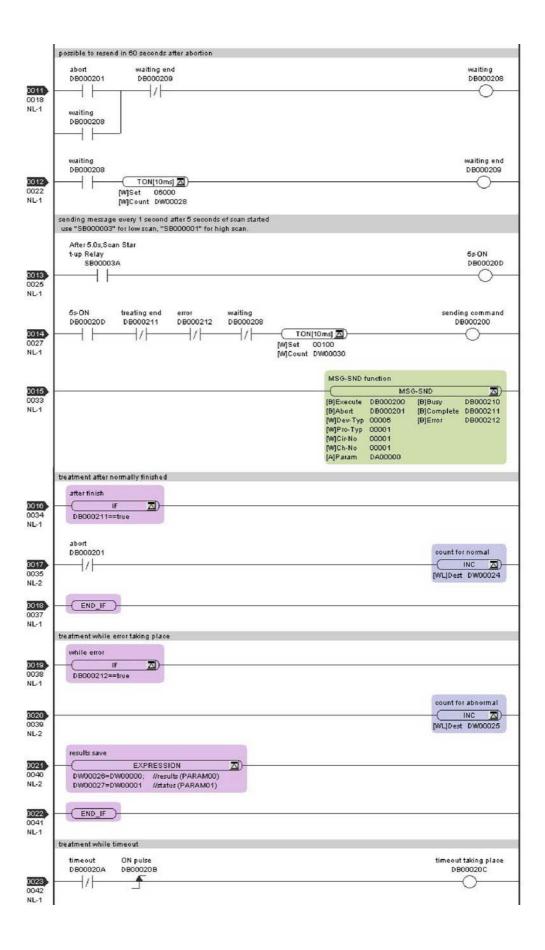
<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS (=1). The communication device automatically converts the protocol.

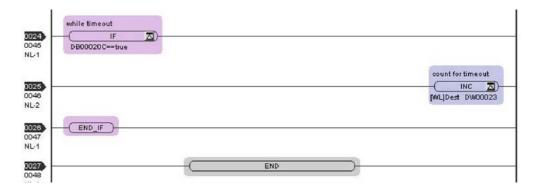
<sup>\* 2.</sup> Non-procedure 1: In non-procedural communications, data is transmitted on a per-word basis. Non-procedure 2: In non-procedural communications, data is transmitted on a per-byte basis.

# ■ Parameter list setting example for the message send function

An example of a parameter list setting when writing 100 words of data from MW00000 to the destination using the connection with a connection number = 1 follows:


Table 6.2 Sample Parameter List Setting (parameter list start address Param=DA00000)


| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                          |
|--------------------|------------------|---------------------|--------|--------------------------------------------------|
| DW00000            | =                | PARAM00             | OUT    | Process result                                   |
| DW00001            | _                | PARAM01             | OUT    | Status                                           |
| DW00002            | 00001            | PARAM02             | IN     | Connection number = 1                            |
| DW00003            | -                | PARAM03             | IN     | Option (Setting unnecessary)                     |
| DW00004            | 000BH            | PARAM04             | IN     | Function code = 0BH (Writes to holding register) |
| DW00005            | 00000            | PARAM05             | IN     | Data address = 0 (Starting from MW00000)         |
| DW00006            | 00100            | PARAM06             | IN     | Data size = 100 (100 words)                      |
| DW00007            | 00001            | PARAM07             | IN     | Remote CPU number = 1                            |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                             |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                      |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                   |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                 |
| DW00012            | _                | PARAM12             | SYS    | Reserved by the system. (Zero clear at startup)  |
| DW00013            | _                | PARAM13             | SYS    | Reserved by the system.                          |
| DW00014            | -                | PARAM14             | SYS    | Reserved by the system.                          |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                          |
| DW00016            | -                | PARAM16             | SYS    | Reserved by the system.                          |


Note: IN: Input, OUT: Output, SYS: For system use

# ■ Example of Using the Message Send Function in a Ladder Program

Here is one example of the message send function through Ethernet (218IF).







The communication setting and the ladder program creation are now finished, when MP2300 acts as a master.

## (3) How to Start Communications

The CPU-03/CPU-04 side starts to receive the messages.
 When the automatic receive function is used, the message receive operation starts automatically.

2. Turn Execute ON for the message send function in the MP2300 side to transmit messages.

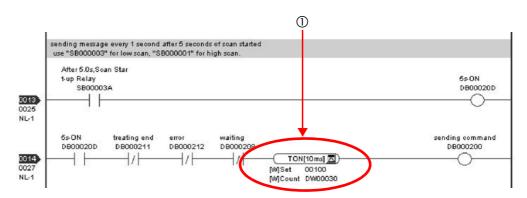

Messages are transmitted by turning ON the register (DB000200, for example), configured in Execute of the message send function, and communication with the CPU-03/CPU-04 starts.

Table 6.3 Input/Output Definition for Message Send Function

| I/O Definition | No. | Name    | Setting<br>Example | Content                                                                                    |
|----------------|-----|---------|--------------------|--------------------------------------------------------------------------------------------|
| Input Item     | 1   | Execute | DB000200           | Executes a transmission  When Execute is ON, the message transmission will be carried out. |

The sample ladder program is created to transmit a message every one second when five seconds have elapsed after the low-speed scan (or high-speed scan) startup.

To change the message transmission interval, change the timer value ①.



# 6.2.2 When the CPU-03/CPU-04 Acts as a Slave (ladder program which uses a MSG-RCV function)

The CPU-03/CPU-04 can communicate with only one master when using the automatic receive function. To communicate with more than one master, use a ladder program with a message receive function (MSG-RCV) at the CPU-03/CPU-04 end. You can use the message receive function (MSG-RCV) as well as the automatic receive function by keeping connections separate from each other.

This section explains how to communicate with an CPU-03/CPU-04 message send function (MSG-SND) using the MP2300 message receive function (MSG-RCV).

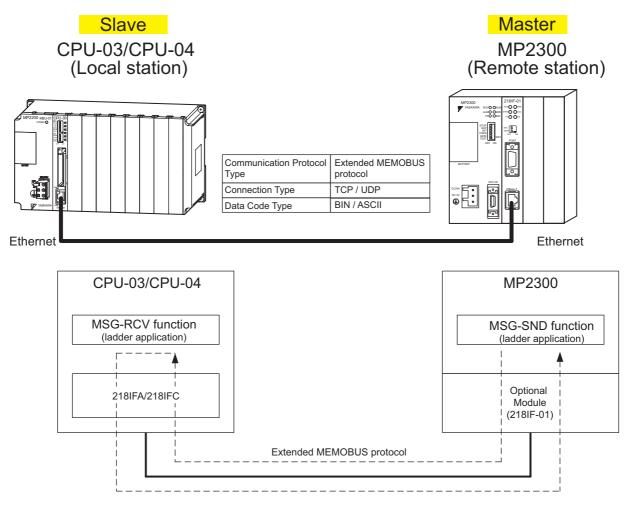
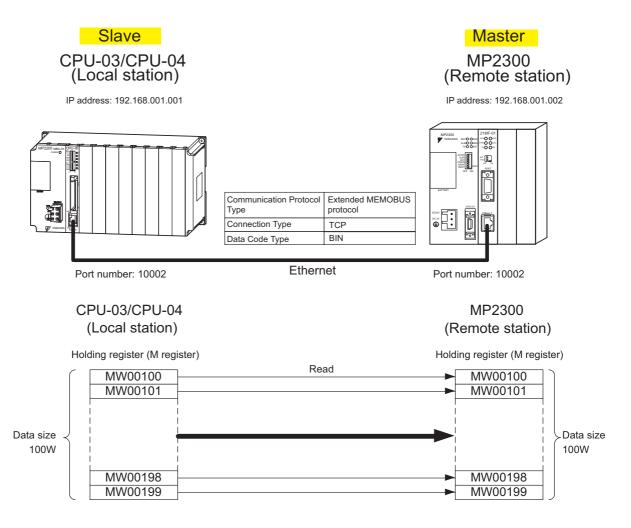
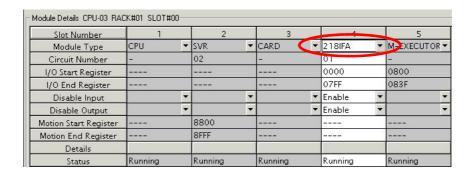



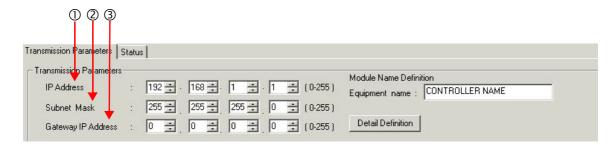

Fig. 6.3 Message Flow with MP2300 when Message Receive Function (MSG-RCV) Is Used

# ■ Setting Example

The following figure illustrates one example of writing the contents of the MP2300 (master) holding register (MW00100 to MW00199) into the CPU-03/CPU-04 (slave) holding register (MW00100 to MW00199).




The setup procedure is explained in the following pages.


# (1) How to Set up the CPU-03/CPU-04 Side

If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

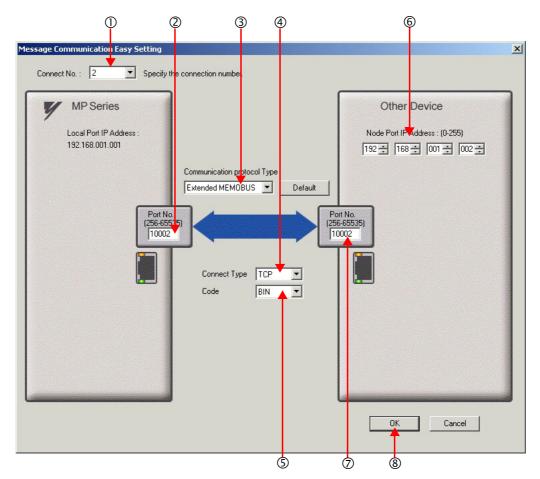
1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.



2. Set transmission parameters.



- How to set up transmission parameters
  - ① Set IP Address ("192.168.001.001," for example).
  - ② Set Subnet Mask ("255.255.255.000," for example).
  - 3 Set Gateway IP Address ("000.000.000.000," for example).


#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

**3.** Click the **Easy Setting** Button in the **Message Communication** Area of the connection parameter setting.



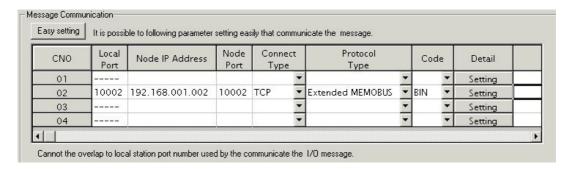
4. Set a communication setting in the Message Communication Easy Setting Dialog Box.



- How to set up in the **Message Communication Easy Setting** Dialog Box
  - ① When automatic receive function is used, select "2" for the Connect No.
  - ② Set **Port No.** of the CPU-03/CPU-04 side ("10002," for example).
  - ③ Select Extended MEMOBUS for Communication protocol Type, and click the Default Button.
  - **4** Select **Connect Type** (TCP, for example).
  - © Select Code (BIN, for example).
  - © Set **Node Port IP Address** of the other device (MP2300) to be connected (to "192.168.001.002," for example).
  - ② Set **Port No.** of the other device (MP2300) to be connected (to "10002," for example).
  - ® Click OK.

#### ■ Caution

When message functions (MSG-SND, MSG-RCV) are used with the connection number 01, disable the automatic receive function. If message functions are used while the automatic receive function is enabled, communications will not function properly.


Note: The automatic receive function with a connection number 01 is set to "Enable" by default.

#### 5. Click Yes in the parameter setting confirmation dialog.

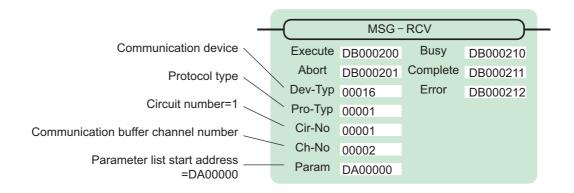
#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation dialog, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

# **6.** Check the setting values.



#### Caution


When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.

# 7. Create a ladder program with a message receive function (MSG-RCV) in it.

An example of a ladder program for receiving messages in the CPU-03/CPU-04 side is as follows:

## ■ Message receive function (MSG-RCV)

This system function is required for receiving messages. A message reception is carried out by describing and executing this message receive function in a ladder program.



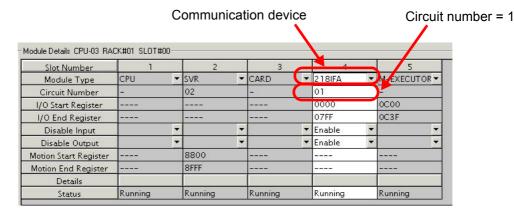



Fig. 6.4 MPE720 Module Configuration Window

# ■ Input/output definition contents for message receive function

The input/output definition content for message receive function is as follows:

Table 6.4 Input/Output Definitions for Message Receive Function

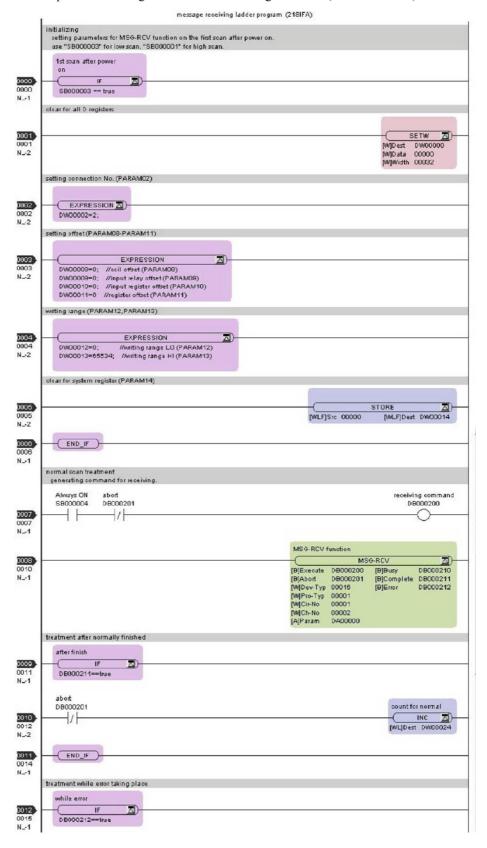
| I/O<br>Definition | No. | Name     | Setting<br>Example | Contents                                                                                                                                                                                                                                                  |  |
|-------------------|-----|----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | 1   | Execute  | DB000200           | Executes a reception When Execute is ON, message reception will be carried out.                                                                                                                                                                           |  |
|                   | 2   | Abort    | DB000201           | Aborts a reception When Abort is ON, message reception is forcibly stopped.                                                                                                                                                                               |  |
|                   | 3   | Dev-Typ  | 00016              | Communication device type Specify the type of the communication device used in reception. When Ethernet (218IFA/218IFC) is used, specify "16."                                                                                                            |  |
|                   | 4   | Рго-Тур  | 00001              | Communication protocol  Specify the type of the communication protocol.  MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3                                                                                                                |  |
| Input Item        | 5   | Cir-No   | 00001              | Circuit number Specify a circuit number of the communication device. Specify it in accordance with the circuit number displayed in the MPE720 Module Configuration Window.                                                                                |  |
|                   | 6   | Ch-No    | 00002              | Communication buffer channel number Specify the channel number of the communication buffer.  • When Ethernet (218IFA) is used, specify it in the range between "1" and "4."  • When Ethernet (218IFC) is used, specify in the range between "1" and "10." |  |
|                   |     |          |                    | Note: Set up a unique channel number in the circuit.  Parameter list start address                                                                                                                                                                        |  |
|                   | 7   | Param    | DA00000            | Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address.                                                                                                                 |  |
|                   | 1   | Busy     | DB000210           | In process  Busy will be ON while executing a message reception or forced abort process.                                                                                                                                                                  |  |
| Output Item       | 2   | Complete | DB000211           | Process completed  When a message reception or forced abort process is properly completed, Complete will turn ON only for one scan.                                                                                                                       |  |
|                   | 3   | Error    | DB000212           | Error When an error occurs, Error will turn ON only for one scan.                                                                                                                                                                                         |  |

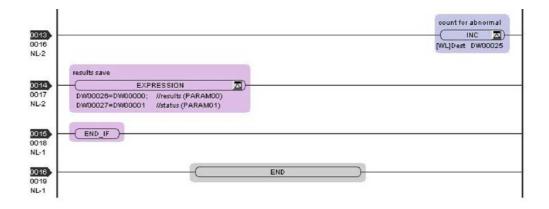
<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS (=1). The communication device automatically converts the protocol.

<sup>\* 2.</sup> Non-procedure 1: In non-procedural communication, data is received on a per-word basis. Non-procedure 2: In non-procedural communication, data is received on a per-byte basis.

# ■ Parameter list setting example for message receive function

An example of a parameter list setting when receiving messages from a transmit source using the connection with a connection number = 2 follows:


Table 6.5 Parameter List Setting Example (parameter list start address Param=DA00000)

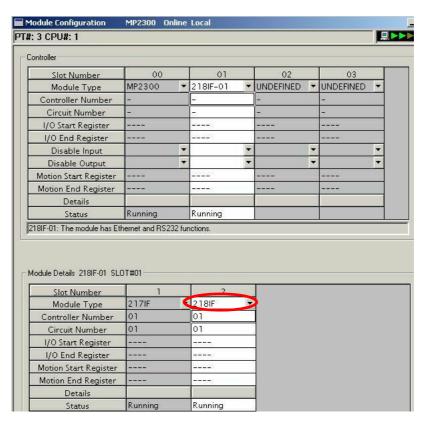

| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                         |
|--------------------|------------------|---------------------|--------|-------------------------------------------------|
| DW00000            | -                | PARAM00             | OUT    | Process result                                  |
| DW00001            | -                | PARAM01             | OUT    | Status                                          |
| DW00002            | 00002            | PARAM02             | IN     | Connection number = 2                           |
| DW00003            | -                | PARAM03             | OUT    | Option                                          |
| DW00004            | -                | PARAM04             | OUT    | Function code                                   |
| DW00005            | -                | PARAM05             | OUT    | Data address                                    |
| DW00006            | -                | PARAM06             | OUT    | Data size                                       |
| DW00007            | -                | PARAM07             | OUT    | Remote CPU number                               |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                            |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                     |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                  |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                |
| DW00012            | 00000            | PARAM12             | IN     | Writable address lower limit = MW00000          |
| DW00013            | 65534            | PARAM13             | IN     | Writable address upper limit = MW65534          |
| DW00014            | -                | PARAM14             | SYS    | Reserved by the system. (Zero clear at startup) |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                         |
| DW00016            | -                | PARAM16             | SYS    | Reserved by the system.                         |

Note: IN: Input, OUT: Output, SYS: For system use

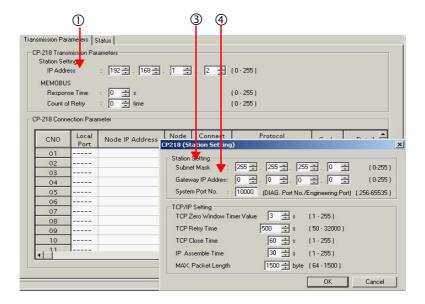
# ■ Example of Using the Message Receive Function in a Ladder Program

Here is an example of the message receive function through Ethernet (218IFA/218IFC).






The communication setting and the ladder program creation are now finished, when the CPU-03/CPU-04 acts as a slave.


# (2) How to Set up the Remote Device (MP2300) to Be Connected

If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

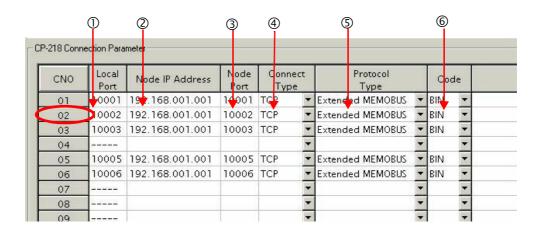
1. Double-click the 218IF Tab in the Module Details Area of the Module Configuration Window.



#### 2. Set transmission parameters.



### ■ How to set up transmission parameters


- ① Set IP Address ("192.168.001.001," for example).
- ② Select *Edit Local Station: TCP/IP Setting* in the Engineering Manager Window the **Detail Setting** Dialog Box will appear.
- ③ Set Subnet Mask ("255.255.255.000," for example).
- 4 Set Gateway IP Address ("000.000.000.000," for example).

#### ■ Caution

Set up a unique IP address in the network.

For the IP address, check with your network administrator.

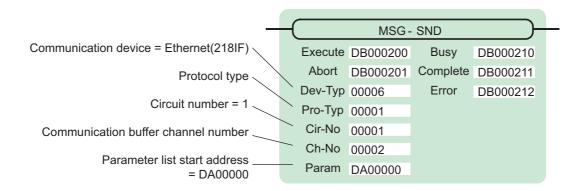
#### **3.** Set connection parameters.



#### How to set up with a connection number 02 in the CP-218 Connection Parameter Area

- ① Set **Local Port** to the port number used in the MP2300 side ("10002" for example).
- ② Set the **Node IP Address** to the IP address configured in the CPU-03/CPU-04 side ("192.168.001.001" for example).
- ③ Set the **Node Port** to the port number configured in the CPU-03/CPU-04 side ("10002," for example).
- Select Connect Type (TCP, for example).
- ⑤ Select Extended MEMOBUS for Protocol Type.
- © Select Code (BIN, for example).

# ■ Caution


When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.

#### 4. Create a ladder program containing a message send function (MSG-SND).

An example of a ladder program for transmitting messages to/from the remote device (MP2300) side follows:

## ■ Message send function (MSG-SND)

This system function is required for transmitting messages. Message transmission is carried out by describing and executing this message send function in a ladder program.



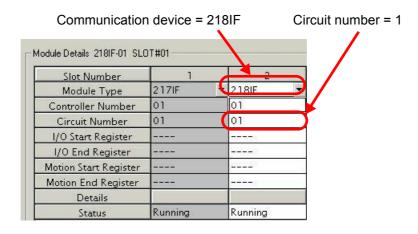



Fig. 6.5 MPE720 Module Configuration Window

# ■ Input/output definitions contents for message send function

The input/output definition content for the message send function is as follows:

Table 6.6 Input/Output Definitions for Message Send Function

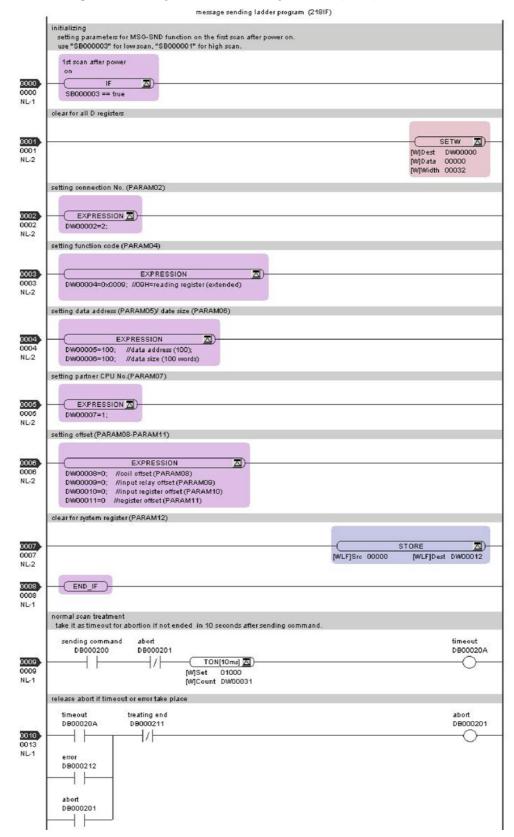
| I/O<br>Definition | No. | Name           | Setting<br>Example | Contents                                                                                                                                                                                                                                                                                                           |  |
|-------------------|-----|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | 1   | Execute        | DB000200           | Executes a transmission When Execute is ON, the message transmission will be carried out.                                                                                                                                                                                                                          |  |
|                   | 2   | Abort DB000201 |                    | Forcibly aborts a transmission When Abort is ON, the message transmission is forcibly stopped.                                                                                                                                                                                                                     |  |
|                   | 3   | Dev-Typ        | 00006              | Communication device type Specify the type of the communication device used in transmission. When Ethernet (218IF) is used, specify "6."                                                                                                                                                                           |  |
|                   | 4   | Pro-Typ        | 00001              | Communication protocol Specify the type of the communication protocol.  MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3                                                                                                                                                                          |  |
| Input Item        | 5   | Cir-No         | 00001              | Circuit number Specify a circuit number of the communication device. Specify it in accordance with the circuit number displayed in the MPE720 <b>Module Configuration</b> Window.                                                                                                                                  |  |
|                   | 6   | Ch-No          | 00002              | Communication buffer channel number Specify the channel number of the communication buffer.  • When Ethernet (218IF) is used, specify it in the range between "1" and "10."  • When Ethernet (218IFC) is used, specify it in the range between "1" and "10."  Note: Set up a unique channel number in the circuit. |  |
|                   | 7   | Param          | DA00000            | Parameter list start address Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address.                                                                                                                                             |  |
|                   | 1   | Busy           | DB000210           | In process  Busy will be ON while executing a message transmission or forced abort process.                                                                                                                                                                                                                        |  |
| Output Item       | 2   | Complete       | DB000211           | Process completed  When a message transmission or forced abort process is properly completed, Complete will turn ON only for one scan.                                                                                                                                                                             |  |
|                   | 3   | Error          | DB000212           | Error When an error occurs, Error will turn ON only for one scan.                                                                                                                                                                                                                                                  |  |

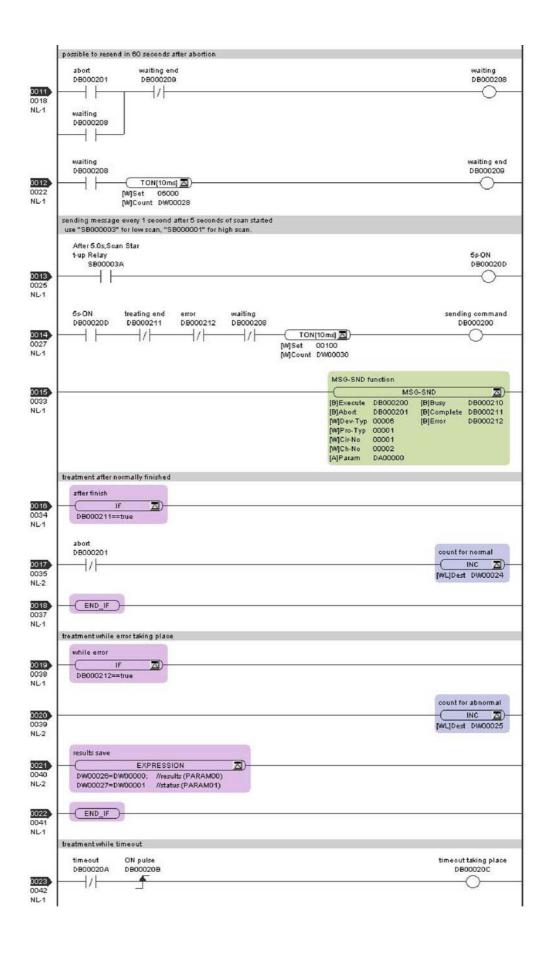
<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS(=1). The communication device automatically converts the protocol.

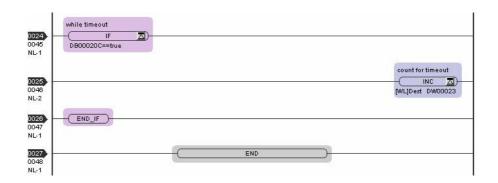
<sup>\* 2.</sup> Non-procedure 1: In non-procedural communication, data is transmitted on a per-word basis. Non-procedure 2: In non-procedural communication, data is transmitted on a per-byte basis.

# ■ Parameter list setting for the message send function

An example of a parameter list setting when reading 100 words of data from MW00100 from the destination using the connection with a connection number = 2 follows:


Table 6.7 Parameter List Setting Example (parameter list start address Param=DA00000)


| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                         |
|--------------------|------------------|---------------------|--------|-------------------------------------------------|
| DW00000            | _                | PARAM00             | OUT    | Process result                                  |
| DW00001            | _                | PARAM01             | OUT    | Status                                          |
| DW00002            | 00002            | PARAM02             | IN     | Connection number = 2                           |
| DW00003            | -                | PARAM03             | IN     | Option (Setting unnecessary)                    |
| DW00004            | 0009H            | PARAM04             | IN     | Function code = 09H (Reads a holding register)  |
| DW00005            | 00100            | PARAM05             | IN     | Data address = 100 (Starting from MW00100)      |
| DW00006            | 00100            | PARAM06             | IN     | Data size = 100 (100 words)                     |
| DW00007            | 00001            | PARAM07             | IN     | Remote CPU number = 1                           |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                            |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                     |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                  |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                |
| DW00012            | -                | PARAM12             | SYS    | Reserved by the system. (Zero clear at startup) |
| DW00013            | -                | PARAM13             | SYS    | Reserved by the system.                         |
| DW00014            | -                | PARAM14             | SYS    | Reserved by the system.                         |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                         |
| DW00016            | -                | PARAM16             | SYS    | Reserved by the system.                         |


Note: IN: Input, OUT: Output, SYS: For system use

# ■ Example of Using the Message Send Function in a Ladder Program

Here is one example of the message send function through Ethernet (218IF).







The communication setting and the ladder program creation are now finished, when MP2300 acts as a master.

# (3) How to Start Communications

1. The CPU-03/CPU-04 side starts to receive the messages.

As the sample ladder program automatically starts the message receive operation just after system startup, you are not required to do anything. In normal operation, accept the default.

2. Turn Execute ON for the message send function in the MP2300 side to transmit messages.

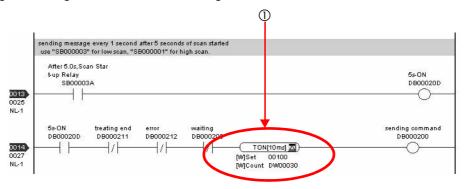

Messages are transmitted by turning on the register DB000200 configured in Execute of the message send function, for example, and communication with the CPU-03/CPU-04 starts.

Table 6.8 Input/Output Definition for Message Send Function

| I/O Definition | No. | Name    | Setting<br>Example | Contents                                                                             |
|----------------|-----|---------|--------------------|--------------------------------------------------------------------------------------|
| Input Item     | 1   | Execute | DB000200           | Executes a transmission When Execute is ON, the message transmission is carried out. |

The sample ladder program is created to transmit a message every one second when five seconds have elapsed after the low-speed scan (or high-speed scan) startup.

To change the message transmission interval, change the timer value ①.



This section explains how to communicate with the CPU-03/CPU-04 message receive function (MSG-RCV) using the MP2300 I/O message communication function.

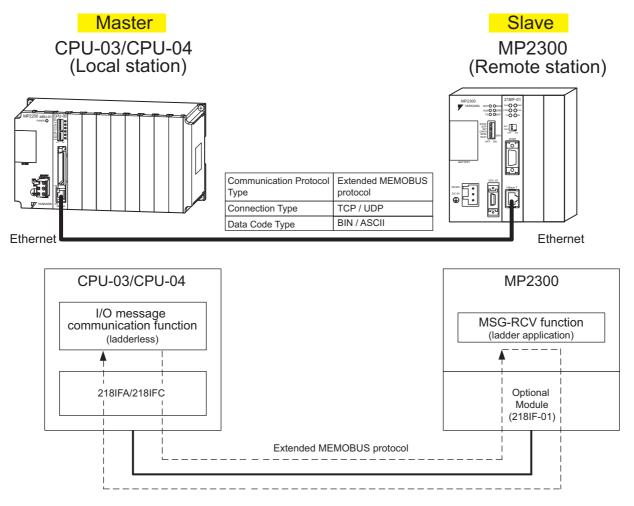
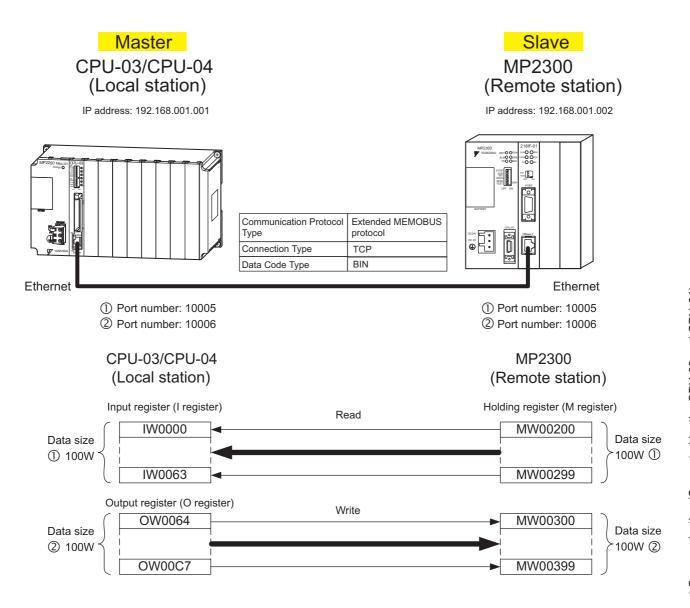



Fig. 6.6 Message Flow with MP2300 when I/O Message Communication Function Is Used

### ■ I/O Message Communication

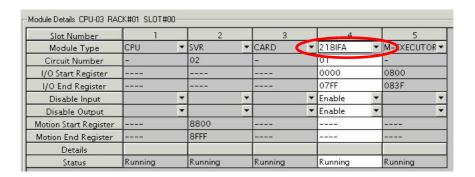

I/O message communication implements out 1:1 communication.

In addition, you can read and write only the holding register in the case of "Communication Protocol Type: Extended MEMO-BUS" used in the communication with MP series.

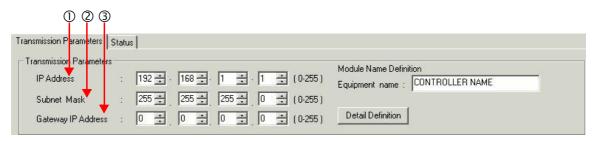
When you communicate with multiple remote devices, or when you need to read a coil state or input relay, or change a coil state as well as read/write a holding register, use the message send function (MSG-SND).

# ■ Setting Example

The following figure illustrates one example of reading the contents of the holding register (MW00200 to MW00299) of MP2300 (slave) into an input register (IW0000 to IW0063) of the CPU-03/CPU-04 (master) and writing the contents of an output register (OW0064 to OW00C7) of the CPU-03/CPU-04 (master) into a holding register (MW00300 to MW00399) of MP2300 (slave).



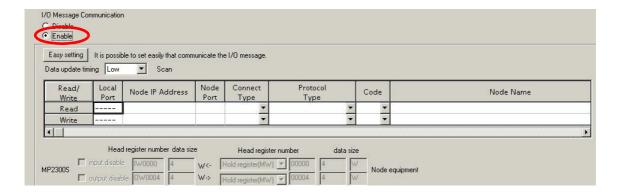

The setup procedure is explained in the following pages.


# (1) How to Set up the CPU-03/CPU-04 Side

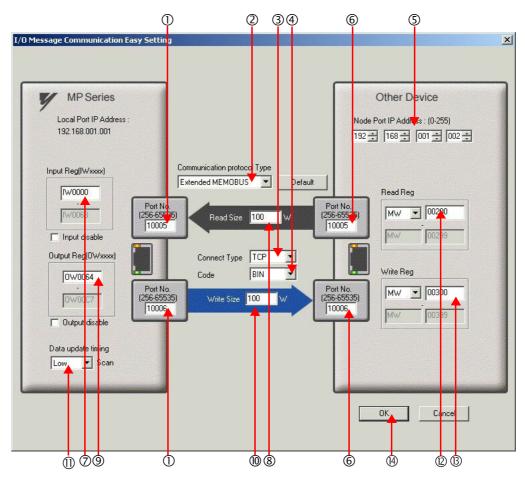
If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.




2. Set transmission parameters.




- How to set up transmission parameters
  - ① Set **IP Address** ("192.168.001.001," for example).
  - ② Set Subnet Mask ("255.255.255.000," for example).
  - ③ Set Gateway IP Address ("000.000.000.000," for example).
- Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

**3.** Select the **Enable** Option in the **I/O Message Communication** Area of the connection parameter setting.



#### 4. Set a communication setting in the I/O Message Communication Easy Setting Dialog Box.



- How to set up in the I/O Message Communication Easy Setting Dialog Box
  - ① Set **Port No.** of the CPU-03/CPU-04 side ("10005, 10006," for example).
  - ② Select Extended MEMOBUS for Communication Protocol Type, and click the Default Button.

### ■ Caution

When the communication protocol is Extended MEMOBUS, the register type that can select both read and write is fixed at the Holding Register (MW).

- 3 Select Connect Type (TCP, for example).
- Select Code (BIN, for example).
- ⑤ Set **Remote IP Address** of the other device (MP2300) to be connected ("192.168.001.002," for example).
- © Set Port No. of the other device (MP2300) to be connected ("10005, 10006," for example).

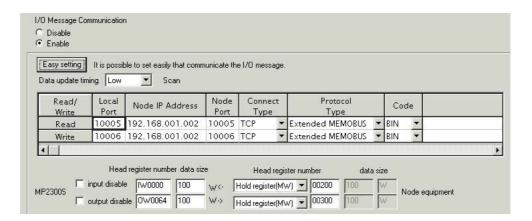
#### ■ Caution

In I/O message communication, as a message is transmitted from each port number for register read/write, a connected remote device needs the message receive functions to receive two messages.

- ② Set a storage area (**Input Reg**) of data read by CPU-03/CPU-04 (IW0000, for example).
- ® Set the **Read Size** of data to be read by the CPU-03/CPU-04 ("100" W, for example).
- 9 Set a storage area (Output Reg) of data written by the CPU-03/CPU-04 (OW0064, for example).
- ® Set the Write Size of data written by the CPU-03/CPU-04 ("100" W, for example).
- ① Set an I/O data update timing (**Data update timing**) for CPU and built-in Ethernet ("Low" scan, for example).

#### ■ Data Update Timing

Data update timing indicates when to send and receive data between the CPU and built-in Ethernet. Communication with the remote device is carried out asynchronously, so note that a message is not necessarily transmitted to the remote equipment at each set data update time.


- © Set the register type and start address (**Read Reg**) of the remote device (MP2300) read by the CPU-03/CPU-04 ("MW00200," for example).
- Set the register type and start address (Write Reg) of the remote device (MP2300) written by the CPU-03/CPU-04 ("MW00300," for example).
- Click OK.

#### **5.** Click **Yes** in the parameter setting confirmation window.

#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation window, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

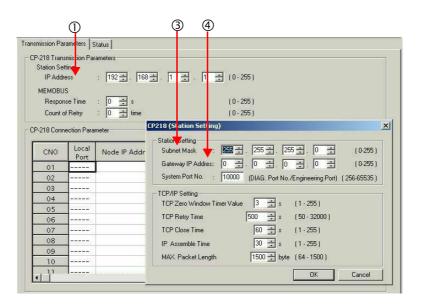
#### **6.** Check the setting values.



The I/O message communication is now set up, when the CPU-03/CPU-04 acts as a master.

#### ■ Caution

When any transmission or connection parameter is changed, the change will be not reflected after it has been saved in flash memory and the power supply is turned ON again.


# (2) How to Set up the Remote Device (MP2300) to Be Connected

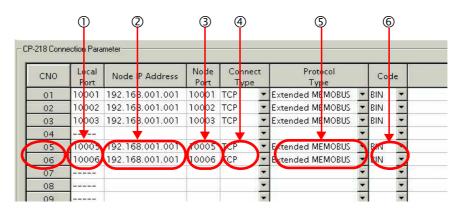
When the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IF Tab in the Module Details of the Module Configuration Window.



2. Set transmission parameters.




## ■ How to set up transmission parameters

- ① Set **IP** Address ("192.168.001.001", for example).
- ② Select *Edit Local Station: TCP/IP Setting* in the Engineering Manager Window the **Detail Setting** Dialog Box will appear.
- ③ Set Subnet Mask ("255.255.255.000", for example).
- 4 Set Gateway IP Address ("000.000.000.000", for example).

#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

#### **3.** Set connection parameters.

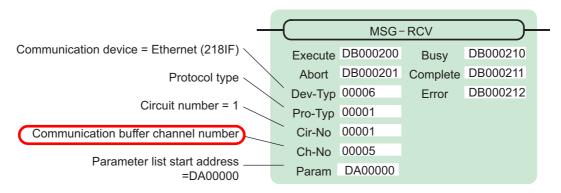


# ■ How to set up with a connection numbers 05, 06 in the CP-218 Connection Parameter Area

- ① Set **Local Port** to the port number used in the MP2300 side ("10005, 10006," for example).
- ② Set **Node IP Address** to the IP address configured in the CPU-03/CPU-04 side ("192.168.001.001," for example).
- 3 Set Node Port to the port number configured in the CPU-03/CPU-04 side ("10005, 10006," for example).
- Select Connect Type (TCP, for example).
- **⑤** Select Extended MEMOBUS for Protocol Type.
- © Select Code (BIN, for example).

#### ■ Caution

When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.


4. Create a ladder program with a message receive function (MSG-RCV) in it.

An example of a ladder program for receiving messages in the remote device (MP2300) side follows:

#### ■ Message receive function (MSG-RCV)

This system function is required for receiving messages. Message reception is carried out by describing and executing this message receive function in a ladder program.

In addition, in order to support Read and Write by the CPU-03/CPU-04, two message receive functions should be provided. Here, the input item and parameters (Communication buffer channel number and Connection number) of the message receive function need to accord with the CPU-03/CPU-04 side settings.



Note: Similarly, a message receive function with the communication buffer channel number = 6 is required.

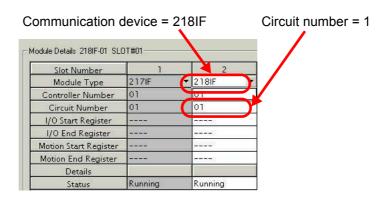



Fig. 6.7 MPE720 Module Configuration Window

# ■ Input/output definition contents for message receive function

The input/output definition content for message receive function is as follows:

Table 6.9 Input/Output Definitions for Message Receive Function

| I/O<br>Definition | No.     | Name           | Setting<br>Example  | Content                                                                                                                                                                           |  |
|-------------------|---------|----------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | 1       | Execute        | DB000200            | Executes a reception When Execute is ON, message reception is carried out.                                                                                                        |  |
|                   | 2       | Abort DB000201 |                     | Forcibly aborts a reception When Abort is ON, the message reception is forcibly stopped.                                                                                          |  |
|                   | 3       | Dev-Typ        | 00006               | Communication device type Specify the type of the communication device used in reception. When Ethernet (218IF) is used, specify "6."                                             |  |
|                   | 4       | Рго-Тур        | 00001               | Communication protocol Specify the type of the communication protocol.  MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3                                         |  |
| Input Item        | 5       | 5 Cir-No 00001 |                     | Circuit number Specify a circuit number of the communication device. Specify it in accordance with the circuit number displayed in the MPE720 <b>Module Configuration</b> Window. |  |
|                   | 6 Ch-No |                | 00005<br>&<br>00006 | Communication buffer channel number Specify the channel number of a communication buffer. When Ethernet (218IF) is used, specify it in the range between "1" and "10."            |  |
|                   |         |                |                     | Note: Set up a unique channel number in the circuit.                                                                                                                              |  |
|                   | 7       | Param          | DA00000             | Parameter list start address Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address.            |  |
|                   | 1       | Busy           | DB000210            | In process  Busy will be ON while executing a message reception or forced abort process.                                                                                          |  |
| Output Item       | 2       | Complete       | DB000211            | Process completed When a message reception or forced abort process is properly completed, Complete will turn ON only for one scan.                                                |  |
|                   | 3       | Error          | DB000212            | Error When an error occurs, Error will turn ON only for one scan.                                                                                                                 |  |

<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS (=1). The communication device automatically converts the protocol.

<sup>\* 2.</sup> Non-procedure 1: In non-procedural communication, data is received on a per-word basis. Non-procedure 2: In non-procedural communication, data is received on a per-byte basis.

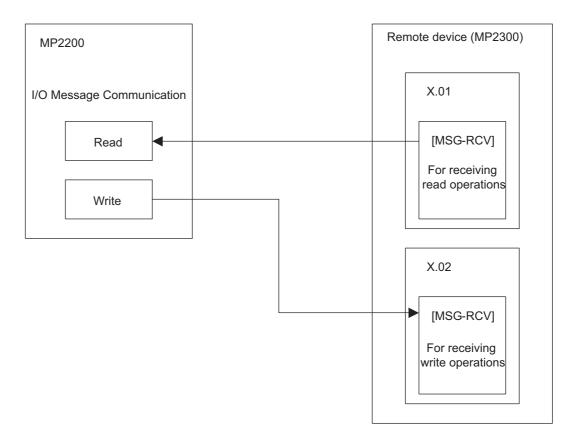
# ■ Parameter list setting example for message receive function

An example of a parameter list setting when receiving messages from a transmit source using the connection with connection numbers = 5 and 6 follows:

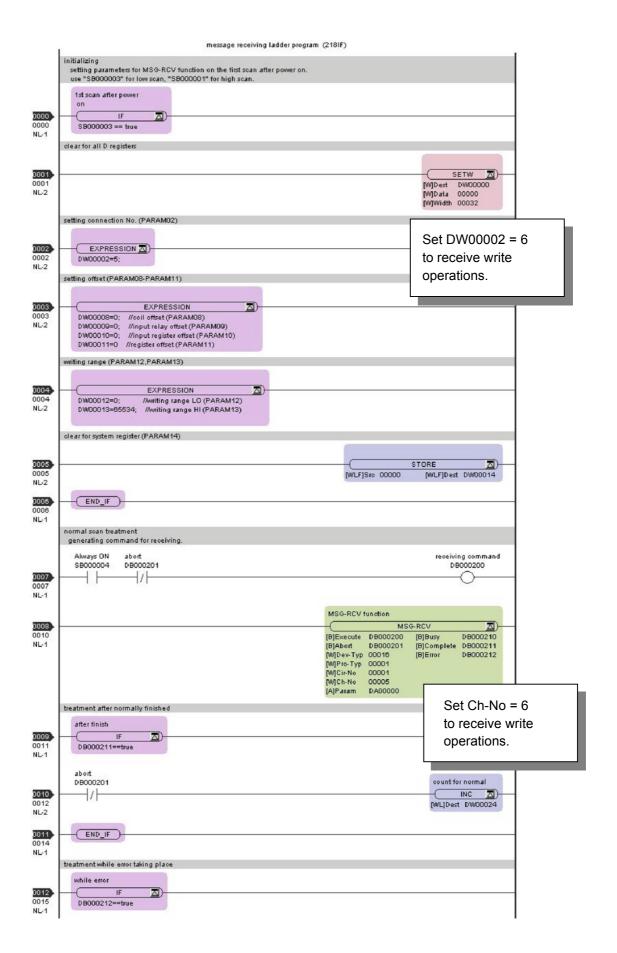
Table 6.10 Parameter List Setting Example 1 (parameter list start address Param = DA00000)

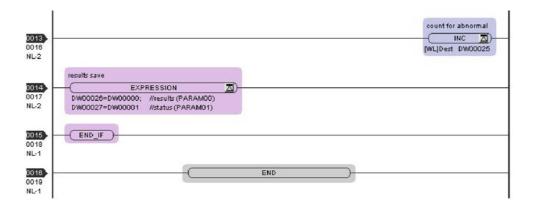
| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                              |
|--------------------|------------------|---------------------|--------|------------------------------------------------------|
| DW00000            | =                | PARAM00             | OUT    | Process result                                       |
| DW00001            | -                | PARAM01             | OUT    | Status                                               |
| DW00002            | 00005            | PARAM02             | IN     | Connection number = 5 (For receiving read operation) |
| DW00003            | -                | PARAM03             | OUT    | Option                                               |
| DW00004            | -                | PARAM04             | OUT    | Function code                                        |
| DW00005            | -                | PARAM05             | OUT    | Data address                                         |
| DW00006            | -                | PARAM06             | OUT    | Data size                                            |
| DW00007            | -                | PARAM07             | OUT    | Remote CPU number                                    |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                                 |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                          |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                       |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                     |
| DW00012            | 00000            | PARAM12             | IN     | Writable address lower limit = MW00000               |
| DW00013            | 65534            | PARAM13             | IN     | Writable address upper limit = MW65534               |
| DW00014            | _                | PARAM14             | SYS    | Reserved by the system. (Zero clear at startup)      |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                              |
| DW00016            | =                | PARAM16             | SYS    | Reserved by the system.                              |

Note: IN: Input, OUT: Output, SYS: For system use


Table 6.11 Parameter List Setting Example 2 (parameter list start address Param = DA00000)

| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                               |
|--------------------|------------------|---------------------|--------|-------------------------------------------------------|
| DW00000            | _                | PARAM00             | OUT    | Process result                                        |
| DW00001            | -                | PARAM01             | OUT    | Status                                                |
| DW00002            | 00006            | PARAM02             | IN     | Connection number = 6 (For receiving write operation) |
| DW00003            | -                | PARAM03             | OUT    | Option                                                |
| DW00004            | -                | PARAM04             | OUT    | Function code                                         |
| DW00005            | -                | PARAM05             | OUT    | Data address                                          |
| DW00006            | -                | PARAM06             | OUT    | Data size                                             |
| DW00007            | -                | PARAM07             | OUT    | Remote CPU number                                     |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                                  |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                           |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                        |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                      |
| DW00012            | 00000            | PARAM12             | IN     | Writable address lower limit = MW00000                |
| DW00013            | 65534            | PARAM13             | IN     | Writable address upper limit = MW65534                |
| DW00014            | -                | PARAM14             | SYS    | Reserved by the system. (Zero clear at startup)       |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                               |
| DW00016            | =                | PARAM16             | SYS    | Reserved by the system.                               |


Note: IN: Input, OUT: Output, SYS: For system use


# ■ Example of Using the Message Receive Function in a Ladder Program

Here is one example of using the message receive function through Ethernet (218IF). In addition, this ladder program is for receiving read operation. A ladder program for receiving write operations is required separately.



6.2.3 When CPU-03/CPU-04 Acts as Master (I/O message communication function is used)





The communication setting and the ladder program creation are now finished, when MP2300 acts as a slave.

# (3) How to Start Communication

**1.** The MP2300 side starts to receive the messages.

As the sample ladder program starts the message receive operation just after the system startup, you are not required to do anything. In normal operation, accept the default.

**2.** The CPU-03/CPU-04 side transmits messages.

When an I/O message communication function is used, message transmit operation status automatically.

# 6.2.4 When the CPU-03/CPU-04 Acts as Master (ladder program which uses MSG-SND function)

The I/O message communication function cannot operate any registers other than the holding register (M register). Note that it can communicate with only one slave.

To communicate with more than one slave, use a ladder program with a message send function (MSG-SND) on the CPU-03/CPU-04 side. You can use the message transmit (MSG-SND) function as well as the I/O message communication function by keeping connections separate from each other.

This section explains how to communicate with the CPU-03/CPU-04 message receive function (MSG-RCV) using the MP2300 message send function (MSG-SND).

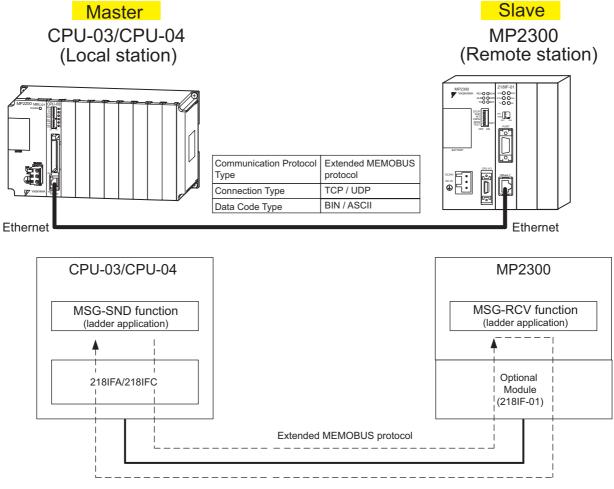
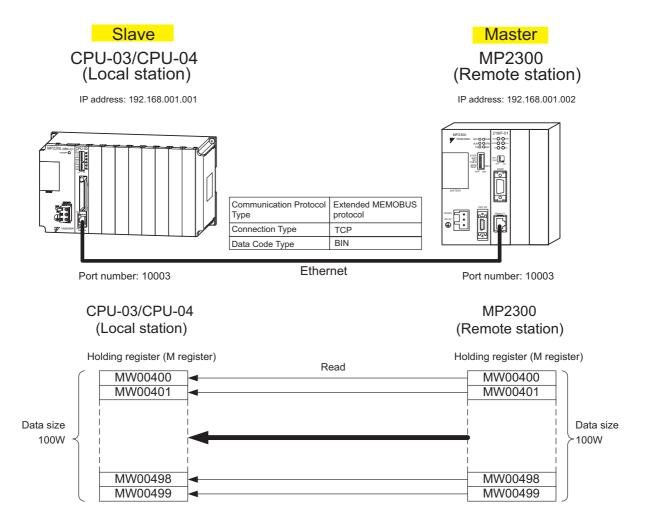
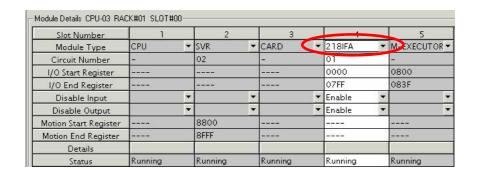



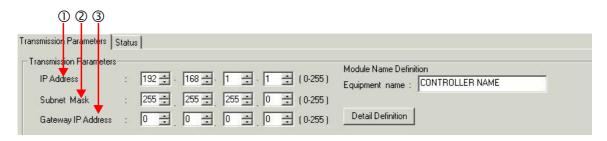

Fig. 6.8 Message Flow with MP2300 when Message Send Function (MSG-SND) Is Used

# ■ Setting Example

The following figure illustrates one example of reading the content of the MP2300 (slave) holding register (MW00400 to MW00499) into the CPU-03/CPU-04 (master) holding register (MW00400 to MW00499).



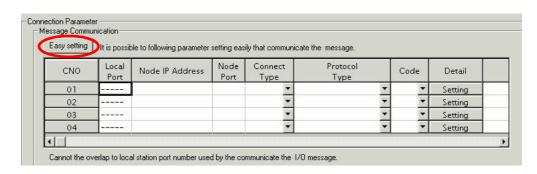

The setup procedure is explained in the following pages.


# (1) How to Set up the CPU-03/CPU-04 Side

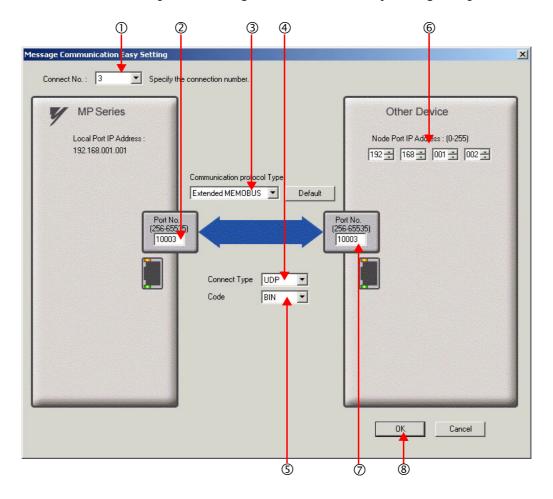
When the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.




2. Set transmission parameters.




- How to set up transmission parameters
  - ① Set IP Address ("192.168.001.001," for example).
  - ② Set **Subnet Mask** ("255.255.255.000," for example).
  - 3 Set Gateway IP Address ("000.000.000.000," for example).
- Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

**3.** Click the **Easy setting** Button in the **Message Communication** Area of the connection parameter setting.



#### **4.** Set a communication setting in the **Message Communication Easy Setting** Dialog Box.

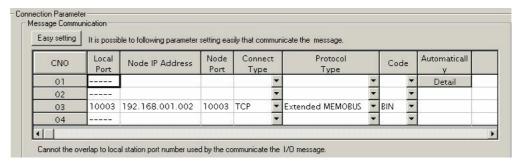


# ■ How to set up in the Message Communication Easy Setting Dialog Box

- ① When automatic receive function is used, select "3" for the Connect No.
- ② Set Port No. of the CPU-03/CPU-04 side ("10003," for example).
- ③ Select Extended MEMOBUS for Communication protocol Type, and click the Default Button.
- Select Connect Type (TCP, for example).
- © Select Code (BIN, for example).
- © Set Node Port IP Address of the other device (MP2300) to be connected ("192.168.001.002," for example).
- ② Set **Port No.** of the other device (MP2300) to be connected ("10003," for example).
- ® Click OK.

#### ■ Caution

When message functions (MSG-SND, MSG-RCV) are used with the connection number 01, disable the automatic receive function. If message functions are used while the automatic receive function is enabled, the communication will not function properly.


Note: The automatic receive function with a connection number 01 is set to "Enable" by default.

5. Click Yes in the parameter setting confirmation dialog box.

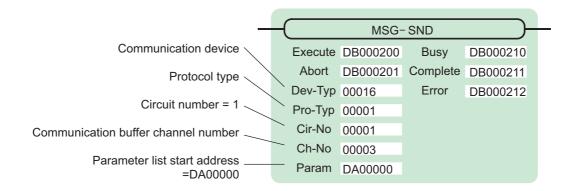
#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation dialog, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

**6.** Check the setting values.



#### ■ Caution


When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.

# 7. Create a ladder program containing a message send function (MSG-SND).

An example of a ladder program example for transmitting messages from the CPU-03/CPU-04 side follows:

# ■ Message send function (MSG-SND)

This system function is required for transmitting messages. A message transmission is carried out by describing and executing this message send function in a ladder program.



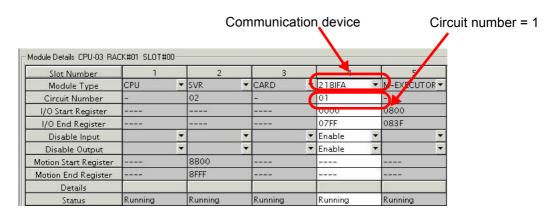



Fig. 6.9 MPE720 Module Configuration Window

# ■ Input/output definition contents for message send function

The input/output definition content for the message send function is as follows:

Table 6.12 Input/Output Definitions for Message Send Function

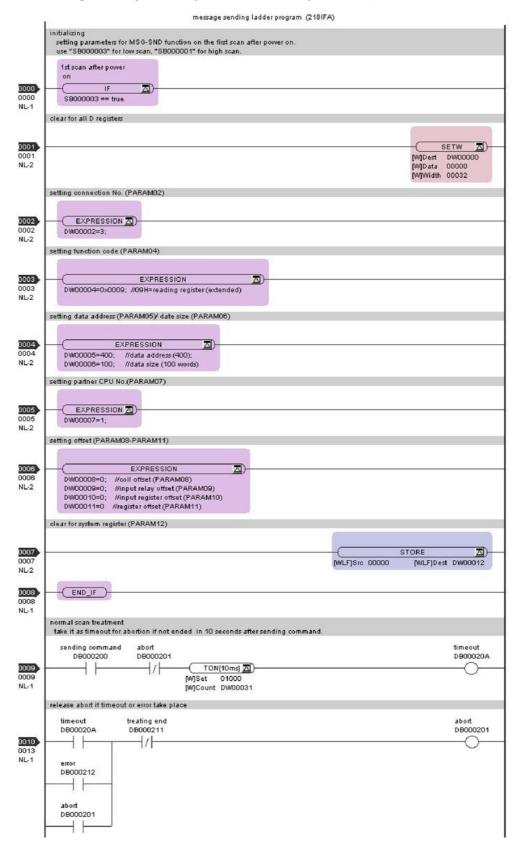
| I/O<br>Definition | No. | Name     | Setting<br>Example                                                                                                                         | Contents                                                                                                                                                                                                                                                                                   |  |
|-------------------|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                   | 1   | Execute  | DB000200                                                                                                                                   | Executes a transmission When Execute is ON, the message transmission is carried out.                                                                                                                                                                                                       |  |
|                   | 2   | Abort    | DB000201                                                                                                                                   | Aborts a transmission When the Abort is ON, message transmission is forcibly stopped.                                                                                                                                                                                                      |  |
|                   | 3   | Dev-Typ  | Communication device type  Specify the type of the communication device used in rec When Ethernet (218IFA/218IFC) is used, specify 16.     |                                                                                                                                                                                                                                                                                            |  |
| 4 Pro-Typ 0000    |     | 00001    | Communication protocol  Specify the type of the communication protocol.  MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3 |                                                                                                                                                                                                                                                                                            |  |
| Input Item        | 5   | Cir-No   | 00001                                                                                                                                      | Circuit number  Specify a circuit number of the communication device.  Specify it in accordance with the circuit number displayed in the MPE720 Module Configuration Window.                                                                                                               |  |
|                   | 6   | Ch-No    | 00003                                                                                                                                      | Communication buffer channel number Specify the channel number of a communication buffer.  • When Ethernet (218IFA) is used, specify a number between 1 and 4.  • When Ethernet (218IFC) is used, specify a number between 1 and 10.  Note: Set up a unique channel number in the circuit. |  |
|                   | 7   | Param    | DA00000                                                                                                                                    | Parameter list start address Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address.                                                                                                                     |  |
|                   | 1   | Busy     | DB000210                                                                                                                                   | In process  Busy is ON while executing a message transmission or forced abort process.                                                                                                                                                                                                     |  |
| Output Item       | 2   | Complete | DB000211                                                                                                                                   | Process completed  When a message transmission or abort process is properly completed,  Complete will turn ON only for one scan.                                                                                                                                                           |  |
|                   | 3   | Error    | DB000212                                                                                                                                   | Error occurred When an error occurs, Error will turn ON only for one scan.                                                                                                                                                                                                                 |  |

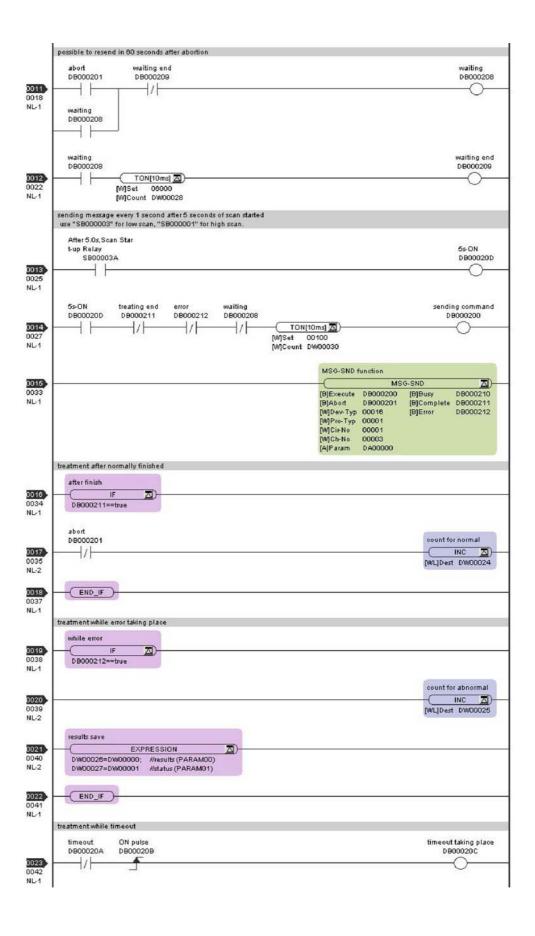
<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS (=1). The communication device automatically converts the protocol.

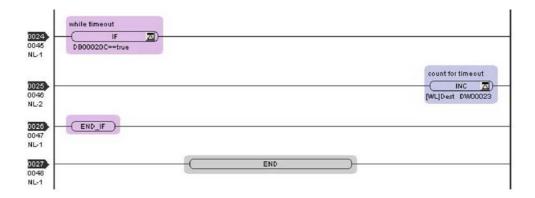
<sup>\* 2.</sup> Non-procedure 1: In non-procedural communication, data is transmitted on a per-word basis. Non-procedure 2: In non-procedural communication, data is transmitted on a per-byte basis.

# ■ Parameter list setting example for the message send function

An example of parameter list settings when writing 100 words of data from MW00400 to the destination using a connection with a connection number of 3 follows:


Table 6.13 Parameter List Setting Example (parameter list start address Param = DA00000)


| Register<br>Number | Setting Val-<br>ue | Parameter Num-<br>ber | IN/OUT | Remarks                                         |  |
|--------------------|--------------------|-----------------------|--------|-------------------------------------------------|--|
| DW00000            | _                  | PARAM00               | OUT    | Process result                                  |  |
| DW00001            | -                  | PARAM01               | OUT    | Status                                          |  |
| DW00002            | 00003              | PARAM02               | IN     | Connection number = 3                           |  |
| DW00003            | -                  | PARAM03               | IN     | Option (Setting unnecessary)                    |  |
| DW00004            | 0009H              | PARAM04               | IN     | Function code = 09H (Reads a holding register)  |  |
| DW00005            | 00400              | PARAM05               | IN     | Data address = 400 (Starting from MW00400)      |  |
| DW00006            | 00100              | PARAM06               | IN     | Data size = 100 (100 words)                     |  |
| DW00007            | 00001              | PARAM07               | IN     | Remote CPU number = 1                           |  |
| DW00008            | 00000              | PARAM08               | IN     | Coil offset = 0 word                            |  |
| DW00009            | 00000              | PARAM09               | IN     | Input relay offset = 0 word                     |  |
| DW00010            | 00000              | PARAM10               | IN     | Input register offset = 0 word                  |  |
| DW00011            | 00000              | PARAM11               | IN     | Holding register offset = 0 word                |  |
| DW00012            | -                  | PARAM12               | SYS    | Reserved by the system. (Zero clear at startup) |  |
| DW00013            | _                  | PARAM13               | SYS    | Reserved by the system.                         |  |
| DW00014            | _                  | PARAM14               | SYS    | Reserved by the system.                         |  |
| DW00015            | _                  | PARAM15               | SYS    | Reserved by the system.                         |  |
| DW00016            | -                  | PARAM16               | SYS    | Reserved by the system.                         |  |

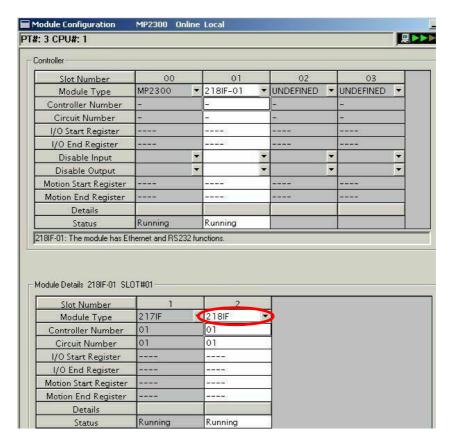

Note: IN: Input, OUT: Output, SYS: For system use

# ■ Example of Using the Message Send Function in a Ladder Program

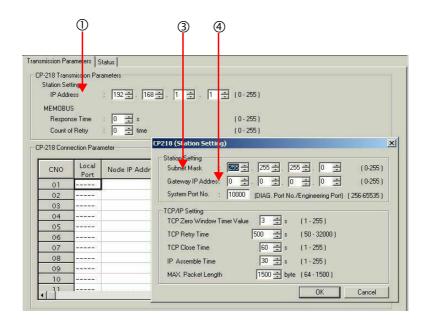
Here is one example of using the message send function through Ethernet (218IFA/218IFC).








The communication setting and the ladder program creation are now finished, when the CPU-03/CPU-04 acts as a master.


# (2) How to Set up the Remote Device (MP2300) to Be Connected

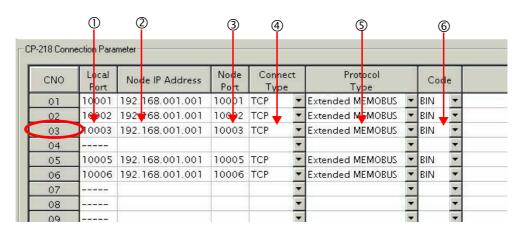
If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IF Tab in the Module Details Area of the Module Configuration Window.



2. Set transmission parameters.




#### ■ How to set up transmission parameters

- ① Set **IP Address** ("192.168.001.001," for example).
- ② Select *Edit Local Station: TCP/IP Setting* in the Engineering Manager Window the **Detail Setting** Dialog Box will appear.
- ③ Set Subnet Mask ("255.255.255.000," for example).
- ① Set Gateway IP Address ("000.000.000.000," for example).

#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

#### **3.** Set connection parameters.

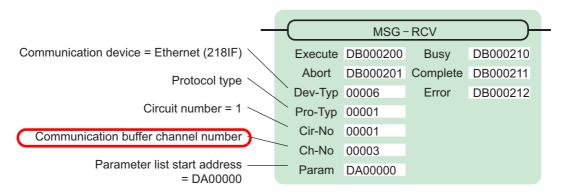


# ■ Procedure to set up with a connection number 03 in the CP-218 Connection Parameter Area

- ① Set Local Port to the port number used in the MP2300 side ("10003," for example).
- ② Set **Node IP Address** to the IP address configured in the CPU-03/CPU-04 side ("192.168.001.001," for example).
- ③ Set **Node Port** to the port number configured in the CPU-03/CPU-04 side ("10003," for example).
- Select Connect Type, (TCP, for example).
- **⑤** Select Extended MEMOBUS for Protocol Type.
- © Select **Code** (BIN, for example).

#### ■ Caution

When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.


# 4. Create a ladder program with a message receive function (MSG-RCV) in it.

An example of a ladder program for receiving messages in the remote device (MP2300) side follows:

# ■ Message receive function (MSG-RCV)

This system function is required for receiving messages. Message reception is carried out by describing and executing this message receive function in a ladder program.

In addition, in order to support Read and Write by CPU-03/CPU-04, two message receive functions should be provided. Here, the input item and parameters (communication buffer channel number and connection number) of the message receive function need to accord with the CPU-03/CPU-04 side settings.



Note: Similarly, a message receive function with the communication buffer channel number=6 is required.

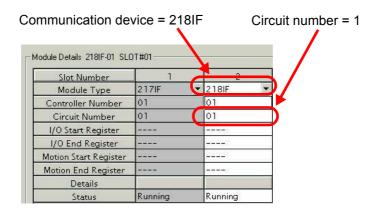



Fig. 6.10 MPE720 Module Configuration Window

# ■ Input/output definitions contents for message receive function

The input/output definition content for message receive function is as follow:

Table 6.14 Input/Output Definitions for Message Receive Function

| I/O<br>Definition                       | No. | Name     | Setting<br>Example                                                                                                                       | Contents                                                                                                                                                                                                                      |  |
|-----------------------------------------|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                         | 1   | Execute  | DB000200                                                                                                                                 | Executes a reception When Execute turns ON, the message reception is carried out.                                                                                                                                             |  |
|                                         | 2   | Abort    | DB000201                                                                                                                                 | Aborts a reception  When Abort turns ON, the message reception is forcibly stopped.                                                                                                                                           |  |
|                                         | 3   | Dev-Typ  | 00006                                                                                                                                    | Communication device type Specify the type of the communication device used in reception. When Ethernet (218IF) is used, specify "6."                                                                                         |  |
| Communicat  4 Pro-Typ 00001 Specify the |     | 00001    | Communication protocol Specify the type of the communication protocol. MEMOBUS(*1) = 1, non-procedure 1(*2) = 2, non-procedure 2(*2) = 3 |                                                                                                                                                                                                                               |  |
| Input Item                              | 5   | Cir-No   | 00001                                                                                                                                    | Circuit number Specify a circuit number of the communication device. Specify it in accordance with the circuit number displayed in the MPE720 <b>Module Configuration</b> Window.                                             |  |
|                                         | 6   | Ch-No    | 00003                                                                                                                                    | Communication buffer channel number  Specify the channel number of a communication buffer.  When Ethernet (218IF) is used, specify it in the range between "1" and "10."                                                      |  |
|                                         | 7   | Param    | DA00000                                                                                                                                  | Note: Set up a unique channel number in the circuit.  Parameter list start address  Specify the start address of the parameter list. For the Parameter List, 17 words are automatically assigned from the configured address. |  |
|                                         | 1   | Busy     | DB000210                                                                                                                                 | In process  Busy will be ON while executing a message reception or forced abort process.                                                                                                                                      |  |
| Output Item                             | 2   | Complete | DB000211                                                                                                                                 | Process completed When a message reception or forced abort process is properly completed, Complete will turn ON only for one scan.                                                                                            |  |
|                                         | 3   | Error    | DB000212                                                                                                                                 | Error occurred When an error occurs, Error will turn ON only for one scan.                                                                                                                                                    |  |

<sup>\* 1.</sup> When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS(=1). The communication device automatically converts the protocol.

<sup>\* 2.</sup> Non-procedure 1: In non-procedural communication, data is received on a per-word basis. Non-procedure 2: In non-procedural communication, data is received on a per-byte basis.

# ■ Parameter list setting example for message receive function

A parameter list setting example is as follows when receiving messages from a transmit source using the connection with a connection number = 3:

Table 6.15 Parameter List Setting Example1 (parameter list start address Param = DA00000)

| Register<br>Number | Setting<br>Value | Parameter<br>Number | IN/OUT | Remarks                                              |  |
|--------------------|------------------|---------------------|--------|------------------------------------------------------|--|
| DW00000            | _                | PARAM00             | OUT    | Process result                                       |  |
| DW00001            | -                | PARAM01             | OUT    | Status                                               |  |
| DW00002            | 00003            | PARAM02             | IN     | Connection number = 3 (For receiving read operation) |  |
| DW00003            | -                | PARAM03             | OUT    | Option                                               |  |
| DW00004            | -                | PARAM04             | OUT    | Function code                                        |  |
| DW00005            | -                | PARAM05             | OUT    | Data address                                         |  |
| DW00006            | -                | PARAM06             | OUT    | Data size                                            |  |
| DW00007            | -                | PARAM07             | OUT    | Remote CPU number                                    |  |
| DW00008            | 00000            | PARAM08             | IN     | Coil offset = 0 word                                 |  |
| DW00009            | 00000            | PARAM09             | IN     | Input relay offset = 0 word                          |  |
| DW00010            | 00000            | PARAM10             | IN     | Input register offset = 0 word                       |  |
| DW00011            | 00000            | PARAM11             | IN     | Holding register offset = 0 word                     |  |
| DW00012            | 00000            | PARAM12             | IN     | Writable address lower limit = MW00000               |  |
| DW00013            | 65534            | PARAM13             | IN     | Writable address upper limit = MW65534               |  |
| DW00014            | -                | PARAM14             | SYS    | Reserved by the system. (Zero clear at startup)      |  |
| DW00015            | -                | PARAM15             | SYS    | Reserved by the system.                              |  |
| DW00016            |                  | PARAM16             | SYS    | Reserved by the system.                              |  |

Note: IN: Input, OUT: Output, SYS: For system use

# ■ Example of Using the Message Receive Function in a Ladder Program

A ladder program for receiving messages in the remote device (MP2300) side is similar to that in 6.2.3 (2) How to Set up the Remote Device (MP2300) to Be Connected.

However, change Communication buffer channel number and Connection number respectively based on the I/O definition and parameter list settings.

# (3) How to Start Communication

#### **1.** MP2300 side starts to receive the messages.

As the sample ladder program starts the message receive operation just after the system startup, you don't need to operate it particularly. Normally, accept the default.

# **2.** Turn Execute ON for the message send function in the CPU-03/CPU-04 side to transmit messages.

The sample ladder program is created to transmit a message every one second when five seconds elapsed after the low-speed scan (or high-speed scan) startup.

The way to change the message transmission interval is similar to that in 6.2.1 (3) How to Start Communications.

# 6.3 Communication with Touch Panel

This section explains how to communicate with a touch panel that supports extended MEMOBUS protocol using the CPU-03/CPU-04 automatic receive function.

In this section, the GP3000 series touch panel manufactured by Digital Electronics Corp. is used.

# 6.3.1 When CPU-03/CPU-04 Acts as Slave (automatic receive function is used)

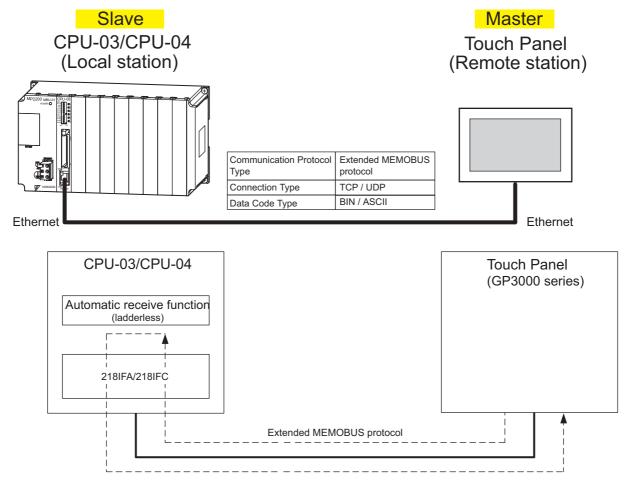
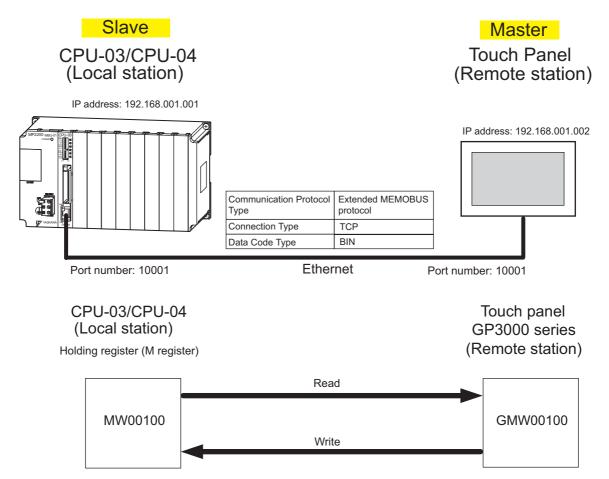
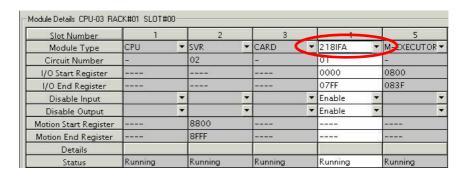



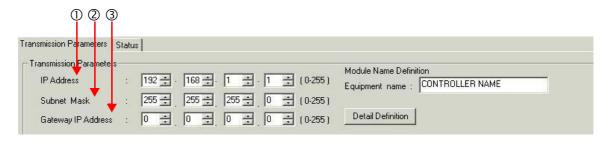

Fig. 6.11 Message Flow with Touch Panel (GP3000 series) when Automatic Receive Function Is Used

Note: Here, communication with the touch panel is carried out using the automatic receive function, but it can also use the message receive function (MSG-RCV). For information on how to set up when the message receive function (MSG-RCV) is used, refer to 6.2.2 (1) How to Set up the CPU-03/CPU-04 Side.

# ■ Setting Example


The following figure shows an example which displays the content of the CPU-03/CPU-04 (slave) holding register (MW00100) on a touch panel and writes values from the touch panel to the same register.

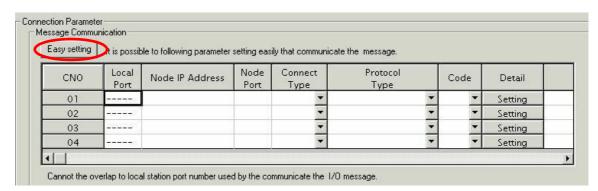



The setup procedure is explained in the following pages.

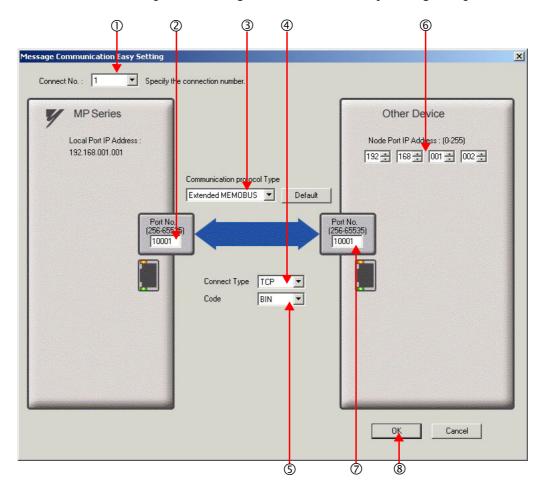
#### (1) How to Set up the CPU-03/CPU-04 Side

1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.




Set transmission parameters.




- How to set up transmission parameters
  - ① Set **IP Address** ("192.168.001.001," for example).
  - ② Set **Subnet Mask** ("255.255.255.000," for example).
  - 3 Set Gateway IP Address ("000.000.000.000," for example).
- Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

Click the Easy Setting Button in the Message Communication Area of the connection parameter setting.





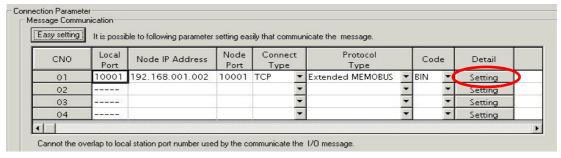


#### How to set up in the Message Communication Easy Setting Dialog Box

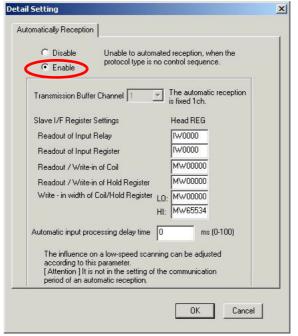
- ① When automatic receive function is used, select "1" for the Connect No.
- ② Set Port No. of CPU-03/CPU-04 side ("10001," for example).
- 3 Select Extended MEMOBUS for Communication protocol Type, and click the Default Button.
- Select Connect Type (TCP, for example).
- ⑤ Select Code (BIN, for example).
- © Set **Node Port IP Address** of the other device (touch panel) to be connected ("192.168.001.002," for example).
- ② Set **Port No.** of the other device (touch panel) to be connected ("10001," for example).
- ® Click OK.

#### ■ Caution

When message functions (MSG-SND, MSG-RCV) are used with the connection number 01, disable the automatic receive function. If message functions are used while the automatic receive function is enabled, the communications will not function properly.


Note: The automatic receive function with a connection number 01 is set to "Enable" by default.

5. Click **Yes** in the parameter setting confirmation dialog box.


#### Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation dialog, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

6. Check the setting value and click the Setting Button in the Detail Column.



7. Select the **Enable** Option in the **Automatically Reception** Tab Page of the **Detail Setting** Dialog Box and then click the **OK** Button.



Note: For more information on Slave Side I/F Register Setting and Automatic Receive Process Delay Time, refer to 2.5.6 (4) [b] Automatically Reception Dialog Box for Message Communication. The automatic receive function for connecting the CPU-03/CPU-04 to the touch panel is now set up.

#### ■ Caution

When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.

# (2) How to set up a touch panel

This section explains the GP-Pro EX side procedure to set up for connecting the CPU-03/CPU-04 to an indicator (GP3000 series) and the window creation example.

Note: The indicator (GP3000 series) and GP-Pro EX are manufactured by Digital Electronics Corp. Contact Digital Electronics Corp. for more information.

#### [a] How to Set up GP-Pro EX

- 1. Start up GP-Pro EX.
- 2. Create a new project.
- 3. Set its indicator type. Set the indicator type in accordance with the model in use.

Here, we explain the setting when AGP-3600T is used.

Table 6.16 Indicator Type Setting (example)

| Series                 | GP3000 series    |
|------------------------|------------------|
| Jenes                  | AGP33** series   |
| Model                  | AGP-3600T        |
| Installation<br>Method | Horizontal model |

4. Set up connected equipment.

Table 6.17 Connected Equipment

| Manufacturer | YASKAWA Electric Corporation |  |
|--------------|------------------------------|--|
| Series       | MEMOBUS Ethernet             |  |

**5.** Set up the way to connect.

Table 6.18 Connection Method

| Port | Ethernet (TCP) |
|------|----------------|

- **6.** Select the **Connected Equipment Setting** Window from the **System** Tab to display the connected equipment setting window.
- **7.** Set the communication setting.

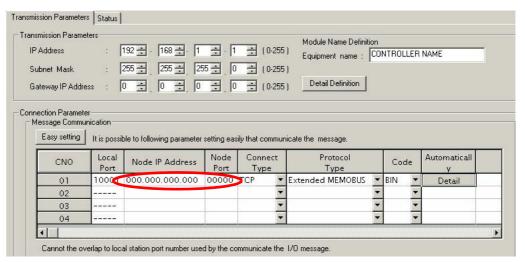
Table 6.19 Communication Setting

| Port Number*    | 10001  |
|-----------------|--------|
| Timeout         | 3(sec) |
| Retry           | 0      |
| Transmit Weight | 0(ms)  |

\* For more information on the port number, refer to the following.

#### ■ Port Number

- If you don't select Automatic Assignment of the port number in the communication setting window, the automatic assignment will be disabled, and the GP3000 series port number will be fixed at the setting value.
- If you select **Automatic Assignment** of the port number in the communication setting window, automatic assignment will be enabled, and the GP3000 series port number will be assigned in each case.


When you use Automatic Assignment, set *Unpassive open mode* in the 218IFA/218IFC detailed definition window of MPE720.

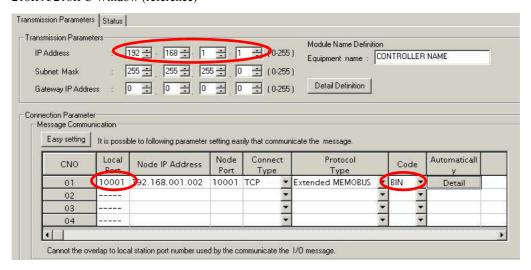
For more information about *Unpassive open mode*, refer to 2.5.6 (4) [b] 218IFA Module Detailed Definition Window. For information on the relationship between GP-Pro EX and MPE720 settings, see the table below.

| MPE720 Side Setting  GP-Pro EX Side Setting | Unpassive open<br>Mode | Fixed Value<br>Setting |
|---------------------------------------------|------------------------|------------------------|
| Automatic Assignment Enable                 | $\sqrt{}$              | -                      |
| Automatic Assignment Disable                | V                      | V                      |

Note:  $\sqrt{\cdot}$  connectable, – : unconnectable

How to set up *Unpassive open mode* of the CPU-03/CPU-04 (reference)
 Set Node IP Address to 000.000.000.000 and the Node Port to 0 to enter into the *Unpassive open mode*.




- **8.** Click the setup button of the connected PLC1 for each device setting to display the setting window for each device.
- **9.** Set up the setting window for each device.

In the setting window for each device, set up a connected device (in this case, the CPU-03/CPU-04). Set the IP address, port number, and data code in the same manner as in the 218IFA window for the CPU-03 (or the 218IFC window for the CPU-04) of the MP2200.

Table 6.20 Each Device Setting

| IP Address  | 192.168.001.001 |  |
|-------------|-----------------|--|
| Port Number | 10001           |  |
| Data Code   | binary          |  |

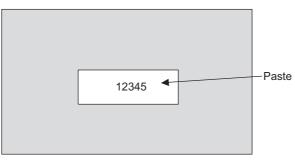
• 218IFA/218IFC Window (reference)



The setting is finished for now.

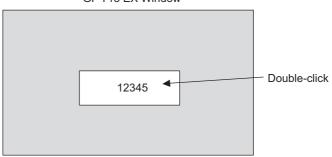
Create a window and transfer the project to an indicator as required.

#### Caution


Set up a unique IP address in the network.
 The CPU-03/CPU-04 side IP address is set to "192.168.1.1" in self-configuration.
 For the IP address, check with your network administrator.

Note: Set the GP3000 series IP address in the off-line mode of the indicator. Contact Digital Electronics Corp. for more information.

# [b] Window Creation Example


- 1. Create a base window.
- 2. Select **Data Indicator** from the toolbar to paste it on the window.

GP-Pro EX Window



3. Double-click the Data Indicator pasted on the window.

GP-Pro EX Window



**4.** Set as follows in the detailed setting window of **Data Indicator** and click OK.

Table 6.21 Data Indicator Detailed Setting

| Display Data         | Numeric display |
|----------------------|-----------------|
| Monitor Word Address | GMW00100        |

■ Relationship between GP-Pro EX address display and CPU-03/CPU-04 register

| Device             | GP-Pro EX Address Display | CPU-03/CPU-04 Register |
|--------------------|---------------------------|------------------------|
| Coil (bit)         | GMB□□□□□                  | МВППППП                |
| Coil (word)        | GMW□□□□                   | MWDDDD                 |
| Input Relay (bit)  | GIB□□□□                   | IB□□□□□                |
| Input Relay (word) | GIW□□□□                   | IW□□□□                 |

# (3) How to Start Communication

1. The CPU-03/CPU-04 side starts to receive the messages.

When the automatic receive function is used, the message receive operation starts automatically, and you are not required to do anything.

2. Start up the touch panel (GP3000 series) to display the main window.

After the system startup of the touch panel, communication with the CPU-03/CPU-04 will start.

Note: Contact Digital Electronics Corp. for more information.

# 6.4 Communication with PLC Manufactured by Mitsubishi Electric Corporation (MELSEC protocol)

In Ethernet communication between the CPU-03/CPU-04 and MELSEC (Q, A series) general-purpose PLC manufactured by Mitsubishi Electric Corporation, the MELSEC protocol (A-compatible 1E frame) is used as a communication

Using the MELSEC protocol allows a master to read/write the slave register content.

This section explains communication when the CPU-03/CPU-04 acts as a slave and a master respectively.

For using the CPU-03/CPU-04 as a slave, we explain communication using the automatic receive function.

For using the CPU-03/CPU-04 as a master, we explain communication using the I/O message communication function.

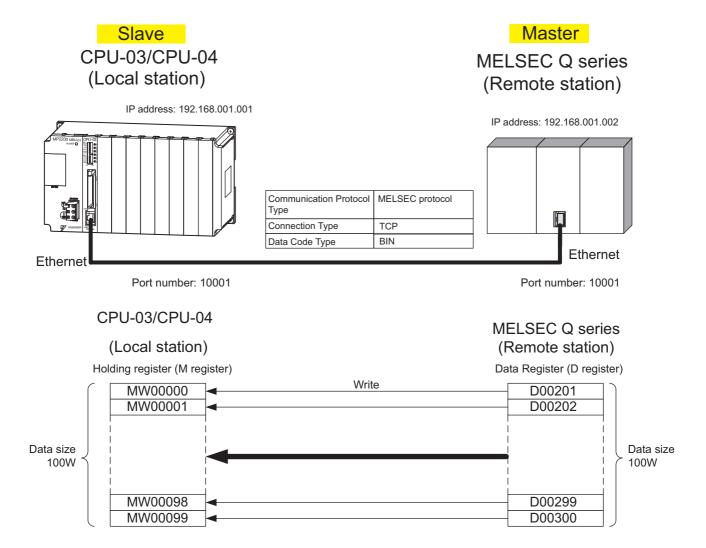
# 6.4.1 When the CPU-03/CPU-04 Acts as Slave (automatic receive function is used)

This section explains how to carry out a fixed buffer communication with the BUFSND command (with procedure) of the MELSEC Q series using the CPU-03/CPU-04 automatic receive function.



Fig. 6.12 Message Flow with the MELSEC Q Series when the Automatic Receive Function Is Used

#### Caution

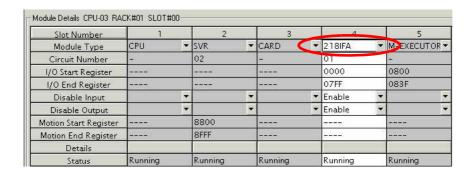

Communication using the automatic receive function is 1:1 communication.

Also, when "Communication Protocol Type: MELSEC" is used in communication with the MELSEC Q series, the MELSEC Q series (master) side can read/write the holding register of the CPU-03/CPU-04 (slave) using fixed buffer communication. However, when the CPU-03/CPU-04 acts as a slave, you cannot use the inter-CPU or random access communication, because of the MELSEC specifications.

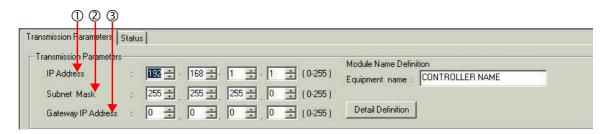
In addition, use the message receive function (MSG-RCV) when communicating with multiple remote devices.

# ■ Setting Example

The following figure illustrates one example of writing the contents of the data register (D00201 to D00300) of MELSEC Q series (master) into the CPU-03/CPU-04 (slave) holding register (MW00000 to MW00099).




The setup procedure is explained in the following pages.

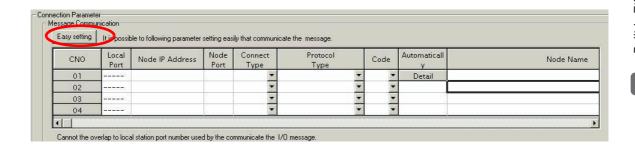

# (1) How to Set up the CPU-03/CPU-04 Side

If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

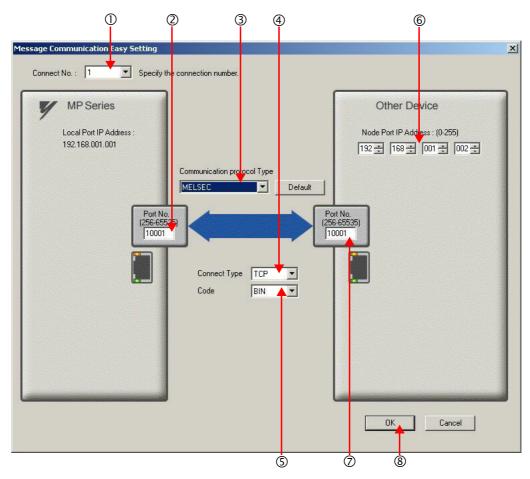
1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.



Set transmission parameters.




- How to set up transmission parameters
  - ① Set **IP Address** ("192.168.001.001," for example).
  - ② Set Subnet Mask ("255.255.255.000," for example).
  - 3 Set Gateway IP Address ("000.000.000," for example).


#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

**3.** Click the **Easy Setting** Button in the **Message Communication** Area of the connection parameter setting.





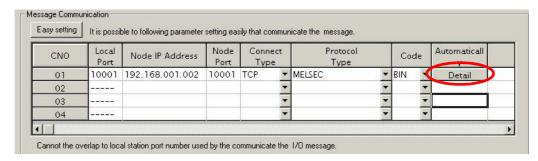


#### How to set up in the Message Communication Easy Setting Dialog Box

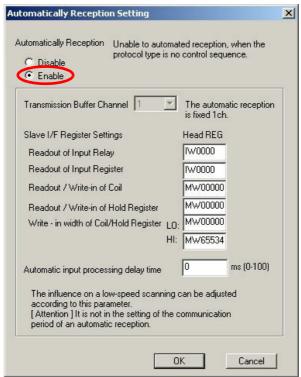
- ① When automatic receive function is used, select "1" for the Connect No.
- ② Set Port No. of the CPU-03/CPU-04 side ("10001," for example).
- 3 Select MELSEC for Communication protocol Type, and click the Default Button.
- Select Connect Type (TCP, for example).
- ⑤ Select Code (BIN, for example).
- © Set **Node port IP Address** of the other device (MELSEC Q series) to be connected ("192.168.001.002," for example).
- ② Set **Port No.** of the other device (MELSEC Q series) to be connected ("10001," for example).
- ® Click OK.

#### ■ Caution

When message functions (MSG-SND, MSG-RCV) are used with the connection number 01, disable the automatic receive function. If message functions are used while the automatic receive function is enabled, the communications will not function properly.


Note: The automatic receive function with a connection number 01 is set to "Enable" by default.

#### **5.** Click **Yes** in the parameter setting confirmation dialog box.


#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation dialog, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Dialog Box.

6. Check the setting value and click the **Detail** Button in the **Automatically** Column.



Select the Enable Option for Automatically Reception in the Automatically Reception Setting Dialog Box and then click the OK Button.



Note: For more information on Slave Side I/F Register Setting and Automatic Receive Process Delay Time, refer to 2.5.6 (4) [b] ■ Automatically Reception Dialog Box for Message Communication.

The automatic receive function is now set up, when the CPU-03/CPU-04 acts as a slave.

#### ■ Caution

When any transmission or connection parameter is changed, the change will be reflected after it has been saved in flash memory and the power supply is turned ON again.

# (2) How to Set up the Remote Device (MELSEC Q series) to Be Connected

This section explains the MELSEC Q series side procedure to set up for connecting the CPU-03/CPU-04 with the MELSEC Q series.

Note: MELSEC Q series are manufactured by Mitsubishi Electric Corporation. Contact Mitsubishi Electric Corporation for more information.

- 1. Start up GX Developer.
- 2. Create a new project.
- 3. Set up network parameters (MELSECNET/Ethernet).

Table 6.22 Network Parameter Setting (example)

| Setting Item    | Setting Details |
|-----------------|-----------------|
| Network Type    | Ethernet        |
| Start I/O No.   | Any             |
| Network No.     | Any             |
| Group No.       | Any             |
| Exchange Number | Any             |
| Mode            | Online          |

# 4. Set up Ethernet operation.

Table 6.23 Ethernet Operation Setting (example)

| Setting Item                       | Setting Details           |
|------------------------------------|---------------------------|
| Communication Data Code<br>Setting | Binary code communication |
| Initial Timing Setting             | Any                       |
| IP Address                         | 192.168.1.2               |
| Transmit Frame Setting             | Ethernet (V2.0)           |
| TCP Alive Check Setting            | Any                       |
| Permit Writing during RUN          | Permitted                 |

#### **5.** Set the open setting.

Table 6.24 Open Setting (example)

| Setting Item                               | Setting Details (connection number=1) |
|--------------------------------------------|---------------------------------------|
| Protocol                                   | TCP                                   |
| Open System                                | Active                                |
| Fixed Buffer                               | Transmit                              |
| Procedure to Communicate with Fixed Buffer | With procedure                        |
| Pairing Open                               | Any                                   |
| Check Alive                                | Any                                   |
| Local Port Number                          | 2711H (10001)                         |
| Remote IP Address for Communication        | 192.168.1.1                           |
| Remote Port Number for Update              | 2711H (10001)                         |

#### ■ Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

#### ■ Complement

Set up an initial setting and a router relay parameter below, if needed:

- · Initial setting
  - Set a timer relevant configuration when TCP is selected as a protocol. In most cases, accept the default.
  - Set up if changes such as a shortened a TCP retransmit timer are required.
- · Router relay parameter
  - Set up when you use a subnet mask pattern or default gateway.
- **6.** Create a ladder program for communication.
- Procedure overview to communicate using a ladder program
  - ① Use an OPEN command to establish a connection with the remote device.
  - ② Use a BUFSND command to write the register content configured by parameters below to the CPU-03/CPU-04 holding register (M register).

Setting example: When the BUFSND command is used to set the device start number for storing the transmit data to "D00200"

D00200 (transmit data length):100W

D00201 to D00300 (transmit data): Written into MW00000 to MW00099

③ If necessary, use a CLOSE command to close the operation.

Note: Contact Mitsubishi Electric Corporation for more information on the ladder program.

The setting is finished for now. If necessary, transfer the settings to the PLC after setting all parameters.

#### (3) How to Start Communication

1. The CPU-03/CPU-04 side starts to receive the messages.

When an automatic receive function is used, the message receive operation starts automatically, so you are not required to do anything.

2. Send an OPEN command from the MELSEC Q series side to establish a connection with the CPU-03/CPU-04, and use a BUFSND command to transmit messages.

When messages are transmitted from the MELSEC Q series, communication with the CPU-03/CPU-04 will start.

# 6.4.2 When the CPU-03/CPU-04 Acts as Master (I/O message communication function is used)

This section explains how to carry out the communications between CPU and the MELSEC Q series using the CPU-03/CPU-04 I/O message communication function.

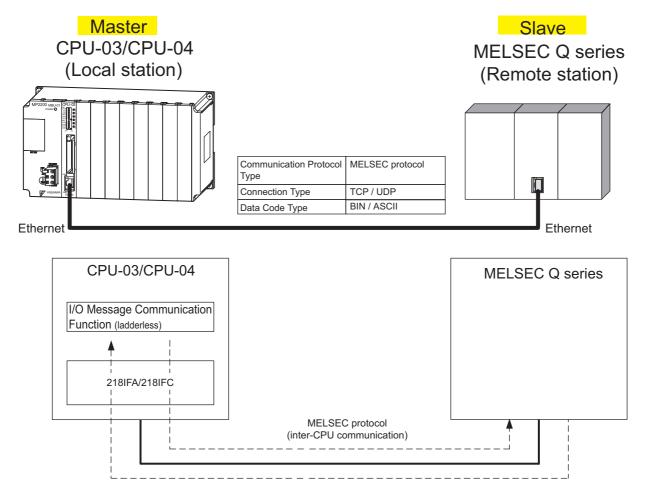


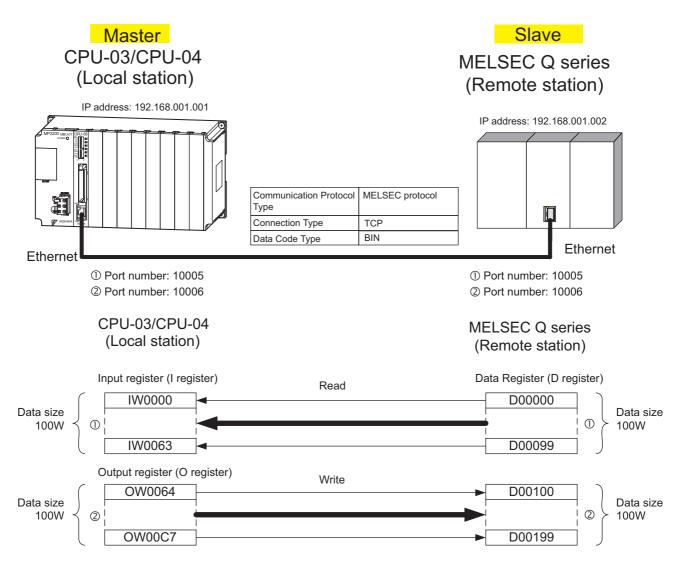

Fig. 6.13 Message Flow with MELSEC Q series when I/O Message Communication Function Is Used

#### ■ Caution

I/O message communication is 1:1 communication.

In addition, you can read and write the registers below using inter-CPU communication when "Communication Protocol Type: MELSEC" is used in the communication with the MELSEC series.

- Bit device register ---- X, Y (read only), M, B
- Word device register - D, W, R

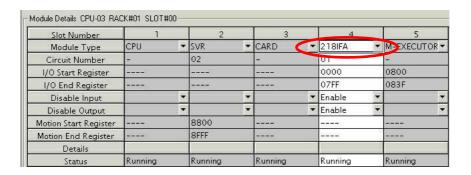

A bit device register reads or writes on a per-word (16 bit) basis.

When communicating with multiple remote devices.

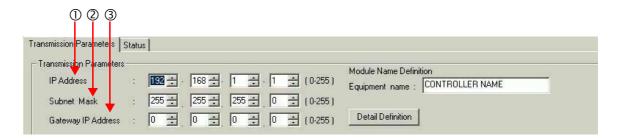
To carry out a fixed buffer/random access buffer communication when reading/writing registers other than those mentioned above, use the message send function (MSG-SND).

## Setting Example

The following figure illustrates one example of reading the content of the data register (D00000 to D00099) of the MELSEC Q series (slave) into an input register (IW0000 to IW0063) of the CPU-03/CPU-04 (master) and writing the content of an output register (OW0064 to OW00C7) of the CPU-03/CPU-04 (master) in a data register (D00100 to D00199) of the MELSEC Q series (slave).



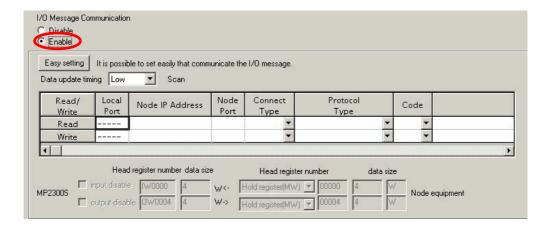

The setup procedure is explained in the following pages.


## (1) How to Set up the CPU-03/CPU-04 Side

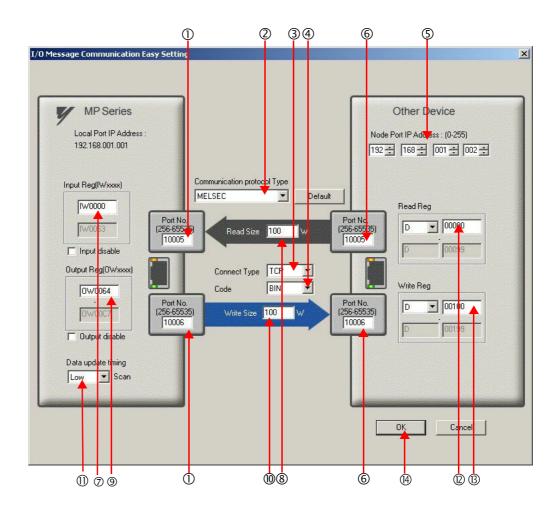
If the setting of transmission parameters (IP address, subnet mask) is already completed, start from step 3.

1. Double-click the 218IFA Tab (218IFC Tab for the CPU-04) in the Module Details Area in the CPU-03 Module Configuration Window.




Set transmission parameters.




- How to set up transmission parameters
  - ① Set **IP Address** ("192.168.001.001," for example).
  - ② Set **Subnet Mask** ("255.255.255.000," for example).
  - 3 Set Gateway IP Address ("000.000.000," for example).
- Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

Select the Enable Option in the I/O Message Communication of the connection parameter setting.



#### 4. Set-up a communication settings in the I/O Message Communication Easy Setting Dialog Box.



#### ■ How to set up in the I/O Message Communication Easy Setting Dialog Box

- ① Set **Port No.** of the CPU-03/CPU-04 side ("10005, 10006," for example).
- ② Select MELSEC for Communication protocol Type, and click the Default Button.

#### ■ Caution

When the communication protocol is MELSEC, the default register type for the read/write is "Word Device Register: D."

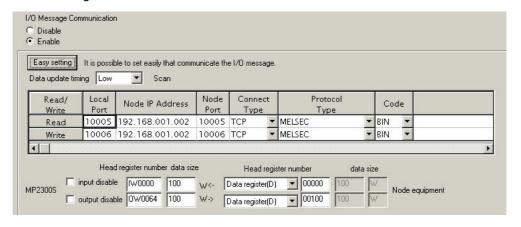
- 3 Select Connect Type (TCP, for example).
- Select Code (BIN, for example).
- ⑤ Set **Node Port IP Address** of the other device (MELSEC Q series) to be connected ("192.168.001.002," for example).
- © Set **Port No.** of the other device (MELSEC Q series) to be connected ("10005, 10006," for example).

#### ■ Caution

In I/O message communications, since a message is transmitted from each port number for register read/write, a connected remote device needs the two receive connections for receiving messages.

- ② Set a storage area (Input Reg) for data read by the CPU-03/CPU-04 (IW0000, for example).
- ® Set **Read Size** of data to be read by the CPU-03/CPU-04 ("100" W, for example).
- (Output Reg.) for data written by CPU-03/CPU-04 (OW0064, for example).
- ® Set Write Size of data written by the CPU-03/CPU-04 ("100" W, for example).
- ① Set an I/O data update timing (**Data update timing**) for the CPU and built-in Ethernet ("Low" scan, for example).

#### ■ Data Update Timing


Data update timing indicates when to give and receive data between the CPU and built-in Ethernet. Communication with the remote device is carried out asynchronously, so note that a message is not necessarily transmitted to the remote device at each data update timing.

- © Set the register type and start address (**Read Reg**) of the remote device (MELSEC Q series) read by the CPU-03/CPU-04 ("D00000," for example).
- <sup>®</sup> Set the register type and start address (**Write Reg**) of the remote device (MELSEC Q series) written by the CPU-03/CPU-04 ("D00100," for example).
- (4) Click OK.
- 5. Click Yes in the parameter setting confirmation dialog box.

#### ■ Caution

Note that when a parameter with the same connection number is already set and you click **Yes** in the parameter setting confirmation dialog, the setting will be overwritten by the parameter configured in the **Message Communication Easy Setting** Window.

## **6.** Check the setting values.



The I/O message communication is now set up, when the CPU-03/CPU-04 acts as a master.

#### Caution

When any transmission or connection parameter is changed, the change will be reflected after FLASH has been saved and the power supply is turned ON again.

## (2) How to Set up the Remote Device (MELSEC Q series) to Be Connected

This section explains the MELSEC Q series side procedure to set up for connecting the CPU-03/CPU-04 with the MELSEC Q series.

Note: MELSEC Q series are products manufactured by Mitsubishi Electric Corporation. Contact Mitsubishi Electric Corporation for more information.

- 1. Start up GX Developer.
- 2. Create a new project.
- 3. Set up network parameters (MELSECNET/Ethernet).

Table 6.25 Network Parameter Setting (example)

| Setting Item    | Setting Details |  |  |
|-----------------|-----------------|--|--|
| Network Type    | Ethernet        |  |  |
| Start I/O No.   | Any             |  |  |
| Network No.     | Any             |  |  |
| Group No.       | Any             |  |  |
| Exchange Number | Any             |  |  |
| Mode            | Online          |  |  |

#### Set up Ethernet operation.

Table 6.26 Ethernet Operation Setting (example)

| Setting Item                    | Setting Details           |
|---------------------------------|---------------------------|
| Communication Data Code Setting | Binary mode communication |
| Initial Timing Setting          | Always waiting OPEN       |
| IP Address                      | 192.168.1.2               |
| Transmit Frame Setting          | Ethernet (V2.0)           |
| TCP Alive Check Setting         | Any                       |
| Permit Writing during RUN       | Permitted                 |

## **5.** Set the open setting.

Table 6.27 Open Setting (example)

| Setting Item                               | Setting Details (connection number=1) | Setting Details (connection number=2) |
|--------------------------------------------|---------------------------------------|---------------------------------------|
| Protocol                                   | TCP                                   | TCP                                   |
| Open System                                | Fullpassive                           | Fullpassive                           |
| Fixed Buffer                               | Any                                   | Any                                   |
| Procedure to Communicate with Fixed Buffer | Any                                   | Any                                   |
| Pairing Open                               | Any                                   | Any                                   |
| Check Alive                                | Any                                   | Any                                   |
| Local Port Number                          | 2715H (10005)                         | 2716H (10006)                         |
| Remote IP Address for Communication        | 192.168.1.1                           | 192.168.1.1                           |
| Remote Port Number for Update              | 2715H (10005)                         | 2716H (10006)                         |

#### Caution

Set up a unique IP address in the network. For the IP address, check with your network administrator.

The setting is finished for now. If necessary, transfer the settings to the PLC after setting all parameters.

#### ■ Complement

Set up an initial setting and a router relay parameter below, if needed:

- · Initial setting
  - Set a timer relevant configuration when TCP is selected as a protocol. In most cases, accept the default.
- Set up if changes such as a shortened TCP retransmit timer are required.
- · Router relay parameter
  - Set up when you use a subnet mask pattern or default gateway.

## (3) How to Start Communication

1. The MELSEC Q series starts to receive messages.

The message receive operation starts automatically, so you are not required to do anything.

2. The CPU-03/CPU-04 side transmits messages.

When an I/O message communication function is used, the message transmit operation starts automatically, so you are not required to do anything.

# Easy Programming (Supported by the CPU-03 and CPU-04)

This chapter explains easy programming using the M-EXECUTOR Module (motion program executor) functions.

| 7.1 System Startup Overview                                   | 7-2  |
|---------------------------------------------------------------|------|
| 7.2 Preparation (step 1)                                      | 7-3  |
| 7.2.1 Wiring                                                  | 7-3  |
| 7.2.2 Self Configuration                                      | 7-5  |
| 7.2.3 Test Operation                                          | 7-6  |
| 7.3 Programming (step 2)                                      | 7-9  |
| 7.3.1 Initializing the M-EXECUTOR Module                      | 7-9  |
| 7.3.2 Programming Procedure                                   | 7-12 |
| 7.4 Executing Motion (step 3)                                 | 7-14 |
| 7.4.1 Registering Program Execution                           | 7-14 |
| 7.4.2 Starting a Motion Program Using the Drive Control Panel | 7-16 |
| 7.5 Starting Motion Program from an External Signal           | 7-17 |
| 7.5.1 Overview                                                | 7-17 |
| 7.5.2 Required Equipment                                      | 7-17 |
| 7.5.3 Creation Procedure                                      | 7-19 |

## 7.1 System Startup Overview

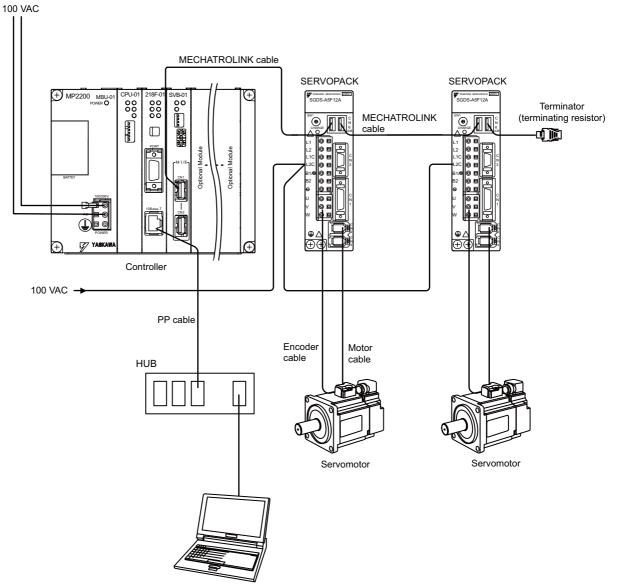
The start-up procedure for a model system is as follows. For detailed information of each step, refer to the cited references.

This chapter explains a procedure where you can easily run and check a program without external signals.

The motion program created here is simple and has only three lines to move two axes 150,000 pulses from the current position and stop them.

| INC; | Specify an incremental mode                              |
|------|----------------------------------------------------------|
| MOV  | [A1]150000, [B1]150000; Position two-axes 150,000 pulses |
| END; |                                                          |




## 7.2 Preparation (step 1)

This section explains the steps of "wiring," "self-configuration," and "test operation" for starting up the model system.

## 7.2.1 Wiring

We use the following layout model to explain the startup of the model system. Prepare each device listed on the next page and connect them as shown in the figure below.

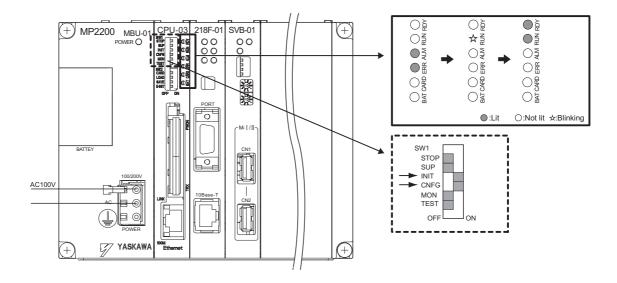
## (1) System Layout Model



## 7.2.1 Wiring

## [a] Required Equipment

|                    | Product Name                                              | Model                              | Q'ty |
|--------------------|-----------------------------------------------------------|------------------------------------|------|
|                    | Base Unit with AC power supply                            | JEPMC-BU2200                       | 1    |
| MP2200             | CPU-03 Module (or CPU-04 Module)                          | JAPMC-CP2220-E (or JAPMC-CP2230-E) | 1    |
|                    | SVB-01 Module                                             | JAPMC-MC2310                       | 1    |
| MECHATR            | OLINK cable (0.5m)                                        | JEPMC-W6002-A5                     | 2    |
| Terminator         | (terminating resistor)                                    | JEPMC-W6022                        | 2    |
| Σ-III SERVOPACK    |                                                           | SGDS-A5F12A                        | 2    |
| Σ-III servomotor   |                                                           | SGMAS-A5A2A21                      | 2    |
| Motor cable        | e (3m)                                                    | JZSP-CSM01-03                      | 2    |
| Encoder cable (3m) |                                                           | cable (3m) JZSP-CSP05-03           |      |
| HUB (comr          | ommercialized product) LSW-TX-8EP                         |                                    | 1    |
| MPE720 V           | 20 Ver.6 CPMC-MPE770                                      |                                    | 1    |
| LAN cable          | e (for Ethernet connection) Commercialized straight cable |                                    | 2    |
| Personal co        | omputer                                                   | Commercialized product             | 1    |


#### ■ Caution

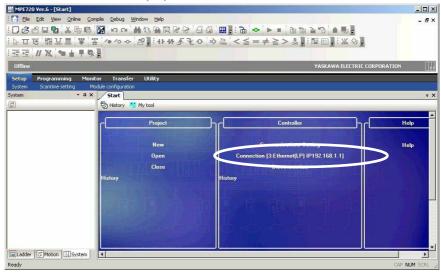
- Install MPE720 Ver.6 in the personal computer before starting step 1. For information on its installation, refer to *Engineering Tool for MP2000 Series MPE720 Version 6 User's Manual* (manual no.: SIEP C880700 30).
- Set the PC Ethernet port in advance. For the procedure to set up communication, refer to the *Engineering Tool for MP2000 Series MPE720 Version 6 User's Manual* (manual no.: SIEP C880700 30).
- The SERVOPACK station number (SW1) is set to 1 and 2.
- In a 1:1 connection without HUB, use a cross cable as a LAN cable.

## 7.2.2 Self Configuration

Run the self configuration to automatically recognize devices connected to the MECHATROLINK connector. Steps for self configuration are as follows.

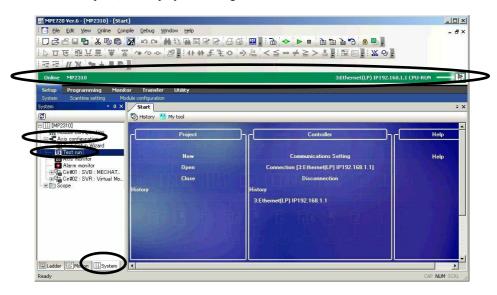
- **1.** Check that the  $\Sigma$ -III SERVOPACK power supply is ON.
- 2. Turn OFF the 100-VAC power supply to the MP2200.
- 3. Set the INIT and CNFG pins on the DIP switch (SW1) to ON on the MP2200.
- **4.** Turn ON the 100-VAC power supply to the MP2200, and confirm that the indicators change as follows:



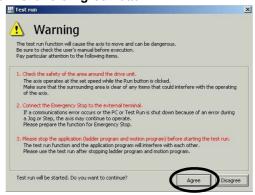

- **5.** Self configuration is complete, and MECHATROLINK slave device information has been written to a definition information file.
- **6.** Set the INIT and CNFG pins on the DIP switch (SW1) to OFF on the MP2200.

## 7.2.3 Test Operation

Confirm that the machine controller can command axis servo ON/OFF and jog operation.

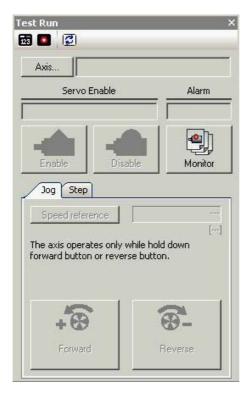

## (1) Starting and Connecting MPE720 Ver.6

Launch MPE720Ver.6 and click "3:Ethernet(LP)192.168.1.1" to connect to the controller.

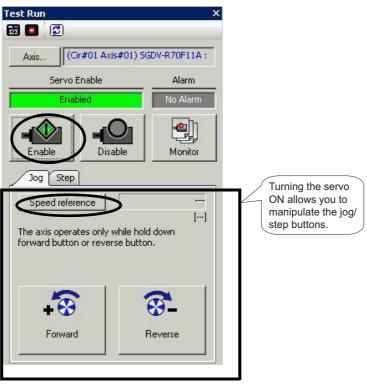



## (2) Operating Manually in the Test Operation Window

When the connection is complete, the display will change from offline to online.




1. Click **System** in the subwindow and double-click **Axis configuration - Test run** to display a warning dialog a box for the test run. Click the **Agree** Button.

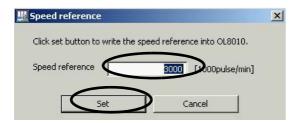


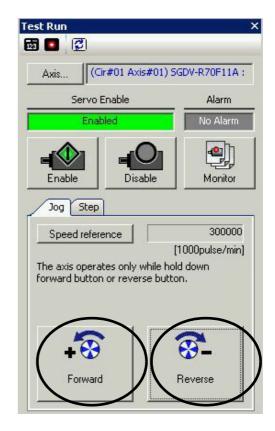

#### 2. Axis Selection and Servo ON

Set an axis number in the Axis Window and click the Enable (Servo ON) Button in the Test Run Window.









## 7.2.3 Test Operation

## 3. Jog Operation

Click the **Speed reference** Icon and set a speed reference value, and check that the axis rotates normally while the **Forward** Button or **Reverse** Button is pressed.

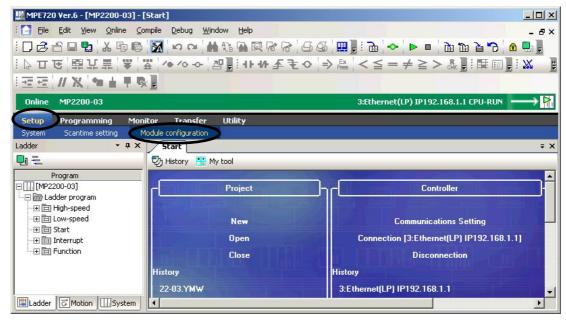
Speed reference



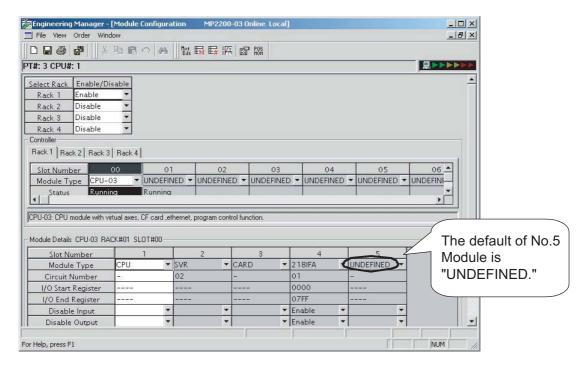


The operation check of the first axis is complete.

Press the Axis ... Button to change to "Axis #02" in the Axis Window, and perform the steps 1 to 3 above.


## 7.3 Programming (step 2)

This section describes the procedure of initializing the M-EXECUTOR Module and the procedure from creating to saving a motion program.


## 7.3.1 Initializing the M-EXECUTOR Module

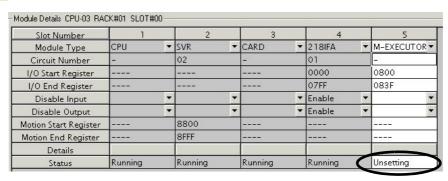
The M-EXECUTOR Module is disabled (UNDEFINED) with the default settings. Initialize the M-EXECUTOR Module to enable it by performing the following procedure.

1. Double-click **Module configuration** Tab from the **Setup** Menu. The **Module Configuration** Window will appear.

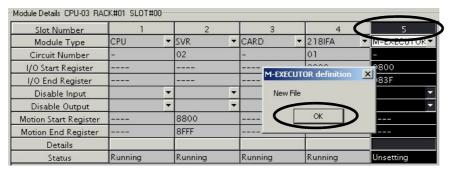







7.3.1 Initializing the M-EXECUTOR Module

2. Allocate M-EXECUTOR to No.5 cell in the Module Details Area.


| Slot Number           | 1            |     | 2       |     | 3       |   | 4       |       | 5          |
|-----------------------|--------------|-----|---------|-----|---------|---|---------|-------|------------|
| Module Type           | CPU          | •   | SVR     | •   | CARD    | • | 218IFA  | 6     | M-EXECUTOR |
| Circuit Number        | <del>-</del> |     | 02      |     | -       |   | 01      |       |            |
| I/O Start Register    |              |     |         |     |         |   | 0000    |       | 0800       |
| I/O End Register      |              | 100 |         |     |         |   | 07FF    |       | 083F       |
| Disable Input         |              | 7   |         | ₹   | 2       | · | Enable  | ~     |            |
| Disable Output        |              | •   |         | •   |         | • | Enable  | •     |            |
| Motion Start Register |              | 700 | 8800    | 101 |         |   |         | - 77- |            |
| Motion End Register   |              |     | 8FFF    |     |         |   |         |       |            |
| Details               |              |     |         |     |         |   |         |       |            |
| Status                | Running      |     | Running |     | Running |   | Running |       |            |

Click Save Icon to save the module configuration definition. Check the status of No.5 cell becomes Unsetting.





4. Double-click No.5 cell, then the M-EXECUTOR definition Dialog Box will appear. Click OK Button.



MP2200-03 Online Local] \_ | X \_B × お自己の Test Em Em IA IA POS PT#: 3 CPU#: 1 RACK#01 Slot #00 0800-083F M-EXECUTOR(List) 8 Individual display Program definition number • Program definition | Allocation Control register | Program Setting Execution monitor register(S register) Execution type Direct 1 1 1 1 1 1 1 1 2

5. The following window will appear. Click Save Icon to save the M-EXECUTOR (List) Window.

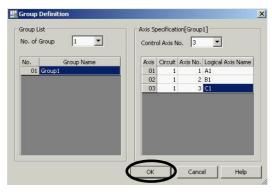
This completes the initialization.

For Help, press F1

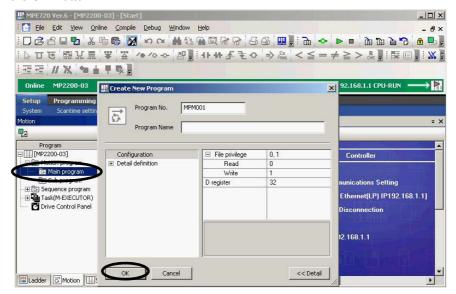
6. Return to Module Configuration Window. Check the status of No.5 cell changes from Unsetting to Running.

| Slot Number           | 1            | 2       | 3       | 4        | 5            |
|-----------------------|--------------|---------|---------|----------|--------------|
| Module Type           | CPU <b>▼</b> | SVR ▼   | CARD ▼  | 218IFA ▼ | M-EXECUTOR ▼ |
| Circuit Number        | 7            | 02      | -       | 01       | -            |
| I/O Start Register    |              |         |         | 0000     | 0800         |
| I/O End Register      | 2022         |         |         | 07FF     | 083F         |
| Disable Input         | •            |         | -       | Enable 🔻 | _            |
| Disable Output        | •            | -       | ·       | Enable 🔻 | -            |
| Motion Start Register |              | 8800    |         |          |              |
| Motion End Register   |              | 8FFF    |         |          |              |
| Details               |              |         |         |          |              |
| Status                | Running      | Running | Running | Running  | Running      |

This enables the M-EXECUTOR function.

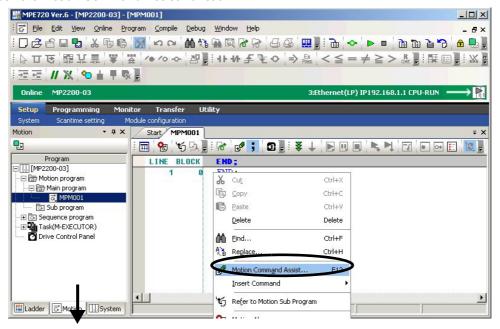

## 7.3.2 Programming Procedure

1. Click the Motion Tab in the subwindow.

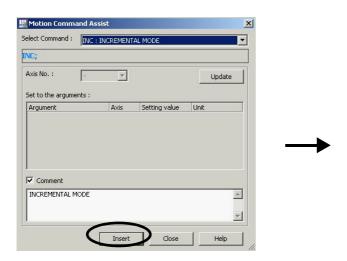



2. The motion program subwindow will appears.

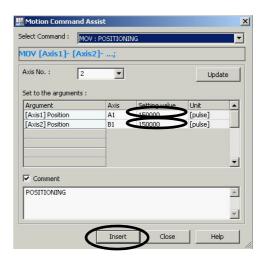
When you double-click **Motion program** and there is not any group definition, the **Group Definition** Dialog Box will be shown. For this setting example, you do not need to change it, so accept the default setting and click the **OK** Button. Note that if a group definition already exists, the **Group Definition** Dialog Box screen will not be shown.




**3.** Right-click **Main program** and select **Create New** to display the **Create New Program** Dialog Box. Then click the **OK** Button.




Use the Motion Command Assist function to insert INC and MOV commands into the motion program. The Motion Command Assist function is made accessible by right-clicking the mouse on the **Motion Editor** Window.


Call the Motion Command Assist Function



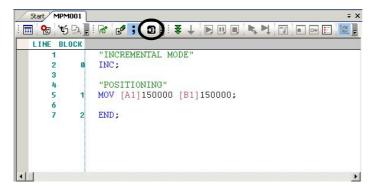
· Insert an INC Command



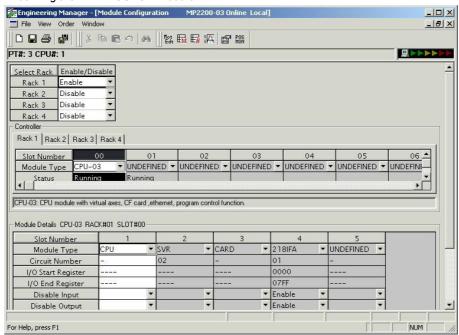
Insert a MOV Command



Click the save icon to save the motion program.




## 7.4 Executing Motion (step 3)


## 7.4.1 Registering Program Execution

1. Click the Execution Registration Icon.



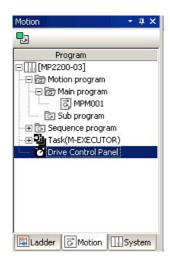


- Note: 1. This program assumes that the servo has been turned ON using step 2 (Axis Selection and Servo ON) of 7.2.3 (2) Operating Manually in the Test Operation Window.
  - 2. If the following window appears after this operation, allocate the M-EXECUTOR. Refer to 7.3.1 Initializing the M-EXECUTOR Module.

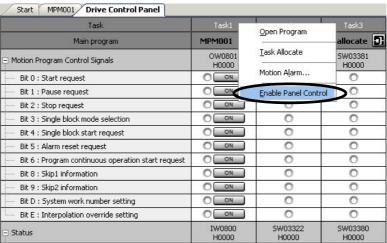


The Program Execution Registry Screen Dialog Box will appear.

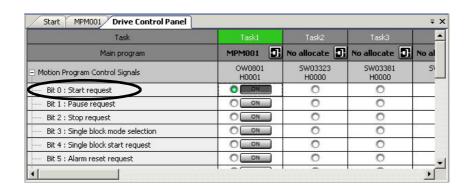



Select **Program No.** and click the **Set** Button to save the registered contents.




7.4.2 Starting a Motion Program Using the Drive Control Panel

## 7.4.2 Starting a Motion Program Using the Drive Control Panel


1. Double-click the **Drive Control Panel** Icon.

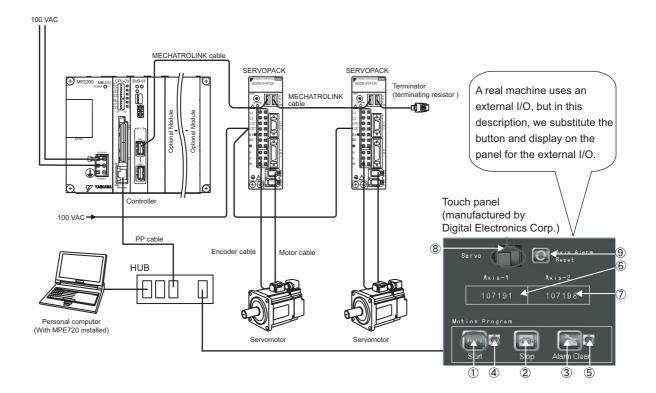


2. Right-click **Task1** in the dialog box that appears, and then select **Enable Panel Control** from the popup menu.



3. Click the ON Button for Start request. The MPM001 motion program will be executed.




#### ■ Caution

- This chapter explains the simple procedure where you can easily run and check a program without external signals. In practice, you need to connect to external signals and create a sequence.
- Registering a program execution enables the M-EXECUTOR definition. The MP2200 automatically controls the motion program, so be aware that changing registers registered in ladder and sequence programs may cause problems.

## 7.5 Starting Motion Program from an External Signal

## 7.5.1 Overview

This section explains how to start a motion program created in 7.3 *Programming (step 2)* from external signals. Note that in this section, we show an example which substitutes a touch panel for the external signal.



## 7.5.2 Required Equipment

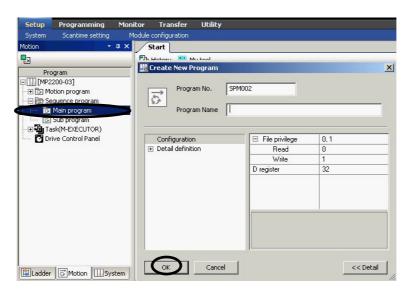
| Produc                       | t Name                              | Model                              | Q'ty |
|------------------------------|-------------------------------------|------------------------------------|------|
|                              | Base Unit with AC power supply      | JEPMC-BU2200                       | 1    |
| MP2200                       | CPU-03 Module<br>(or CPU-04 Module) | JAPMC-CP2220-E (or JAPMC-CP2230-E) | 1    |
|                              | SVB-01 Module                       | JAPMC-MC2310                       | 1    |
| MECHATROLINK cable (0.5      | 5 m)                                | JEPMC-W6002-A5                     | 2    |
| Terminator (terminating resi | stor)                               | JEPMC-W6022                        | 2    |
| Σ-III SERVOPACK              |                                     | SGDS-A5F12A                        | 2    |
| Σ-III servomotor             |                                     | SGMAS-A5A2A21                      | 2    |
| Motor cable (3 m)            |                                     | JZSP-CSM01-03                      | 2    |
| Encoder cable (3 m)          |                                     | JZSP-CSP05-03                      | 2    |
| Touch panel (manufactured    | by Digital Electronics Corp.)       | AGP3300-T1-D24                     | 1    |
| HUB (commercial product)     |                                     | LSW-TX-8EP                         | 1    |
| MPE720 Ver.6                 |                                     | CPMC-MPE770                        | 1    |
| LAN cable (for Ethernet cor  | nnection)                           | Commercial straight cable          | 3    |
| Personal computer            |                                     | Commercial product                 | 1    |

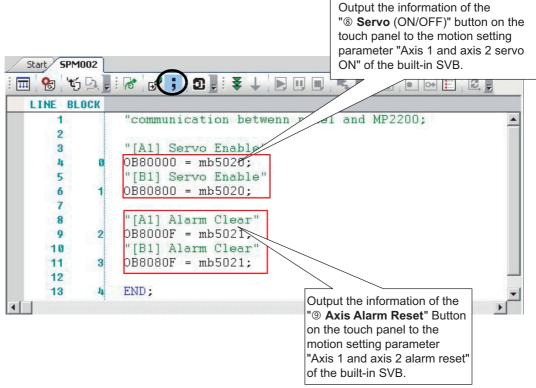
## 7.5.2 Required Equipment

Mapping of the panel manufactured by Digital Electronics Corp.

| No. | Name                      | Mapping | Category          | Category Description                                |                  |  |
|-----|---------------------------|---------|-------------------|-----------------------------------------------------|------------------|--|
| 1   | Start                     | MB5000  | Control signal    | Starts up a motion program                          |                  |  |
| 2   | Stop                      | MB5002  | Control signal    | Displays the running of a motion program            |                  |  |
| 3   | Clear Alarm               | MB5005  | Control signal    | Stops a motion program                              | Sets in M-       |  |
| 4   | Running Program MB5010    |         | Status            | Clears an alarm of a motion program                 | EXECUTOR         |  |
| (5) | Alarm                     | MB5018  | Status            | Indicates an alarm is occurring in a motion program |                  |  |
| 6   | Axis 1 (current position) | IL8016  | Monitor parameter | Displays current axis 1 position                    | Automatic        |  |
| 7   | Axis 2 (current position) | IL8096  | Monitor parameter | Displays current axis 2 position                    | receive function |  |
| 8   | Servo (ON/OFF)            | MB5020  | External signal   | Axis 1, axis 2 servo ON signal                      | Sequence pro-    |  |
| 9   | Reset Axis Alarm          | MB5021  | External signal   | Axis 1, axis 2 alarm reset signal                   | gram is needed   |  |

Note: 1. You do not need to create a program for signals and data in  ${\mathbb O}$  to  ${\mathbb O}$ .


- 2. You need to create a sequence program for outputting signals of ® and 9 to the motion parameters.
- 3. For information on creating a program for the panel side, refer to 6.3.1 When CPU-03/CPU-04 Acts as Slave (automatic receive function is used).


#### 7.5.3 Creation Procedure

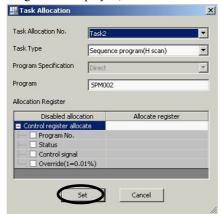
## 1. Creating a Sequence Program

Now create a sequence program which copies the M register content mapped to "® **Servo** (ON/OFF)" and "® **Axis Alarm Reset**" Buttons on the touch panel to the relevant registers in the motion setting parameter of the built-in SVB.

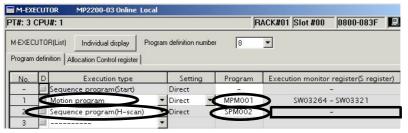
Follow a procedure similar to creating a motion program from the motion program subwindow.





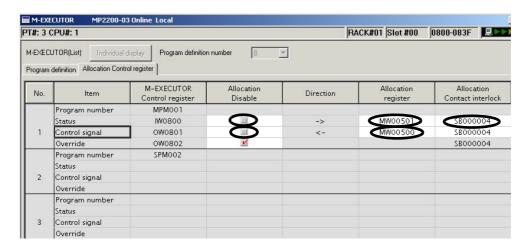

Click the Execution Registration Icon.

3


## 7.5.3 Creation Procedure

## 2. Registering Program Execution

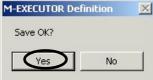
• When the Task Allocation Dialog Box is displayed, click the Set Button to register execution of SPM002.




• Refer to 2.5.7 M-EXECUTOR Module (Motion Program Executor).



• In the **Allocation Control register** Tab Page, map the M registers allocated to control signals (① **Start** / ② **Stop** / ③ **Alarm Clear**) and status (④ **Running Program** / ⑤ **Alarm**) on the touch panel as an M-EXECUTOR allocation register for the motion program created in 7.3 *Programming (step 2)*.


Status=MW00501, control signal=MW00500, allocation contact interlock =SB00004

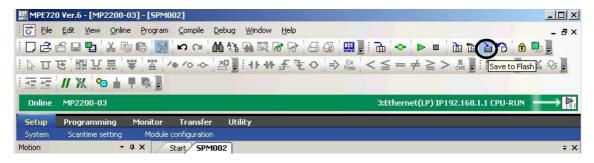


• Click the **Save** Icon to save the M-EXECUTOR definition.





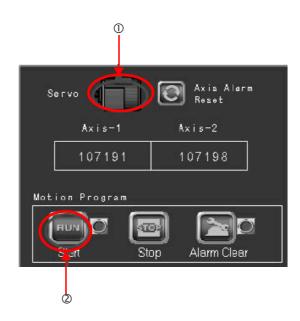



## 3. Communication Setting with Touch Panel

Refer to 6.3.1 When CPU-03/CPU-04 Acts as Slave (automatic receive function is used) (automatic receive function is used) for the setting procedure for the touch panel.

## 4. FLASH Save

When all settings are completed, click the FLASH Save Icon to save the data to the flash memory.






## 5. Operation Check

Turn ON MP2200 power again and press "① Servo" and "② Start" on the panel window.

Then check that the motion program starts and the motors of two axes begins to operate to change the current positions of two axes.



# Maintenance, Inspection, and Troubleshooting

This chapter explains daily and regular inspection items to ensure that the MP2200 can always be used at its best conditions.

| 8.1 Inspection Items                                    | 8-2  |
|---------------------------------------------------------|------|
| 8.1.1 Daily Inspections                                 | 8-2  |
| 8.1.2 Regular Inspections                               | 8-3  |
| 8.1.3 Replacing the Basic Unit Battery                  | 8-4  |
| 8.2 Troubleshooting                                     | 8-5  |
| 8.2.1 Basic Flow of Troubleshooting                     | 8-5  |
| 8.2.2 Error Check Flowchart                             | 8-6  |
| 8.2.3 LED Indicators                                    | 8-6  |
| 8.2.4 Troubleshooting System Errors                     | 8-8  |
| 8.2.5 Motion Program Alarms                             | 8-28 |
| 8.2.6 List of Causes for Command Error Completed Status | 8-32 |
| 8.2.7 Troubleshooting Motion Errors                     | 8-35 |

## 8.1 Inspection Items

This section summarizes daily and regular inspection items that must be performed by the customer.

## 8.1.1 Daily Inspections

The following table lists the daily inspection items.

| No. | Inspect                                 | ion Item | Inspection Details                                                                  | Criteria                                                                                 | Action                              |
|-----|-----------------------------------------|----------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------|
| 1   | Installation conditions of Module, etc. |          | Check the mounting screws for looseness. Check whether the covers are all in place. | The screws and covers must be secured correctly.                                         | Retighten the screws.               |
|     | Connection conditions                   |          | Check the terminal screws for looseness.                                            | The screws must be tight.                                                                | Retighten the screws.               |
| 2   |                                         |          | ection conditions  Check the connectors for looseness.  The connectors              |                                                                                          | Retighten the connector set screws. |
|     |                                         |          | Check the gap between crimp terminals.                                              | There must be an appropriate gap between the terminals.                                  | Correct as necessary.               |
|     | POWE                                    |          | Check whether the indicator is lit.                                                 | The indicator must be lit. (It is abnormal if the indicator is not lit.)                 |                                     |
|     | LED<br>Indicators                       | RDY      | Check whether the indicator is lit.                                                 | The indicator must be lit. (It is abnormal if the indicator is not lit.)                 |                                     |
| 3   |                                         | RUN      | Check whether the indicator is lit while the system is in RUN state.                | The indicator must be lit. (It is abnormal if the indicator is not lit.)                 | Refer to 8.2 Troubleshooting.       |
| 3   |                                         | ERR      | Check whether the indicator is not lit.                                             | The indicator must be not lit. (It is abnormal if the indicator is lit.)                 |                                     |
|     |                                         | ALM      | Check whether the indicator is not lit.                                             | The indicator must be not lit. (It is abnormal if the indicator is lit.)                 |                                     |
|     | BAT                                     |          | Check whether the indicator is not lit.                                             | The indicator must not be lit. (The battery voltage is too low if the indicator is lit.) | Replace the battery.                |

<sup>\*</sup> Supported by the MBU-01 and MBU-02.

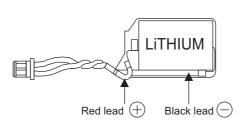
## 8.1.2 Regular Inspections

This section explains inspection items that must be performed once or twice every six months to one year. Inspections must also be performed when the equipment is relocated or modified or when the wiring is changed.

# **PROHIBITED**

• Do not replace the built-in fuse.

If the customer replaces the built-in fuse, the MP2200 may malfunction or break down. Contact your Yaskawa representative.


| No. | Inspection Item                     |                                          | Inspection Details                                            | Criteria                                                    | Action                                                |  |
|-----|-------------------------------------|------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|--|
| 1   | Operating<br>Environment            | Ambient Temperature                      | Check the temperature and                                     | 0°C to 55°C                                                 | If the MP2200 is used                                 |  |
|     |                                     | Ambient Humidity                         | humidity with a thermometer                                   | 30% to 95% RH                                               | inside a panel, treat the tem-                        |  |
|     |                                     | Atmosphere                               | and hygrometer, respectively. Check for corrosive gases.      | There must be no corrosive gases.                           | perature inside the panel as the ambient temperature. |  |
| 2   | Power<br>Supply<br>Voltage<br>Check | MBU-01 Unit                              | Measure the voltage across 100/200-VAC terminals              | 85 to 132 VAC /<br>198 to 276 VAC Change the power supply   |                                                       |  |
|     |                                     | MBU-02 and MBU-03<br>Units               | Measure the voltage between 24-VDC terminals.                 | 19.2 to 28.8 VDC                                            | necessary.                                            |  |
|     | Installation<br>Conditions          | Looseness and Excess Play                | Attempt to move the Module.                                   | The Module must be secured properly.                        | Retighten the screws.                                 |  |
| 3   |                                     | Dust and Other For-<br>eign Matter       | Visually check.                                               | The Module must be free from dust and other foreign matter. | Clean.                                                |  |
|     | Connection<br>Conditions            | Check the Terminal Screws for Looseness. | Check by retightening the screws.                             | The screws must be tight.                                   | Retighten.                                            |  |
| 4   |                                     | Gap between Crimp<br>Terminals           | Visually check.                                               | There must be an appropriate gap between the terminals      | Correct.                                              |  |
|     |                                     | Looseness of Connectors                  | Visually check.                                               | The screws must be tight.                                   | Retighten the connector set screws.                   |  |
| 5   | Battery                             |                                          | Check the BAT indicator on the front panel of the Basic Unit. | The BAT indicator must be not lit.                          | If the BAT indicator is lit, replace the battery.     |  |

## 8.1.3 Replacing the Basic Unit Battery

The Basic Unit has one replaceable built-in battery. This battery is used to back up data to prevent the data stored in the memory from being lost when power is interrupted (e.g., when the power supply to the Basic Unit is turned OFF). The built-in battery can retain the contents of the memory until the total time of power interruptions reaches one year. The warranty period of the battery is five years from the date of purchase. These values, however, differ according to

the operating conditions, including the ambient temperature.

If the BAT indicator on the Basic Unit lights, replace the battery with a replacement battery (JZSP-BA01) within two weeks. Any delay in battery replacement will result in the data stored in the memory of the Basic Unit being lost. The appearance of the battery is illustrated below.



#### · Battery Specifications

| Туре             | Primary lithium battery |
|------------------|-------------------------|
| Battery Model    | ER3VC                   |
| Manufacturer     | Toshiba Home Appliances |
| Nominal Voltage  | 3.6 V                   |
| Nominal Capacity | 1,000 mAh               |
| Lithium Contents | 0.3 g                   |
| Number Used      | 1                       |

Fig. 8.1 JZSP-BA01 (Battery with Cable)

Note: This battery is not commercially available. Contact your Yaskawa representative.

#### (1) Procedure

## **A** CAUTION

- Do not allow the battery to be replaced by anyone other than qualified personnel who have received safety training.
  - Improper battery replacement can result in electric shock. It can also cause equipment malfunction, injury to operators, or equipment damage.
- When replacing the battery, always do so with power supplied to the Basic Unit.
   If power to the Basic Unit is turned OFF when the battery is replaced, data stored in the memory in the CPU Module may be lost
- Do not touch the battery terminals when replacing the battery.

  There is a risk of electrostatic discharge failure.
- A lithium battery is built into the Controller. After replacing the battery, dispose of the old battery separate from regular waste and in accordance with local regulations.
- 1. Save the data stored in the Basic Unit to a Compact Flash, hard disk on an external computer, or other media. This data is used to restore any data accidentally lost during battery replacement.

Note: For information on saving methods, refer to the MP900/MP2000 Series MPE720 Software for Programming Device User's Manual (Manual No.: SIEP C880700 05).

- 2. Check that the RDY indicator on the Basic Unit is lit.
- **3.** Open the battery cover on the unit front surface.
- **4.** Remove the connector on the end of lead of the built-in battery from the connector on the Basic Unit. Then, remove the built-in battery from the battery holder.
- **5.** Insert securely the connector on the end of the lead of the replacement battery into the connector on the Basic Unit. Then, insert the replacement battery into the battery holder.
- **6.** Check that the BAT indicator on the Basic Unit is unlit.
- **7.** Close the battery cover. This completes replacing the battery.

## 8.2 Troubleshooting

This section describes the basic troubleshooting methods and provides a list of errors.

## 8.2.1 Basic Flow of Troubleshooting

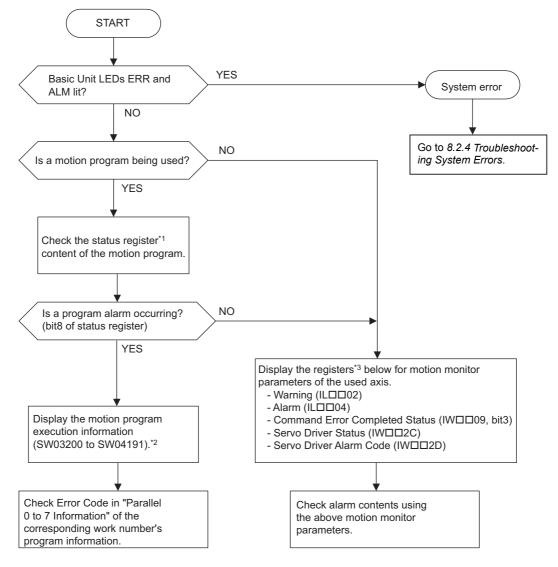
When problems occur, it is important to quickly find the cause of the problems and get the system running again as soon as possible. The basic flow of troubleshooting is illustrated below.

| Step 1 |                                         | Visually confirm the following items. |  |  |  |
|--------|-----------------------------------------|---------------------------------------|--|--|--|
|        | Machine movement (or status if stopped) |                                       |  |  |  |
|        | Power supply                            |                                       |  |  |  |
|        | I/O device status                       |                                       |  |  |  |

- Wiring status
- Indicator status (LED indicators on each Module)
- Switch settings (e.g., DIP switches)
- · Parameter settings and program contents



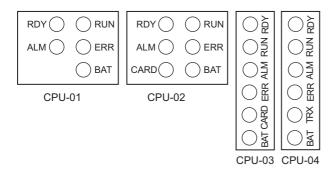
| Step 2                                                          | Monitor the system to see if the problem changes for the following operations. |  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
| Switching the Controller to STOP status                         |                                                                                |  |  |  |
| Resetting alarms     There is a the angular country OFF and ON. |                                                                                |  |  |  |
| <ul> <li>Turning the power supply OFF and ON</li> </ul>         |                                                                                |  |  |  |




| Step 3     | Determine the location of the cause from the results of steps 1 and 2. |  |  |
|------------|------------------------------------------------------------------------|--|--|
| Controller | or external?                                                           |  |  |

- Controller of external:
- Sequence control or motion control?
- Software or hardware?

## 8.2.2 Error Check Flowchart


Find corrective actions for the problem using the following flowchart, if the cause of the problem is thought to be the MP2200 or SERVOPACK.



- \* 1. Refer to 5.2.3 (4) Work Register.
- \* 2. Refer to 5.2.3 ( 6 ) Monitor the Motion Program Execution Information using S register.
- \* 3. Refer to 8.2.6 List of Causes for Command Error Completed Status and 8.2.7 Troubleshooting Motion Errors.

#### 8.2.3 LED Indicators

#### (1) LED Indicators



The status of the LED indicators on the front of the MP2200 Basic Unit can be used to determine the error status and meaning.

The locations in the program that need to be corrected can be determined by using the LED indicator status to determine the general nature of the error, using the contents of system (S) registers to check drawings and function numbers causing the error, and knowing the meaning of operation errors.

## (2) LED Indicator Meanings

The following table shows how to use the LED indicators to determine the operating status of the MP2200, as well as relevant error information when the LED indicator status indicates an error.

| Classification      | LED Indicator |         |          |            |          | Indicator Details                                                                                                                                                                                                                                                                                                                                                                                                                                      | Countermeasures                                                                                                                                            |
|---------------------|---------------|---------|----------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification      | RDY           | RUN     | ALM      | ERR        | BAT      | indicator Details Countermea                                                                                                                                                                                                                                                                                                                                                                                                                           | Countermeasures                                                                                                                                            |
|                     | Not lit       | Not lit | Lit      | Lit        | Not lit  | Hardware reset status                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usually the CPU will start within 10 seconds. If this status continues for                                                                                 |
|                     | Not lit       | Not lit | Not lit  | Not lit    | Not lit  | Initialization                                                                                                                                                                                                                                                                                                                                                                                                                                         | more than 10 seconds, either a program error or hardware failure has occurred. Refer to 8.2.4 Troubleshooting System Errors and correct any system errors. |
| Normal              | Not lit       | Lit     | Not lit  | Not lit    | Not lit  | Drawing A (DWG.A) being executed.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |
| Normal<br>operation | Lit           | Not lit | Not lit  | Not lit    | Not lit  | User program stopped.<br>(Offline Stop Mode)                                                                                                                                                                                                                                                                                                                                                                                                           | This status occurs  • When the stop operation is executed from the MPE720  • When the STOP switch is turned ON                                             |
|                     | T :4          | T :4    | NI-4114  | NI - 4 114 | NI-4 1:4 | User program being executed nor-                                                                                                                                                                                                                                                                                                                                                                                                                       | This status does not indicate an error.                                                                                                                    |
|                     | Lit           | Lit     | Not lit  | Not lit    | Not lit  | mally.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | This is the normal status.                                                                                                                                 |
|                     | Not lit       | Not lit | Not lit  | Lit        | Not lit  | A serious error has occurred.                                                                                                                                                                                                                                                                                                                                                                                                                          | Refer to 8.2.4 (4) Correcting User Program Errors.                                                                                                         |
| Errors              | Not lit       | Not lit | Not lit  | Blinking   | Not lit  | Software Error No. of blinks 3: Address error (read) exception 4: Address error (write) exception 5: FPU exception 6: Illegal general command error 7: Illegal slot command error 8: General FPU inhibited error 9: Slot FPU inhibited error 10: TLB duplicated bit error 11: TLB mistake error (read) 12: TLB mistake error (write) 13: TLB protection violation error (read) 14: TLB protection violation error (write) 15: Initial page write error | A hardware error has occurred. Replace the Module.                                                                                                         |
|                     | Not lit       | Not lit | Blinking | Blinking   | Not lit  | Hardware Error Number of LED blinks indicates error type. 2: RAM diagnostic error 3: ROM diagnostic error 4: CPU function diagnostic error 5: FPU function diagnostic error                                                                                                                                                                                                                                                                            |                                                                                                                                                            |
|                     | 1             | -       | -        | _          | Lit      | Battery alarm                                                                                                                                                                                                                                                                                                                                                                                                                                          | Refer to 8.1.3 Replacing the Basic Unit Battery and replace the Battery.                                                                                   |
| Warnings            | Lit           | Lit     | Lit      | Not lit    | Not lit  | Operation error I/O error                                                                                                                                                                                                                                                                                                                                                                                                                              | Refer to 8.2.4 (5) [c] Ladder Program User Operation Error Status and 8.2.4 (5) [e] System I/O Error Status.                                               |

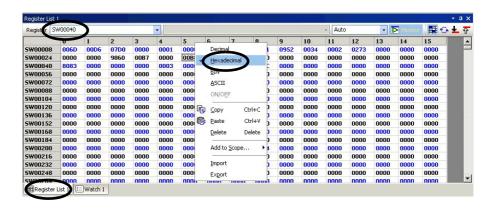
## 8.2.4 Troubleshooting System Errors

The LED indicators on the front of the Basic Unit can be used to determine MP2200 operating status and error status. To obtain more detailed information on errors, the system (S) registers can be used. A detailed check of the contents of system registers can be used to determine the location of the error and take the corrective measures. Details on system registers are provided below.

## (1) System Register Allocations

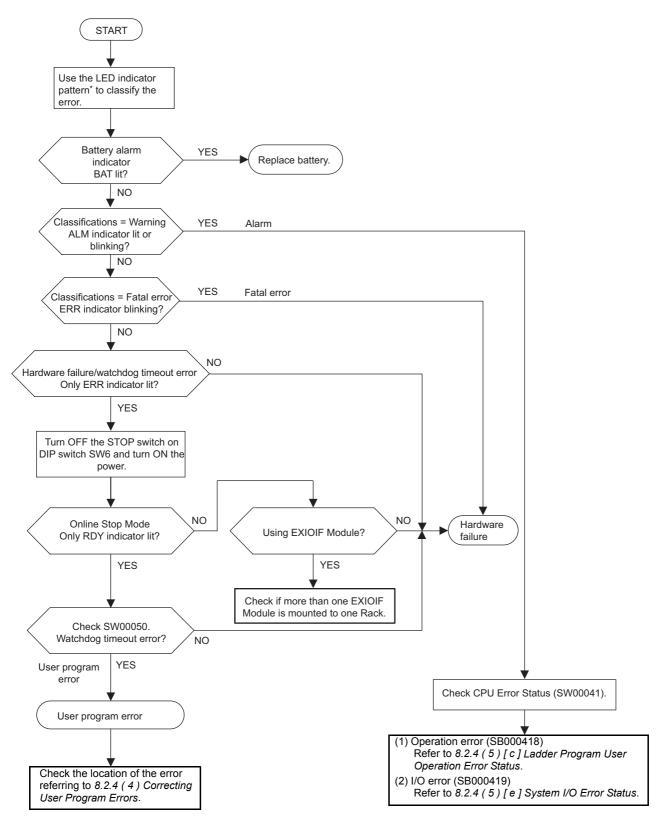
The following table shows the overall structure of the system registers.

| SW00000               | System Service Register             |                                                                |  |  |
|-----------------------|-------------------------------------|----------------------------------------------------------------|--|--|
| SW00030               | System Status                       | → 8.2.4 ( 5 ) [ a ] System Status                              |  |  |
| SW00050               | System Error Status                 | → 8.2.4 (5) [b] System Error Status                            |  |  |
| SW00080               | User Operation Error Status         | → 8.2.4 ( 5 ) [ c ] Ladder Program User Operation Error Status |  |  |
| SW00090               | System Service Execution Status     | → 8.2.4 ( 5 ) [ d ] System Service Execution Status            |  |  |
| SW00110               | User Operation Error Status Details | → 8.2.4 ( 5 ) [ c ] Ladder Program User Operation Error Status |  |  |
| SW00190               | Alarm Counter and Alarm Clear       | → 8.2.4 ( 5 ) [ e ] System I/O Error Status                    |  |  |
| SW00200               | System I/O Error Status             | 0.2.4 ( 0 ) [ e ] System I/O Enoi Status                       |  |  |
| SW00500               | Reserved by the system.             |                                                                |  |  |
| SW00698               | Interrupt Status                    |                                                                |  |  |
| SW00800               | Module Information                  | → 8.2.4 ( 5 ) [ h ] Module Information                         |  |  |
| SW01312               | Reserved by the system.             |                                                                |  |  |
| SW02048               | Reserved by the system.             |                                                                |  |  |
| SW03200               | Motion Program Information          | → 8.2.5 Motion Program Alarms                                  |  |  |
| SW05200<br>to SW08191 | Reserved by the system.             |                                                                |  |  |


#### (2) Accessing System Registers

To access the contents of system registers, start the MPE720 Programming Tool and use the Register List.

#### [a] Register List Display Procedure


Use the following procedure to display the register list.

- 1. Click Register List 1 to display the Register List 1 Window.
- 2. Enter the number of the first system register (SWxxxx) to be referenced (here, SW00040).
- **3.** Right-click any cell in the **Register List 1** Window that appears and change the display mode to hexadecimal.



#### (3) Troubleshooting Flowchart for System Errors

A troubleshooting flowchart for system errors is provided below.



<sup>\*</sup> For LED indicator pattern, refer to 8.2.3 (2) LED Indicator Meanings.

## (4) Correcting User Program Errors

A serious error may have occurred if the ALM and ERR indicators on the front of the MP2200 Basic Module are lit red. Set the MP2200 in stop status (STOP switch on DIP switch 1-6: ON) and investigate the error. Use the following procedure to investigate ladder program errors.

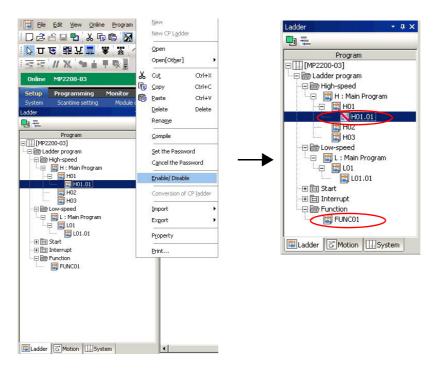
| (1) Investigate type of serious error.                        | Check the contents of SW00050 (Error Code) to determine if the type of the serious error is a system error or a user program error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | <b>↓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (2) Investigate type of program in which there is an error.   | Check the contents of SW00055 (Program Type) to determine if the error is in drawing or function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (3) Investigate the drawing with the error.                   | Check the contents of SW00054 (Program Error Task) and SW00056 (Program Error Drawing Number) to determine the drawing with the error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | <b>+</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | If SW00056 (Program Error Drawing Number) contains 0100H, the error is in function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (4) Investigate the function with the error.                  | Check the contents of SW00057 (Calling Drawing Type) and SW00058 (Lad der Program Function Calling Drawing Number) to determine the drawing with a second content of the co |
|                                                               | the error. Check the contents of SW00059 (Ladder Program Function Calling Drawing Step Number) to determine the step number with the operation error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                               | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (5) Check to see whether an operation error has occurred.     | Check the error count for each drawing in SW00080 to SW00089. If errors have been counted, an operation error has occurred. Go to (6).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Check Error Details     Check error codes for drawings where the error is counted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                               | DWG.A: SW00111, DWG.H: SW00143<br>DWG.I: SW00127, DWG.L: SW00175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | 2. Check the Drawing Number Check the error drawing number for the drawing number where an error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (6) Investigate the type of operation error and its location. | occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tion error and its location.                                  | DWG.A: SW00122, DWG.H: SW00154<br>DWG.I: SW00138, DWG.L: SW00186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | 3. Errors in Functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                               | Check the Function Referencing Drawing Number and Function Referencing STEP Number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                               | DWGA: SW00123, 4; DWGH: SW00155, 6<br>DWGI: SW00139, 40; DWGL: SW00187, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | <b>+</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (7) Determine the error occur-                                | After the investigation of an error drawing or error function is complete, set the corresponding drawing, function, or sequence program to Disable and turn or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| rence location.                                               | the power supply in the RUN state to check that no error occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

1

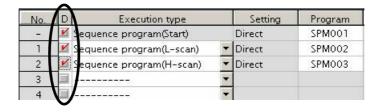
Refer to 8.2.4 (4) [a] How to Disable a User Program.

Go on to the next page.

## 8.2.4 Troubleshooting System Errors


#### Continued on from the previous page.

| (8) Investigate the I/O state  | When the error cause can be assumed to be a problem with the external input data or output data from the user program, disable the corresponding I/O process to investigate a cause based on the I/O data. Refer to 8.2.4 (4) (b) How to Disable the I/O Process. Also, when investigating an output point, refer to 8.2.4 (4) [c] How to Forcibly Turn ON/OFF Coil. |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | •                                                                                                                                                                                                                                                                                                                                                                    |
| (9) Correct Programs.          | Correct the program that causes error.                                                                                                                                                                                                                                                                                                                               |
|                                | •                                                                                                                                                                                                                                                                                                                                                                    |
| (10) Investigate the scan time | If no problem is found in the program, investigate the scan time.  Check to see whether the maximum value for high-speed scan time is in excess of or equal to the setting value in the scan time window, or whether the maximum value for slow-speed scan time is in excess of the setting value. Refer to 8.2.4 (4) [d] Operation in Case of Scan Time Over.       |
|                                | <b>↓</b>                                                                                                                                                                                                                                                                                                                                                             |
| (11) Change the scan time      | Change the scan time setting value. Refer to 5.5.3 Setting and Changing the Scan Time.                                                                                                                                                                                                                                                                               |


#### [a] How to Disable a User Program

· Drawing or Function

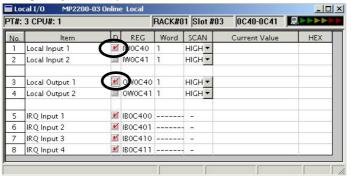
In the ladder subwindow of the MPE720 online mode, right-click the corresponding drawing and function and select Enable/Disable in the pop-up menu.



Sequence Program (Supported by the CPU-03 and CPU-04)
 In the Module Configuration Window of the MPE720 online mode, open the M-EXECUTOR module detailed definition window and select D check box of the sequence program definition to disable the definition and save the change.



#### ■ Caution

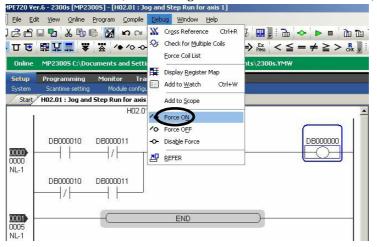

When a drawing, function, or sequence program (supported by the CPU-03/CPU-04) is disabled, the equipment may become unstable, causing personal injury or damage to the equipment. If carrying out an investigation, be aware of the behavior of the equipment when a drawing, function, or sequence program is disabled.

After the investigation, make sure to enable the drawing, function, or sequence program (supported by the CPU-03/CPU-04) again.

#### 8.2.4 Troubleshooting System Errors

#### (b) How to Disable the I/O Process

In the **Module Configuration** Window of the MPE720 online mode, open the detailed definition window of the module for which you want to disable the I/O process. Click "D" and save it, to disable the I/O process for the clicked item. You can change the disabled input register to any value.

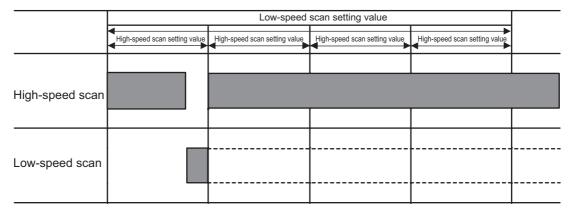



#### Caution

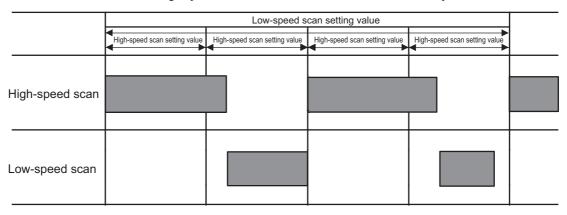
When an I/O process is disabled, the equipment may become unstable, causing personal injury or damage to the equipment. If carrying out an investigation, be aware of the behavior of the equipment when an I/O process is disabled. After the investigation, make sure you enable the I/O service again.

#### [c] How to Forcibly Turn ON/OFF Coil

In the main menu of the MPE720 online mode, select **Debug - Force ON** or **Force OFF** menus, in that order.




#### ■ Caution


When a coil is set to forced ON or OFF, the equipment may become unstable, causing personal injury or damage to the equipment. If carrying out an investigation, be aware of the behavior of the equipment when a coil is forcibly turned ON/OFF. After the investigation, make sure to forcibly cancel the setting.

#### [d] Operation in Case of Scan Time Over

When the maximum value for high-speed scan time is equal to a setting value, a watchdog timeout error will occur because the time for performing a low-speed scan cannot be ensured.



When the maximum value for a scan time is in excess of a setting value, the scan cannot be performed at every setting value. SW00044 is added due to a high-speed scan over, SW00046 is added due to a low-speed scan over.



## (5) System Register Configuration and Error Status

### [a] System Status

System operating status and error status is stored in registers SW00040 to SW00048. Check system status details to determine whether hardware or software is the cause of an error.

| Name                    | Register No.             | Description                |                               |                                                        |  |  |
|-------------------------|--------------------------|----------------------------|-------------------------------|--------------------------------------------------------|--|--|
| Reserved by the system. | SW00030<br>to<br>SW00039 |                            |                               |                                                        |  |  |
|                         |                          | SB000400                   | READY                         | 0: Failure, 1: Normal                                  |  |  |
|                         |                          | SB000401                   | RUN                           | 0: Stopped, 1: Running                                 |  |  |
|                         |                          | SB000402                   | ALARM                         | 0: Normal, 1: Alarm                                    |  |  |
|                         |                          | SB000403                   | ERROR                         | 0: Normal, 1: Error                                    |  |  |
|                         |                          | SB000404                   | Reserved by the system.       |                                                        |  |  |
|                         |                          | SB000405                   | Reserved by the system.       |                                                        |  |  |
| CPU Status              | SW00040                  | SB000406                   | FLASH                         | 1: FLASH operation                                     |  |  |
|                         |                          | SB000407                   | WEN                           | 0: Write-disabled, 1: Write-enabled                    |  |  |
|                         |                          | SB000408<br>to<br>SB00040D | Reserved by the system.       |                                                        |  |  |
|                         |                          | SB00040E                   | Operation Stop Request        | 0: RUN, 1: STOP                                        |  |  |
|                         |                          | SB00040F                   | Run Switch Status at Power ON | 0: STOP<br>1: RUN                                      |  |  |
|                         |                          | SB000410                   | Serious Failure               | 1: WDGE, undefined command<br>See SW00050 for details. |  |  |
|                         |                          | SB000411                   | Reserved by the system.       |                                                        |  |  |
|                         |                          | SB000412                   | Reserved by the system.       |                                                        |  |  |
|                         |                          | SB000413                   | Exception Error               |                                                        |  |  |
| CPU Error<br>Status     | SW00041                  | SB000414<br>to<br>SB000417 | Reserved by the system.       |                                                        |  |  |
|                         |                          | SB000418                   | User operation error          | 1: User operation error                                |  |  |
|                         |                          | SB000419                   | I/O Error                     | 1: I/O error                                           |  |  |
|                         |                          | SB00041A<br>to<br>SB00041F | Reserved by the system.       |                                                        |  |  |
| H Scan Over<br>Counter  | SW00044                  |                            |                               |                                                        |  |  |
| L Scan Over<br>Counter  | SW00046                  |                            |                               |                                                        |  |  |
| Reserved by the system. | SW00047                  |                            |                               |                                                        |  |  |

| 100 | -+ | ıس۱ |
|-----|----|-----|
| (co | ш  | (1) |

| Name                    | Register No.          | Description                  |                                     |                                 |  |  |
|-------------------------|-----------------------|------------------------------|-------------------------------------|---------------------------------|--|--|
|                         |                       | SB000480                     | TEST                                |                                 |  |  |
|                         |                       | SB000481                     | MON                                 |                                 |  |  |
|                         |                       | SB000482                     | CNFG                                |                                 |  |  |
|                         |                       | SB000483                     | INIT                                | Store DIP switch. 0: ON, 1: OFF |  |  |
|                         |                       | SB000484                     | SUP                                 | 0. ON, 1. OFF                   |  |  |
|                         |                       | SB000485                     | STOP                                |                                 |  |  |
|                         |                       | SB000486                     | =                                   |                                 |  |  |
| Hardware                |                       | SB000487                     | Battery Alarm                       |                                 |  |  |
| Configuration<br>Status | Configuration SW00048 | SB000488                     | USB1/E-INIT (for CPU-02 and CPU-03) |                                 |  |  |
|                         |                       | SB000489                     | SAVE (for CPU-02 and CPU-03)        | Store DIP switch.               |  |  |
|                         |                       | SB00048A                     | LOAD (for CPU-02 and CPU-03)        | 0: ON, 1: OFF                   |  |  |
|                         | SB00048B              | CARD (for CPU-02 and CPU-03) |                                     |                                 |  |  |
|                         |                       | SB00048C<br>to<br>SB00048F   | Reserved by the system.             |                                 |  |  |
| Reserved by the system. | SW00049               | SW000490<br>to<br>SW00049F   | Reserved by the system.             |                                 |  |  |

## [b] System Error Status

System error status is stored in registers SW00050 to SW00060.

| Name               | Register No. | Description                 |                                         |                        |  |  |
|--------------------|--------------|-----------------------------|-----------------------------------------|------------------------|--|--|
|                    |              | 0001H                       | 0001H Watchdog timeout error            |                        |  |  |
|                    |              | 0041H                       | 0041H ROM diagnosis error               |                        |  |  |
|                    |              | 0042H                       | RAM diagnosis error                     |                        |  |  |
|                    |              | 0043H                       | CPU diagnosis error                     |                        |  |  |
|                    |              | 0044H                       | FPU diagnosis error                     |                        |  |  |
|                    |              | 0050H                       | EXIOIF error                            |                        |  |  |
|                    |              | 0051H                       | Module synchronous error*               | 1                      |  |  |
| 32-bit Error Code  | SW00050      | 00E0H                       | Address read exception erro             | or                     |  |  |
| oz sit ziror ocac  | 0100H        | Address write exception err | or                                      |                        |  |  |
|                    |              | 0120H                       | FPU exception error                     |                        |  |  |
|                    |              | 0180H                       | Illegal general command error           |                        |  |  |
|                    |              | 01A0H                       | Illegal slot command error              |                        |  |  |
|                    |              | 01E0H                       | User break after command execution      |                        |  |  |
|                    |              | 0800Н                       | General FPU prohibition exception error |                        |  |  |
|                    |              | 0820H                       | Slot FPU prohibition exception error    |                        |  |  |
|                    | SW00051      | For system error analysis   |                                         |                        |  |  |
| 32-bit Addresses   | SW00052      | For system error analysis   | e                                       |                        |  |  |
| Generating Error   | SW00053      | Tot system error analysis   | 5                                       |                        |  |  |
| Program Error Task | SW00054      | 0000H: System               | 0002H: DWG.I                            | 0005H: DWG.L           |  |  |
| Trogram Error rack | 5 11 0003 1  | 0001H: DWG.A                | 0003H: DWG.H                            |                        |  |  |
|                    |              |                             |                                         | 0005H: DWG.L           |  |  |
| Program Type       | SW00055      | 0000H: System               | 0002H: DWG.I                            | 0008H: Function        |  |  |
| 3 , p =            | 5 11 00023   | 0001H: DWG.A                | 0003H: DWG.H                            | 000FH: Motion program/ |  |  |
|                    |              |                             |                                         | sequence program*2     |  |  |

| Name                                                | Register No.           | Description                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|-----------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Program Error<br>Drawing Number                     | SW00056                | Ladder program parent drawing: FFFFH Ladder program function: 8000H Ladder program child drawing: xx00H (Hxx: Child drawing number) Ladder program grandchild drawing: xxyyH (Hyy: Grandchild drawing number) Motion program/sequence program*2: F0xxH (Hxx: program number) |  |  |  |  |  |
|                                                     |                        | Type of drawing that calls the ladder program function in which an error occurred.                                                                                                                                                                                           |  |  |  |  |  |
| Calling Drawing<br>Type                             | SW00057                | 0001H: DWG.A<br>0002H: DWG.I<br>0003H: DWG.H  0008H: Ladder program<br>function<br>000FH: Motion program/<br>sequence program*2  0010H: Reserved by system.                                                                                                                  |  |  |  |  |  |
| Ladder Program                                      |                        | Number of drawing that calls the ladder program function in which an error occurred.                                                                                                                                                                                         |  |  |  |  |  |
| Function Calling Drawing Number                     | SW00058                | Parent drawing: FFFFH Function: 0100H  Child drawing: xx00H (Hxx: Child drawing number) Grandchild drawing: xxyyH (Hyy: Grandchild drawing number)                                                                                                                           |  |  |  |  |  |
| Ladder Program Function Calling Drawing Step Number | SW00059                | Step number of the drawing that calls the ladder program function in which an error occurred.  0 when there is an error in the drawing.                                                                                                                                      |  |  |  |  |  |
|                                                     | SW00060 and<br>SW00061 | Reserved by the system.                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                     | SW00062 to<br>SW00065  | Name of Task Generating Error                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                     | SW00066 and<br>SW00067 | Reserved by the system.                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                     | SW00068                | Year Generated                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     | SW00069                | Month Generated                                                                                                                                                                                                                                                              |  |  |  |  |  |
| F Data                                              | SW00070                | Day of Week Generated                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Error Data                                          | SW00071                | Day of Month Generated                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                     | SW00072                | Hour Generated                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     | SW00073                | Minutes Generated                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                     | SW00074                | Seconds Generated                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                                                     | SW00075                | Milliseconds Generated (Not used.)                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                                     | SW00076                | Number of slot with a module synchronous error *3  □□yyH □□: Rack number (01 to 04) yy: Slot number (01 to 09)                                                                                                                                                               |  |  |  |  |  |
| SW00078 and SW00079 Reserved by the system.         |                        |                                                                                                                                                                                                                                                                              |  |  |  |  |  |

<sup>\* 1.</sup> The CPU system program version 2.75 or later: 0051H will be reported.

The CPU system program version is earlier than 2.75: 0001H (watchdog timer over error) will be reported.

<sup>\* 2.</sup> Sequence program is supported by the CPU-03 and CPU-04.

<sup>\* 3.</sup> The CPU system program version 2.75 or later: Number of slot with a module synchronous error will be reported.

#### [c] Ladder Program User Operation Error Status

Error information for user operation errors in ladder programs is stored in registers SW00080 to SW00089 (Error Status 1) and SW00110 to SW00189 (Error Status 2).

Table 8.1 Ladder Program User Operation Error Status 1

| Name                    | Register No. | Description                                      |
|-------------------------|--------------|--------------------------------------------------|
| DWG.A Error Count Error | SW00080      |                                                  |
| Code                    | SW00081      |                                                  |
| DWG.I Error Count Error | SW00082      |                                                  |
| Code                    | SW00083      | Operation error code:                            |
| DWG.H Error Count Error | SW00084      | See Ladder Program User Operation Error Codes 1. |
| Code                    | SW00085      |                                                  |
| Reserved by the system. | SW00086      | Error code when an index error occurs:           |
| Reserved by the system. | SW00087      | See Ladder Program User Operation Error Codes 2. |
| DWG.L Error Count Error | SW00088      |                                                  |
| Code                    | SW00089      |                                                  |

Table 8.2 Ladder Program User Operation Error Status 2

| Name                             |         | Register No. |         |         | Remarks                                                                      |  |
|----------------------------------|---------|--------------|---------|---------|------------------------------------------------------------------------------|--|
| Name                             | DWG.A   | DWG.I        | DWG.H   | DWG.L   | Remarks                                                                      |  |
| Error Count                      | SW00110 | SW00126      | SW00142 | SW00174 |                                                                              |  |
| Error Code                       | SW00111 | SW00127      | SW00143 | SW00175 | Error Drawing Number                                                         |  |
| Frank Danistan                   | SW00112 | SW00128      | SW00144 | SW00176 | Parent drawing: FFFFH Child drawing: xx00H (Hxx: Child draw-                 |  |
| Error A Register                 | SW00113 | SW00129      | SW00145 | SW00177 | ing number)                                                                  |  |
| Modification A                   | SW00114 | SW00130      | SW00146 | SW00178 | Grandchild drawing: xxyyH (Hyy: Grand-                                       |  |
| Register                         | SW00115 | SW00131      | SW00147 | SW00179 | child drawing number) Function: 8000H                                        |  |
| Error F Register                 | SW00116 | SW00132      | SW00148 | SW00180 | Motion program/sequence program*:                                            |  |
| Elloi F Register                 | SW00117 | SW00133      | SW00149 | SW00181 | F0xxH (Hxx: program number)                                                  |  |
| Modification F                   | SW00118 | SW00134      | SW00150 | SW00182 | ,                                                                            |  |
| Register                         | SW00119 | SW00135      | SW00151 | SW00183 | Function Calling Drawing Number                                              |  |
| Error Generating                 | SW00120 | SW00136      | SW00152 | SW00184 | Number of the drawing that calls the                                         |  |
| Address                          | SW00121 | SW00137      | SW00153 | SW00185 | function in which an error occurred.                                         |  |
| Error Drawing Number             | SW00122 | SW00138      | SW00154 | SW00186 |                                                                              |  |
| Function Calling Drawing Number  | SW00123 | SW00139      | SW00155 | SW00187 | Function Calling DWG Step Number     Step number of the drawing that calls   |  |
| Function Calling DWG Step Number | SW00124 | SW00140      | SW00156 | SW00188 | the function in which an error occurre  0 when there is an error in the pare |  |
| Reserved by the system.          | SW00125 | SW00141      | SW00157 | SW00189 | drawing.                                                                     |  |

<sup>\*</sup> Sequence programming is supported by the CPU-03 and CPU-04.

Table 8.3 Ladder Program User Operation Error Codes 1

|            | Error<br>Code | Error Contents                                            |                                                |       | S                             | System Default Value                                     |  |
|------------|---------------|-----------------------------------------------------------|------------------------------------------------|-------|-------------------------------|----------------------------------------------------------|--|
|            | 0001H         | Integer operation - underflow                             |                                                |       | -32768 [-32768]               |                                                          |  |
|            | 0002H         | Integer operation - overflow                              |                                                | Yes   | 32767 [                       | 32767]                                                   |  |
|            | 0003H         | Integer operation - division e                            | rror                                           | Yes   | The A r                       | register remains the same.                               |  |
| Integer    | 0009H         | Double-length integer operat                              | ion - underflow                                | Yes   | -21474                        | 83648 [-2147483648]                                      |  |
| Operations | 000AH         | Double-length integer operat                              | ion - overflow                                 | Yes   | 214748                        | 3647 [2147483647]                                        |  |
|            | 000BH         | Double-length integer operat                              | ion - division error                           | Yes   | The A r                       | register remains the same.                               |  |
|            | 010xH         | Operation error drawing - int to B)                       | eger operation error ( $\square = 1$           | No    | Default                       | indicated above.                                         |  |
|            | 0010H         | Integer storage - non-numeric                             | e error                                        | Yes   | Store no                      | ot executed. [00000]                                     |  |
|            | 0011H         | Integer storage - underflow                               |                                                | Yes   | Store no                      | ot executed. [-32768]                                    |  |
|            | 0012H         | Integer storage - overflow                                |                                                | Yes   | Store no                      | ot executed. [+32767]                                    |  |
|            | 0021H         | Real number storage - under                               | low                                            | Yes   | Store no                      | ot executed. [-1.OE+38]                                  |  |
|            | 0022H         | Real number storage - overflo                             | ow                                             | Yes   | Store not executed. [1.OE+38] |                                                          |  |
|            | 0023Н         | Real number operation - divi                              | Real number operation - division-by-zero error |       |                               | Operation not executed. The F register remains the same. |  |
|            | 0030H         | Real number operation - invalid operation (non-numeric)   |                                                | No    | Operation not executed.       |                                                          |  |
|            | 0031H         | Real number operation - exponent underflow                |                                                | No    | 0.0                           |                                                          |  |
|            | 0032H         | Real number operation - exponent overflow                 |                                                | No    | Maximum value                 |                                                          |  |
| Real       | 0033H         | Real number operation - division error (non-numeric 0/0)  |                                                | No    | Operation not executed.       |                                                          |  |
| Number     | 0034H         | Real number storage - expon                               | ent underflow                                  | No    | Stores 0                      | 0.0.                                                     |  |
| Operation  | 0035H         | Real number operation - stac                              | k error                                        |       |                               |                                                          |  |
|            |               | Standard System Functions<br>Real number operation errors |                                                | No    | Interrup                      | ot operation and output = 0.0                            |  |
|            |               | 0040H: SQRT 0041H: SIN                                    |                                                | 0042H | I: COS                        | 0043H: TAN                                               |  |
|            | 0040H         | 0044H: ASIN                                               | 0045H: ACOS                                    | 0046H | I: ATAN                       | 0047H: EXP                                               |  |
|            | 4             | 0048H: LN                                                 | 0049H: LOG                                     | 004AI | H: DZA                        | 004BH: DZB                                               |  |
|            | to            | 004CH: LIM                                                | 004DH: PI                                      | 004EF | I: PD                         | 004FH: PID                                               |  |
|            | 0059Н         | 0050H: LAG                                                | 0051H: LLAG                                    | 0052H | I: FGN                        | 0053H: IFGN                                              |  |
|            |               | 0054H: LAU                                                | 0055H: SLAU                                    | 0056H | I: REM                        | 0057H: RCHK                                              |  |
|            |               | 0058H: BSRCH                                              | 0059H: SORT                                    |       |                               |                                                          |  |
|            |               | 1000H or 2000H is added for                               | an index error.                                |       |                               |                                                          |  |

Note: Yes: Can be set to value other than system default from the user program.

No: The system default cannot be changed from the user program.

Table 8.4 Ladder Program User Operation Error Codes 2

|                          | Error Code  | Error Contents                       |            | Us            | ser   | Sys                                                                 | stem Default                              |
|--------------------------|-------------|--------------------------------------|------------|---------------|-------|---------------------------------------------------------------------|-------------------------------------------|
| Integer - Real<br>Number | 1000H       | Index error within drawing           |            | N             | lo    | Execute again The i register r                                      | with i, $j = 0$ . emains the same.        |
| Operations               | 2000H       | Index error within function          |            | N             | lo    | Execute again with i, $j = 0$ .<br>The i register remains the same. |                                           |
| Lateres                  | x060H       | Integer system functions Index error |            | N             | lo    |                                                                     | ped and output = input. remains the same. |
| Integer<br>Operation     | to<br>x077H | x06DH: PI                            | x06EH: PD  |               | x06FF | H: PID                                                              | x070H: LAG                                |
| (x = 1, 2)               | x071H: LLAG | x071H: LLAG x072H: FGN               |            | N x073H: IFGN |       | x074H: LAU                                                          |                                           |
|                          | (, –)       |                                      | x076H: FGN | N x077H: IFGN |       | I: IFGN                                                             |                                           |

## [d] System Service Execution Status

Table 8.5 Data Trace Execution Status

| Name                               | Register No.          | Remarks                                                               |
|------------------------------------|-----------------------|-----------------------------------------------------------------------|
| Reserved by the system.            | SW00090 to<br>SW00097 |                                                                       |
| Existence Of Data Trace Definition | SW00098               | Bit 0 to 3 = Group 1 to 4<br>Definition exists = 1, No definition = 0 |
| Data Trace Execution Status        | SW00099               | Bit 0 to 3 = Group 1 to 4<br>Trace stopped = 1, Trace executing = 0   |

Table 8.6 Latest Data Trace Record Numbers

| Name               | Register No. | Remarks              |
|--------------------|--------------|----------------------|
| Data Trace Group 1 | SW00100      | Latest record number |
| Data Trace Group 2 | SW00101      | Latest record number |
| Data Trace Group 3 | SW00102      | Latest record number |
| Data Trace Group 4 | SW00103      | Latest record number |

## [e] System I/O Error Status

| Name                            | Register No.          | Remarks                                                        |
|---------------------------------|-----------------------|----------------------------------------------------------------|
| Current Alarm                   | SW00190               | Cleared when power is turned ON.                               |
| Number of Alarm History Records | SW00191               | The number of alarms in the alarm history.                     |
| Clear Alarms                    | SW00192               | 1: Alarm cleared<br>2: Current alarm and alarm history cleared |
| I/O Error Count                 | SW00200               | Number of I/O errors                                           |
| Input Error Count               | SW00201               | Number of input errors                                         |
| Input Error Address             | SW00202               | Latest input error address (IW□□□□ register number)            |
| Output Error Count              | SW00203               | Number of output errors                                        |
| Output Error Address            | SW00204               | Latest output error address (OWDDDD register number)           |
|                                 | SW00205               |                                                                |
| Reserved by the system.         | SW00206               | (Not used.)                                                    |
|                                 | SW00207               |                                                                |
|                                 | SW00208 to<br>SW00215 | Rack 1, Slot 0, Error status                                   |
|                                 | SW00216 to<br>SW00223 | Reserved by the system.                                        |
|                                 | SW00224 to<br>SW00231 | Rack 1, Slot 1, Error status                                   |
| I/O Error Status                | SW00232 to<br>SW00239 | Rack 1, Slot 2, Error status                                   |
|                                 | SW00240 to<br>SW00247 | Rack 1, Slot 3, Error status                                   |
|                                 | SW00248 to<br>SW00255 | Rack 1, Slot 4, Error status                                   |
|                                 | •••                   |                                                                |
|                                 | SW00496 to<br>SW00503 | Rack 4, Slot 9, Error status                                   |

## [f] Actions to be Taken when an I/O Error Occurs

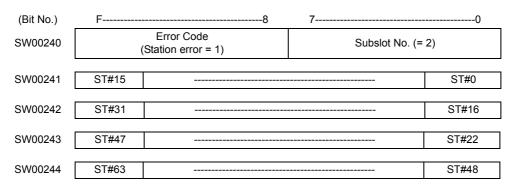
When an I/O error occurs during system I/O, the error status is reported in the system registers as shown in the following table.

|         | Name               | Register No.           | Remarks                                                 |
|---------|--------------------|------------------------|---------------------------------------------------------|
| CDIT    | CPU-01/CPU-02      | SW00208 to SW00217     | Not used.                                               |
| CPU -   | CPU-03/CPU-04      | 5 W 00208 to 5 W 00217 | Refer to the next page for details on the error status. |
| Reserve | d by system.       | SW00218 to SW00223     | Not used.                                               |
| Rack 1, | Slot 1 Information | SW00224 to SW00231     | Depends on the mounted Module and error code.           |
| Rack 1, | Slot 2 Information | SW00232 to SW00239     | Same as above.                                          |
| Rack 1, | Slot 3 Information | SW00240 to SW00247     | Same as above.                                          |
| Rack 1, | Slot 4 Information | SW00248 to SW00255     | Same as above.                                          |
| Rack 1, | Slot 5 Information | SW00256 to SW00263     | Same as above.                                          |
| Rack 1, | Slot 6 Information | SW00264 to SW00271     | Same as above.                                          |
| Rack 1, | Slot 7 Information | SW00272 to SW00279     | Same as above.                                          |
| Rack 1, | Slot 8 Information | SW00280 to SW00287     | Same as above.                                          |
| Rack 2, | Slot 1 Information | SW00288 to SW00295     | Same as above.                                          |
| Rack 2, | Slot 2 Information | SW00296 to SW00303     | Same as above.                                          |
| Rack 2, | Slot 3 Information | SW00304 to SW00311     | Same as above.                                          |
| Rack 2, | Slot 4 Information | SW00312 to SW00319     | Same as above.                                          |
| Rack 2, | Slot 5 Information | SW00320 to SW00327     | Same as above.                                          |
| Rack 2, | Slot 6 Information | SW00328 to SW00335     | Same as above.                                          |
| Rack 2, | Slot 7 Information | SW00336 to SW00343     | Same as above.                                          |
| Rack 2, | Slot 8 Information | SW00344 to SW00351     | Same as above.                                          |
| Rack 2, | Slot 9 Information | SW00352 to SW00359     | Same as above.                                          |
| Rack 3, | Slot 1 Information | SW00360 to SW00367     | Same as above.                                          |
|         | Slot 2 Information | SW00368 to SW00375     | Same as above.                                          |
| Rack 3, | Slot 3 Information | SW00376 to SW00383     | Same as above.                                          |
| Rack 3, | Slot 4 Information | SW00384 to SW00391     | Same as above.                                          |
| Rack 3, | Slot 5 Information | SW00392 to SW00399     | Same as above.                                          |
| Rack 3, | Slot 6 Information | SW00400 to SW00407     | Same as above.                                          |
| Rack 3, | Slot 7 Information | SW00408 to SW00415     | Same as above.                                          |
| Rack 3, | Slot 8 Information | SW00416 to SW00423     | Same as above.                                          |
| Rack 3, | Slot 9 Information | SW00424 to SW00431     | Same as above.                                          |
| Rack 4, | Slot 1 Information | SW00432 to SW00439     | Same as above.                                          |
| Rack 4, | Slot 2 Information | SW00440 to SW00447     | Same as above.                                          |
| Rack 4, | Slot 3 Information | SW00448 to SW00455     | Same as above.                                          |
| Rack 4, | Slot 4 Information | SW00456 to SW00463     | Same as above.                                          |
| Rack 4, | Slot 5 Information | SW00464 to SW00471     | Same as above.                                          |
| Rack 4, | Slot 6 Information | SW00472 to SW00479     | Same as above.                                          |
| Rack 4, | Slot 7 Information | SW00480 to SW00487     | Same as above.                                          |
| Rack 4, | Slot 8 Information | SW00488 to SW00495     | Same as above.                                          |
| Rack 4, | Slot 9 Information | SW00496 to SW00503     | Same as above.                                          |

### ■ CPU-03 and CPU-04 Error Status (Rack 1, Slot 0)

| (Bit number) | F                                   | 8                       | 7                                |             | 0           |
|--------------|-------------------------------------|-------------------------|----------------------------------|-------------|-------------|
| SW00208      | Sta                                 | tus                     | Subslot (fun                     | ction) numb | er          |
|              | F                                   |                         |                                  | 1           | 0           |
| SW00209      |                                     | Unused                  |                                  | Write       | Read        |
|              | F C                                 | В 8                     | 7 4                              | 3           | 0           |
| SW00210      | Transmission station<br>for writing | Reserved by the system. | Transmission station for reading | Reserved by | the system. |
|              |                                     |                         |                                  |             |             |
| SW00211      | Unused                              |                         |                                  |             |             |
|              |                                     |                         |                                  |             |             |
| SW00212      | Unused                              |                         |                                  |             |             |

#### [Details of 218IFA/218IFC Error Status] (SW00208 to SW00212)


| Items                    | Code | Remarks                      |
|--------------------------|------|------------------------------|
| Subslot Number           | 4    | 4 = 218IFA/218IFC (Ethernet) |
| Status                   | 0    | Normal                       |
| Olatus                   | 1    | Station error                |
| Read/ Write              | 0    | Normal communications        |
| iteau/ write             | 1    | Communications error         |
|                          | 0x0  | No error                     |
|                          | 0x4  | Parameter format error       |
| Transmission Station for | 0x5  | Command sequence error       |
| Reading/ Writing         | 0x6  | Reset status                 |
|                          | 0x7  | Data receiving error         |
|                          | 0x8  | Data sending error           |
|                          | 0xA  | Connection error             |

#### 8.2.4 Troubleshooting System Errors

#### ■ LIO-01/02 Module Error Status (Example for Rack 1, Slot 1)

| (Bit No.) | F        | 8                      | 7                 | 0                 |  |
|-----------|----------|------------------------|-------------------|-------------------|--|
| SW00224   | Erro     | r Code (I/O error = 2) | Subslot No. (=    | Subslot No. (= 1) |  |
| SW00225   | Erro     | r Code (I/O error = 2) | Subslot No. (= 2) |                   |  |
|           |          |                        |                   |                   |  |
| SW00226   | Not used |                        |                   | Not used          |  |
|           |          |                        |                   |                   |  |
| SW00227   | Not used |                        |                   | Not used          |  |
|           |          |                        |                   |                   |  |
| SW00228   | Not used |                        |                   | Not used          |  |
|           |          |                        |                   |                   |  |
| SW00229   | Not used |                        |                   | Not used          |  |
|           |          |                        |                   |                   |  |
| SW00230   | Not used |                        |                   | Not used          |  |
|           |          |                        |                   |                   |  |
| SW00231   | Not used |                        |                   | Not used          |  |

#### ■ 260IF-01 Module Error Status (Example for Rack 1, Slot 3)



#### [Error status details]

| Item | Code | Remarks                                                                         |  |
|------|------|---------------------------------------------------------------------------------|--|
|      | 0    | Normal communication                                                            |  |
| ST#n | 1    | Communication error at station n (when slave, n becomes a local station number) |  |

## מומוכת,

#### [g] Interrupt Status

| Name                        | Register No. | Remarks                                  |
|-----------------------------|--------------|------------------------------------------|
| Interrupt Detection Counter | SW00698      |                                          |
| Module Generating Interrupt | SW00699      | Number of Interrupt Modules for one time |
|                             | SW00700      |                                          |
|                             | SW00701      | Interrupt Module 1                       |
|                             | SW00702      |                                          |
|                             | SW00703      |                                          |
|                             | SW00704      | Interrupt Module 2                       |
| Interrupt Module            | SW00705      |                                          |
|                             | :            |                                          |
|                             | :            |                                          |
|                             | SW00787      |                                          |
|                             | SW00788      | Interrupt Module 30                      |
|                             | SW00789      |                                          |

#### ■ Interrupt Module Details

|             | F 8                  | 7 0                   | (Bit No.) |
|-------------|----------------------|-----------------------|-----------|
| SW00□□□ + 0 | Rack                 | Slot                  | mmssH     |
| SW00□□□ + 1 | Interru              | ot Type               |           |
| SW00□□□ + 2 | Hardware Interrupt F | actor Register Values |           |

1. Rack

mm = 01 to 04

The rack number where the Module that was the interrupt factor is mounted.

2. Slot

ss = 01 to 09

The slot number where the Module that was the interrupt factor is mounted.

- 3. Interrupt Type
  - 1: Reserved by the system.
  - 2: LIO-01/LIO-02/LIO-04 DI interrupts
  - 3: LIO-01/LIO-02 counter interrupts
- 4. Hardware Interrupt Factor Register Values
  - Interrupt Type = 2 (LIO-01, LIO-02, and LIO-04 DI Interrupts)

| Bit      | Meaning                                                                         |
|----------|---------------------------------------------------------------------------------|
| 0 to 4   | Reserved by the system.                                                         |
| 5        | LIO-01 and LIO-02 interrupt inputs: 1 = Interrupt input, 0 = No interrupt input |
| 6 to 8   | Reserved by the system.                                                         |
| 9        | LIO-04 interrupt input 1: 1 = Interrupt input, 0 = No interrupt input           |
| 10       | LIO-04 interrupt input 2: 1 = Interrupt input, 0 = No interrupt input           |
| 11       | LIO-04 interrupt input 3: 1 = Interrupt input, 0 = No interrupt input           |
| 12       | LIO-04 interrupt input 4: 1 = Interrupt input, 0 = No interrupt input           |
| 13 to 15 | Reserved by the system.                                                         |

• Interrupt Type = 3 (LIO-01 and LIO-02 Counter Interrupts)

| Bit     | Meaning                                                                   |
|---------|---------------------------------------------------------------------------|
| 0 to 3  | Reserved by the system.                                                   |
| 4       | Counter Agreement Status: 1 = Counter agreement, 0 = No counter agreement |
| 5 to 15 | Reserved by the system.                                                   |

## [h] Module Information

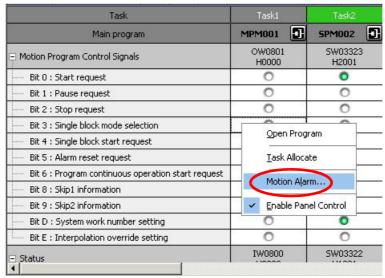
| SW00800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | <u> </u>           |                                  | Remarks            |                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------------|--------------------|----------------------------------|
| SW00801   CPU Hardware Version (BCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Name                       | Register No.       | CPU-01/CPU-02                    | CPU-03             | CPU-04                           |
| SW00802   CPU Software Version (BCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | SW00800            | Basic Unit ID                    |                    |                                  |
| SW00803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00801            | CPU Hardware Ver                 | sion (BCD)         |                                  |
| SW00804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00802            | ` '                              |                    |                                  |
| SW00805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00803            | Number of Subslots               |                    |                                  |
| SW00806   SVR Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | SW00804            | CPU Function Mod                 | ule ID             |                                  |
| SW00807   SVR Function Module Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | SW00805            | CPU Function Mod                 | ule Status         |                                  |
| CPU Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | SW00806            | SVR Function Mod                 | ule ID             |                                  |
| SW00808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00807            | <u> </u>                         |                    |                                  |
| SW00810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CPU Information            | SW00808            |                                  |                    | Reserved by sys-                 |
| SW00810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00809            |                                  |                    | tem.                             |
| SW00812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00810            |                                  |                    | 218IFC Function<br>Module ID     |
| SW00813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | SW00811            | system.                          |                    | 218IFC Function<br>Module Status |
| SW00814 to SW00815   Reserved by system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | SW00812            | 1                                | M-EXECUTOR Fu      | nction Module ID                 |
| SW00816   Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | SW00813            |                                  | M-EXECUTOR Fu      | nction Module Status             |
| Rack 1, Slot 1 Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | SW00814 to SW00815 |                                  | Reserved by system |                                  |
| SW00818   Software Version (BCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | SW00816            | Module ID                        | -                  |                                  |
| Rack 1, Slot 1 Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | SW00817            | Hardware Version (               | BCD)               |                                  |
| Rack 1, Slot 1 Information   SW00820   Subslot 1 Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | SW00818            | ` '                              |                    |                                  |
| Sw00820   Subslot 1 Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rack 1, Slot 1 Information | SW00819            | Number of Subslots               |                    |                                  |
| SW00822   Subslot 2 Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | SW00820            | Subslot 1 Function               | Module ID          |                                  |
| SW00823   Subslot 2 Function Module Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | SW00821            | Subslot 1 Function               | Module Status      |                                  |
| Rack 1, Slot 2 Information         SW00824 to SW00831         Same as above.           Rack 1, Slot 3 Information         SW00832 to SW00839         Same as above.           Rack 1, Slot 4 Information         SW00840 to SW00847         Same as above.           Rack 1, Slot 5 Information         SW00848 to SW00855         Same as above.           Rack 1, Slot 6 Information         SW00856 to SW00863         Same as above.           Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 2 Function Module Status           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above. |                            | SW00822            | Subslot 2 Function               | Module ID          |                                  |
| Rack 1, Slot 3 Information         SW00832 to SW00839         Same as above.           Rack 1, Slot 4 Information         SW00840 to SW00847         Same as above.           Rack 1, Slot 5 Information         SW00848 to SW00855         Same as above.           Rack 1, Slot 6 Information         SW00856 to SW00863         Same as above.           Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 2 Function Module Status           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                        |                            | SW00823            | Subslot 2 Function               | Module Status      |                                  |
| Rack 1, Slot 4 Information         SW00840 to SW00847         Same as above.           Rack 1, Slot 5 Information         SW00848 to SW00855         Same as above.           Rack 1, Slot 6 Information         SW00856 to SW00863         Same as above.           Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                        | Rack 1, Slot 2 Information | SW00824 to SW00831 | Same as above.                   |                    |                                  |
| Rack 1, Slot 5 Information         SW00848 to SW00855         Same as above.           Rack 1, Slot 6 Information         SW00856 to SW00863         Same as above.           Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           Rack 2, Slot 1 Information         SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                            | Rack 1, Slot 3 Information | SW00832 to SW00839 | Same as above.                   |                    |                                  |
| Rack 1, Slot 6 Information         SW00856 to SW00863         Same as above.           Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           Rack 2, Slot 1 Information         SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                                                                                                                                                                          | Rack 1, Slot 4 Information | SW00840 to SW00847 | Same as above.                   |                    |                                  |
| Rack 1, Slot 7 Information         SW00864 to SW00871         Same as above.           Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                                                                                                                                                                                                                                             | Rack 1, Slot 5 Information | SW00848 to SW00855 | Same as above.                   |                    |                                  |
| Rack 1, Slot 8 Information         SW00872 to SW00879         Same as above.           Rack 2, Slot 1 Information         SW00880         Module ID           SW00881         Hardware Version (BCD)           SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rack 1, Slot 6 Information | SW00856 to SW00863 | Same as above.                   |                    |                                  |
| SW00880   Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rack 1, Slot 7 Information | SW00864 to SW00871 | Same as above.                   |                    |                                  |
| SW00881   Hardware Version (BCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rack 1, Slot 8 Information | SW00872 to SW00879 | Same as above.                   |                    |                                  |
| SW00882         Software Version (BCD)           SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | SW00880            | Module ID                        |                    |                                  |
| Rack 2, Slot 1 Information         SW00883         Number of Subslots           SW00884         Subslot 1 Function Module ID           SW00885         Subslot 1 Function Module Status           SW00886         Subslot 2 Function Module ID           SW00887         Subslot 2 Function Module Status           Rack 2, Slot 2 Information         SW00888 to SW00895         Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | SW00881            | Hardware Version (               | BCD)               |                                  |
| SW00884   Subslot 1 Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | SW00882            | Software Version (F              | BCD)               |                                  |
| SW00884   Subslot 1 Function Module ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rack 2. Slot 1 Information | SW00883            |                                  |                    |                                  |
| SW00886 Subslot 2 Function Module ID SW00887 Subslot 2 Function Module Status  Rack 2, Slot 2 Information SW00888 to SW00895 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2, Olot i illiorifiation   | SW00884            | Subslot 1 Function               | Module ID          |                                  |
| SW00887 Subslot 2 Function Module Status  Rack 2, Slot 2 Information SW00888 to SW00895 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | SW00885            | Subslot 1 Function               | Module Status      |                                  |
| Rack 2, Slot 2 Information SW00888 to SW00895 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            | SW00886            |                                  |                    |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | SW00887            | Subslot 2 Function Module Status |                    |                                  |
| D 1001016 ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                          | SW00888 to SW00895 | Same as above.                   |                    |                                  |
| Rack 2, Slot 3 Information SW00896 to SW00903 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 3 Information | SW00896 to SW00903 | Same as above.                   |                    |                                  |
| Rack 2, Slot 4 Information SW00904 to SW00911 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 4 Information | SW00904 to SW00911 | Same as above.                   |                    |                                  |
| Rack 2, Slot 5 Information SW00912 to SW00919 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                          | SW00912 to SW00919 | 9 Same as above.                 |                    |                                  |
| Rack 2, Slot 6 Information SW00920 to SW00927 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 6 Information | SW00920 to SW00927 | 7 Same as above.                 |                    |                                  |
| Rack 2, Slot 7 Information SW00928 to SW00935 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 7 Information | SW00928 to SW00935 | 5 Same as above.                 |                    |                                  |
| Rack 2, Slot 8 Information SW00936 to SW00943 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 8 Information | SW00936 to SW00943 | 3 Same as above.                 |                    |                                  |
| Rack 2, Slot 9 Information SW00944 to SW00951 Same as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rack 2, Slot 9 Information | SW00944 to SW00951 | Same as above.                   |                    |                                  |

| Name                          | Pagistar No.       | Remarks                      |                                  |        |  |
|-------------------------------|--------------------|------------------------------|----------------------------------|--------|--|
| Name                          | Register No.       | CPU-01/CPU-02                | CPU-03                           | CPU-04 |  |
|                               | SW00952            | Module ID                    |                                  |        |  |
|                               | SW00953            | Hardware Version (B          | SCD)                             |        |  |
|                               | SW00954            | Software Version (BCD)       |                                  |        |  |
| Rack 3, Slot 1 Information    | SW00955            | Number of Subslots           | Number of Subslots               |        |  |
| radico, oloc i illomation     | SW00956            | Subslot 1 Function Module ID |                                  |        |  |
|                               | SW00957            | Subslot 1 Function N         | Subslot 1 Function Module Status |        |  |
|                               | SW00958            | Subslot 2 Function N         | Module ID                        |        |  |
|                               | SW00959            | Subslot 2 Function N         | Module Status                    |        |  |
| Rack 3, Slot 2 Information    | SW00960 to SW00967 | Same as above.               |                                  |        |  |
| Rack 3, Slot 3 Information    | SW00968 to SW00975 | Same as above.               |                                  |        |  |
| Rack 3, Slot 4 Information    | SW00976 to SW00983 | Same as above.               |                                  |        |  |
| Rack 3, Slot 5 Information    | SW00984 to SW00991 | Same as above.               |                                  |        |  |
| Rack 3, Slot 6 Information    | SW00992 to SW00999 | Same as above.               |                                  |        |  |
| Rack 3, Slot 7 Information    | SW01000 to SW01007 | Same as above.               |                                  |        |  |
| Rack 3, Slot 8 Information    | SW01008 to SW01015 | Same as above.               |                                  |        |  |
| Rack 3, Slot 9 Information    | SW01016 to SW01023 | 3 Same as above.             |                                  |        |  |
|                               | SW01024            | Module ID                    |                                  |        |  |
|                               | SW01025            | Hardware Version (B          | SCD)                             |        |  |
|                               | SW01026            | Software Version (BCD)       |                                  |        |  |
| Rack 4, Slot 1 Information    | SW01027            | Number of Subslots           |                                  |        |  |
| Nack 4, Olot 1 Illioilliation | SW01028            | Subslot 1 Function Module ID |                                  |        |  |
|                               | SW01029            | Subslot 1 Function I         | Module Status                    |        |  |
|                               | SW01030            | Subslot 2 Function I         | Module ID                        |        |  |
|                               | SW01031            | Subslot 2 Function I         | Module Status                    |        |  |
| Rack 4, Slot 2 Information    | SW01032 to SW01039 | Same as above.               |                                  |        |  |
| Rack 4, Slot 3 Information    | SW01040 to SW01047 | Same as above.               |                                  |        |  |
| Rack 4, Slot 4 Information    | SW01048 to SW01055 | Same as above.               |                                  |        |  |
| Rack 4, Slot 5 Information    | SW01056 to SW01063 | Same as above.               |                                  |        |  |
| Rack 4, Slot 6 Information    | SW01064 to SW01071 | Same as above.               |                                  |        |  |
| Rack 4, Slot 7 Information    | SW01072 to SW01079 | Same as above.               |                                  |        |  |
| Rack 4, Slot 8 Information    | SW01080 to SW01087 | Same as above.               |                                  |        |  |
| Rack 4, Slot 9 Information    | SW01088 to SW01095 | Same as above.               |                                  |        |  |

#### 8.2.5 Motion Program Alarms

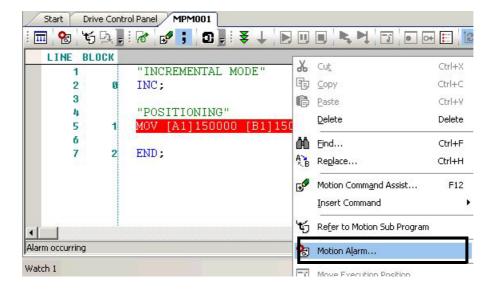
If a motion program alarm occurs, find the cause of alarm indicated by the alarm code.

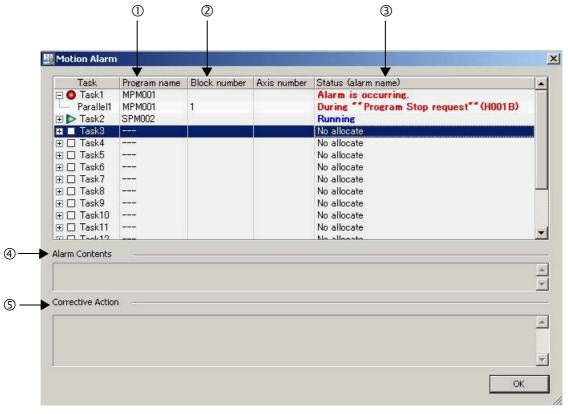
The alarm code, alarm name, and its corrective actions in a motion program can be checked on the **Motion Alarm** Window.


This section explains the Motion Alarm Window and motion alarm codes:

#### (1) Motion Alarm Window

The following two options are available for displaying the **Motion Alarm** Window.


#### [a] Open from Drive Control Panel Tab


Right-click any cell in the **Drive Control Panel** Tab Page. Click the **Motion Alarm** Button in the pop-up menu that will appear.



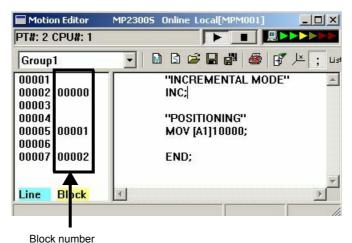
#### [ b ] Open from Right-click Menu on the Motion Editor

Select *Motion Alarm* from the menu displayed by right-clicking on the motion editor.





#### ① Program number


The name of the program where an error occurred is shown.

#### ② Block number

The number of the block where an error occurred is shown.

Double-clicking the number will bring you to the corresponding program where the error occurred.

The block number is shown in the motion editor.



3 Status (alarm name)

The alarm name is shown.

#### **4** Alarm Contents

The alarm content are shown.

#### S Corrective Action

Corrective actions for the alarm are shown.

## (2) Motion Program Alarm Codes

#### (a) Configuration of Motion Program Alarms

The following diagram shows the configuration of alarms.

| Bit15 | Bit12                     | Bit8                        | Bit7    |               |                           | Bit0     |
|-------|---------------------------|-----------------------------|---------|---------------|---------------------------|----------|
|       | Alarm occu<br>information | urrence axis<br>n (1 to 16) | Alarm ( | code (When Bi | I<br>it 7 is ON: Axi<br>I | s alarm) |

#### (b) Alarm Code List for Motion Program

The following table shows the alarm codes of motion programs.

| Alarm<br>Code                                | Name                                                       | Description                                                                                                  | Corrective Actions                                                                                                                                                          |
|----------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02h                                          | Division error                                             | Data divided by 0                                                                                            | Review the motion program.                                                                                                                                                  |
| 10h A circle instead of radius was specified |                                                            | Turn number was specified instead of radius in the circular arc or helical interpolation command.            | <ul> <li>Designate a center coordinate instead of a radius to perform the circular arc or helical interpolation command.</li> <li>Never specify the turn number.</li> </ul> |
| 11h                                          | Interpolation feeding speed over limit                     | Interpolation feeding speed exceeded the valid range of the FMX command.                                     | Modify the interpolation feeding speed of the interpolation command                                                                                                         |
| 12h                                          | No interpolation feeding speed specified                   | No interpolation feeding speed was specified. (once specified, this can be omitted as in the motion program) | Specify the interpolation feeding speed in the interpolation command.                                                                                                       |
| 13h                                          | Range exceeded after converting acceleration parameter     | Indirect acceleration parameter exceeded the valid range.                                                    | Change the indirect register value.                                                                                                                                         |
| 14h                                          | Circular arc length exceeded LONG_MAX                      | Circular arc length exceeded the valid range in the circular arc or helical interpolation command.           | Review the circular arc length in the circular arc or helical interpolation command.                                                                                        |
| 15h                                          | Vertical axis not speci-<br>fied for circular arc<br>plane | Vertical axis was not specified in the circular arc or helical interpolation command.                        | Use PLN command to specify the axis.                                                                                                                                        |
| 16h                                          | Horizontal axis not specified for circular arc plane       | Horizontal axis was not specified in the circular arc or helical interpolation command.                      | Use PLN command to specify the axis.                                                                                                                                        |
| 17h                                          | Specified axis over limit                                  | Too many axes were configured in the circular arc (two axes) or helical (three axes) interpolation command.  | Modify the axis in the circular arc or helical interpolation command.                                                                                                       |
| 18h                                          | Turn number over limit                                     | Turn number exceeded the valid range in the circular arc or helical interpolation command.                   | Modify the turn number in the circular arc or helical interpolation command.                                                                                                |
| 19h                                          | Radius exceeded<br>LONG_MAX                                | Radius exceeded the valid range in the circular arc or helical interpolation command.                        | Review the radius in the circular arc or helical interpolation command.                                                                                                     |
| 1Ah                                          | Center point error                                         | Improper center point was specified in the circular arc or helical interpolation command.                    | Specify the center point properly in the circular arc or helical interpolation command.                                                                                     |
| 1Bh                                          | Running emergency stop command                             | Axis move command stopped due to a program stop request.                                                     | Turn OFF the program stop request for the motion program control signal, and turn ON the alarm reset request.                                                               |
| 1Ch                                          | Linear interpolation<br>moving amount<br>exceeded LONG_MAX | Moving amount exceeded the valid range in the linear interpolation command.                                  | Review the moving amount in the linear interpolation command.                                                                                                               |
| 1Dh                                          | FMX undefined                                              | FMX command not executed in the motion program containing an interpolation command.                          | Execute an FMX command. The FMX command is required in each program containing an interpolation command.                                                                    |
| 1Eh                                          | Address T out of range                                     | Designation exceeded the valid range in the IAC/IDC/FMX commands.                                            | Review the setting in the IAC/IDC/FMX command.                                                                                                                              |
| 1Fh                                          | Address P out of range                                     | Designation exceeded the valid range in the IFP command.                                                     | Review the setting in the IFP command.                                                                                                                                      |

| Alarm<br>Code | Name                                                    | Description                                                                                                                      | Corrective Actions                                                                                                                                                                                                                                   |
|---------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21h           | PFORK execution error                                   | A motion command was instructed simultaneously at the second line in the PFORK of both a source motion program and a subprogram. | Review the source motion program or sub-<br>program.                                                                                                                                                                                                 |
| 22h           | Indirect register range error                           | Specified register address exceeds the register size range.                                                                      | Review the motion program.                                                                                                                                                                                                                           |
| 23h           | Moving amount out of range                              | Axis moving amount with decimal point for an axis move command exceeded the possible range.                                      | Review the axis moving amount.                                                                                                                                                                                                                       |
| 80h           | Use of logical axis pro-<br>hibited                     | Multiple motion commands instructed against the same axis at the same time.                                                      | Review the motion program.                                                                                                                                                                                                                           |
| 81h           | Designation exceeded POSMAX in the infinite length axis | Moving distance designation exceeded POS-<br>MAX in the infinite length axis.                                                    | Modify a fixed parameter "Maximum infinite length axis counter"     Review the motion program.                                                                                                                                                       |
| 82h           | Axis moving distance exceeded LONG_MAX                  | Axis moving distance designation exceeded the valid range.                                                                       | Review the motion program.                                                                                                                                                                                                                           |
| 84h           | Duplicated motion com-<br>mand                          | Multiple commands were executed against a single axis.                                                                           | Check whether another program gave a command to the same axis at the same time. If so, review the program.                                                                                                                                           |
| 85h           | Motion command response error                           | A motion command response different from that instructed by the motion command is reported from a motion module.                 | <ul> <li>Remove the alarm cause from the destination axis.</li> <li>If the servo is not turned ON, turn ON the servo.</li> <li>Check whether another program gave a command to the same axis at the same time. If so, review the program.</li> </ul> |
| 87h           | VEL setting data out of range                           | An instruction in the VEL command exceeded the valid range.                                                                      | Review the VEL command.                                                                                                                                                                                                                              |
| 88h           | INP setting data out of range                           | An instruction in the INP command exceeded the valid range.                                                                      | Review the INP command.                                                                                                                                                                                                                              |
| 89h           | ACC/SCC/DCC setting data out of range                   | An instruction in the ACC/SCC/DCC command exceeded the valid range.                                                              | Review the ACC/SCC/DCC command.                                                                                                                                                                                                                      |
| 8Ah           | No time specified in the MVT command                    | T designation in the MVT command was zero.                                                                                       | Review the MVT command.                                                                                                                                                                                                                              |
| 8Bh           | Command execution disabled                              | A motion command which cannot be executed by the destination motion module was instructed.                                       | Review the motion program.                                                                                                                                                                                                                           |
| 8Ch           | Distribution incompleted                                | A motion command was executed when a motion module was not in the Distribution Completed state.                                  | Review the motion program so that a motion command is executed in the Distribution Completed state.                                                                                                                                                  |
| 8Dh           | Motion command abnormally aborted                       | Motion module fell into the "Motion command abnormally aborted" state.                                                           | Release the destination axis error.     Review the motion program.                                                                                                                                                                                   |

## 8.2.6 List of Causes for Command Error Completed Status

The Command Error Completed Status ( $IW\square\square09$ , bit 3) turns ON when the set motion command cannot be executed for some reasons or the execution of motion command ended with error. The cause for which this bit turns ON differ depending on motion command.

The following table shows the causes of Command Error Completed Status by motion command.

|   | Motion Command Code              | Cause of Command Error Occurrence                                                                                                   | Warning (W:) and Alarm (A:) That Occur at Command Error Occurrence |
|---|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|   | Positioning                      | The positioning moving amount exceeds the allowable range.                                                                          | A: Excessive Positioning Moving<br>Amount                          |
|   |                                  | The axis is a ABS infinite-length, and the zero point return setting is not completed                                               | A: Zero Point Not Set                                              |
| 1 | (POSING)                         | In servo OFF status                                                                                                                 | A: Servo OFF                                                       |
|   |                                  | Alarm is occurring.                                                                                                                 | 1                                                                  |
|   |                                  | Asynchronous communication status                                                                                                   | A: Servo Driver Synchronization Communication Error                |
|   |                                  | The positioning moving amount exceeds the allowable range.                                                                          | A: Excessive Positioning Moving<br>Amount                          |
|   |                                  | The axis is a ABS infinite-length, and the zero point return setting is not completed                                               | A: Zero Point Not Set                                              |
|   |                                  | In servo OFF status                                                                                                                 | A: Servo OFF                                                       |
|   |                                  | Alarm is occurring.                                                                                                                 | ı                                                                  |
| 2 | External Positioning (EX_POSING) | Asynchronous communication status                                                                                                   | A: Servo Driver Synchronization Communication Error                |
|   |                                  | SERVOPACK parameter writing was not completed within the specified time.                                                            | A: Servo Driver Command Timeout<br>Error                           |
|   |                                  | Warning A.94 or A.95 occurred in the SERVOPACK.                                                                                     | W: Servo Driver Error                                              |
|   |                                  | The selected external signal is out of the setting range.                                                                           | W: Setting Parameter Error                                         |
|   |                                  | In machine lock status                                                                                                              | _                                                                  |
|   |                                  | In servo OFF status                                                                                                                 | A: Servo OFF                                                       |
|   |                                  | An alarm is occurring.                                                                                                              | _                                                                  |
|   |                                  | Asynchronous communication status                                                                                                   | A: Servo Driver Synchronization Communication Error                |
|   |                                  | SERVOPACK parameter reading or writing was not completed within the specified time.                                                 | A: Servo Driver Command Timeout<br>Error                           |
| 3 | Zero Point Return                | Warning A.94 or A.95 is occurring in the SERVOPACK.                                                                                 | W: Servo Driver Error                                              |
|   | (ZRET)                           | The selected zero point return method is out of the setting range.                                                                  | W: Setting Parameter Error                                         |
|   |                                  | POT method is selected for zero point return, but the approach speed is a negative value.                                           | W: Setting Parameter Error                                         |
|   |                                  | NOT method is selected for zero point return, but the approach speed is a positive value.                                           | W: Setting Parameter Error                                         |
|   |                                  | During zero point return using DEC1 + Phase-C, ZERO signal, or Phase-C method, the OT signal in zero point return direction was ON. | OT Alarm or OT Warning in Zero Point<br>Return Direction           |

|    | Motion Command Code                                     | Cause of Command Error Occurrence                                                                                                                                                        | Warning (W:) and Alarm (A:) That Occur at Command Error Occurrence |
|----|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 4  | Interpolation                                           | The commanded moving distance for one scan exceeds the segment that can be commanded to the MECHATROLINK SERVOPACK, or the speed feed forward value exceeds the allowable maximum speed. | A: Excessive Speed                                                 |
| 5  | (INTERPOLATE) Interpolation last segment                | The axis is ABS infinite length, and the zero point return (setting) is not completed.                                                                                                   | A: Zero Point Not Set                                              |
|    | (ENDOF_INTERPOLATE)                                     | In servo OFF status                                                                                                                                                                      | A: Servo OFF                                                       |
|    |                                                         | An alarm is occurring.                                                                                                                                                                   | _                                                                  |
|    |                                                         | Asynchronous communication status                                                                                                                                                        | A: Servo Driver Synchronization Communication Error                |
|    |                                                         | The commanded moving amount for one scan exceeds the segment that can be commanded to the MECHATROLINK SERVOPACK, or the                                                                 | A: Excessive Speed                                                 |
|    |                                                         | speed feed forward value exceeds the allowable maximum speed.                                                                                                                            |                                                                    |
| 6  | Latch<br>(LATCH)                                        | The axis is ABS infinite length, and the zero point return (setting) is not completed.                                                                                                   | A: Zero Point Not Set                                              |
|    |                                                         | In servo OFF status                                                                                                                                                                      | A: Servo OFF                                                       |
|    |                                                         | An alarm is occurring.                                                                                                                                                                   | _                                                                  |
|    |                                                         | The selected latch signal is out of the setting range.                                                                                                                                   | W: Setting Parameter Error                                         |
|    |                                                         | In machine lock status                                                                                                                                                                   | _                                                                  |
|    | JOG Operation                                           | In servo OFF status                                                                                                                                                                      | A: Servo OFF                                                       |
| 7  | (FEED)                                                  | An alarm is occurring.                                                                                                                                                                   | _                                                                  |
|    |                                                         | Asynchronous communication status                                                                                                                                                        | A: Servo Driver Synchronization Communication Error                |
|    |                                                         | Positioning moving amount exceeds the allowable value.                                                                                                                                   | A: Excessive Positioning Moving<br>Amount                          |
| 8  | STEP operation                                          | In servo OFF status                                                                                                                                                                      | A: Servo OFF                                                       |
| "  | (STEP)                                                  | An alarm is occurring.                                                                                                                                                                   | _                                                                  |
|    |                                                         | Asynchronous communication status                                                                                                                                                        | A: Servo Driver Synchronization Communication Error                |
|    | Zero Point setting                                      | An alarm is occurring.                                                                                                                                                                   | _                                                                  |
| 9  | (ZSET)                                                  | Asynchronized communication status                                                                                                                                                       | A: Servo Driver Synchronization Communication Error                |
|    |                                                         | An alarm is occurring.                                                                                                                                                                   | -                                                                  |
|    | Change Assolutetion Time                                | Asynchronous communication status                                                                                                                                                        | A: Servo Driver Synchronization Communication Error                |
| 10 | Change Acceleration Time (ACC) Change Deceleration Time | Executed while the distribution has not been completed (DEN = OFF)                                                                                                                       | -                                                                  |
| 11 | (DCC)                                                   | SERVOPACK parameter writing was not completed within the specified time.                                                                                                                 | A: Servo Command Timeout Error                                     |
|    |                                                         | Warning A.94 or A.95 occurred in the SERVOPACK.                                                                                                                                          | W: Servo Driver Error                                              |
|    |                                                         | An alarm is occurring.                                                                                                                                                                   | -                                                                  |
|    |                                                         | Asynchronous communication status                                                                                                                                                        | A: Servo Driver Synchronization Communication Error                |
| 12 | Change Filter Time Constant                             | Executed while the distribution has not been completed (DEN = OFF)                                                                                                                       | A: Filter Time Constant Change Error                               |
|    | (SCC)                                                   | SERVOPACK parameter writing was not completed within the specified time.                                                                                                                 | A: Servo Driver Command Timeout<br>Error                           |
|    |                                                         | Warning A.94 or A.95 occurred in the SERVOPACK.                                                                                                                                          | W: Servo Driver Error                                              |

|         | Motion Command Code                                                           | Cause of Command Error Occurrence                                                      | Warning (W:) and Alarm (A:) That Occur at Command Error Occurrence |
|---------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|         |                                                                               | An alarm is occurring.                                                                 | -                                                                  |
|         | Change Filter Type                                                            | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |
| 13      | Change Filter Type (CHG_FILTER)                                               | Executed while the distribution has not been completed (DEN = OFF).                    | A: Filter Time Constant Change Error                               |
|         |                                                                               | The selected filter type is out of the setting range.                                  | W: Setting Parameter Error                                         |
|         | Change Speed Loop Gain                                                        | An alarm is occurring.                                                                 | _                                                                  |
| 14<br>• | (KVS)<br>Change Position Loop Gain                                            | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |
| 15      | (KPS) Change Speed Feed                                                       | SERVOPACK parameter writing was not completed within the specified time.               | A: Servo Driver Command Timeout<br>Error                           |
| 16      | Forward<br>(KFS)                                                              | Warning A.94 or A.95 occurred in the SERVOPACK.                                        | W: Servo Driver Error                                              |
|         |                                                                               | An alarm is occurring.                                                                 | _                                                                  |
|         | Read SERVOPACK Parameter                                                      | Asynchronized communication status                                                     | A: Servo Driver Synchronization Communication Error                |
| 17      | (PRM_RD) Write SERVOPACK                                                      | SERVOPACK parameter reading was not completed within the specified time.               | A: Servo Driver Command Timeout<br>Error                           |
| 18      | Parameter (PRM_WR)                                                            | Warning A.94 or A.95 occurred in the SERVOPACK.                                        | W: Servo Driver Error                                              |
|         |                                                                               | SERVOPACK parameter number or size is out of the setting range.                        | W: Setting Parameter Error                                         |
| 19      | Monitor SERVOPACK Alarms (ALM_MON) Monitor SERVOPACK Alarm History (ALM_HIST) | The command to the SERVOPACK was not completed within the specified time.              | A: Servo Driver Command Timeout<br>Error                           |
| 20      |                                                                               | Servo driver alarm monitor number is out of setting range.                             | W: Setting Parameter Error                                         |
| 21      | Clear SERVOPACK Alarm<br>History<br>(ALMHIST_CLR)                             | The command to the SERVOPACK was not completed within the specified time.              | A: Servo Driver Command Timeout<br>Error                           |
|         |                                                                               | This command was used for $\Sigma$ -I SERVOPACK.                                       | _                                                                  |
|         |                                                                               | Executed while servo is ON.                                                            | -                                                                  |
| 22      | Reset Absolute Encoder (ABS_RST)                                              | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |
|         |                                                                               | The command to the SERVOPACK was not completed within the specified time.              | A: Servo Driver Command Timeout<br>Error                           |
|         | Speed Reference                                                               | Commanded when having been connected to MECHATROLINK-I                                 | _                                                                  |
| 23      | (VELO)                                                                        | An alarm is occurring.                                                                 | 1                                                                  |
|         | ·/                                                                            | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |
|         | Torque Reference                                                              | Commanded when having been connected to MECHATROLINK-I                                 | -                                                                  |
| 24      | (TRQ)                                                                         | An alarm is occurring                                                                  | 1                                                                  |
|         |                                                                               | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |
|         |                                                                               | The axis is ABS infinite length, and the zero point return (setting) is not completed. | A: Zero Point Not Set                                              |
| 25      | Phase Reference                                                               | In servo OFF status                                                                    | A: Servo OFF                                                       |
| 20      | (PHASE)                                                                       | An alarm is occurring.                                                                 | -                                                                  |
|         |                                                                               | Asynchronous communication status                                                      | A: Servo Driver Synchronization Communication Error                |

|    | Motion Command Code                                        | Cause of Command Error Occurrence                                        | Warning (W:) and Alarm (A:) That Occur at Command Error Occurrence |  |
|----|------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|--|
|    | Change Position Loop<br>Integration Time Constant<br>(KIS) | An alarm is occurring.                                                   | _                                                                  |  |
|    |                                                            | Asynchronous communication status                                        | A: Servo Driver Synchronization Communication Error                |  |
| 26 |                                                            | SERVOPACK parameter writing was not completed within the specified time. | A: Servo Driver Command Timeout<br>Error                           |  |
|    |                                                            | Warning A.94 or A.95 occurred in the SERVOPACK.                          | W: Servo Driver Error                                              |  |
|    | Others Parameter Automatic Updating when                   | An alarm is occurring.                                                   | -                                                                  |  |
|    |                                                            | Asynchronous communication status                                        | A: Servo Driver Synchronization Communication Error                |  |
|    |                                                            | SERVOPACK parameter writing was not completed within the specified time. | A: Servo Driver Command Timeout<br>Error                           |  |
|    | Execution of Move<br>Command Starts*                       | Warning A.94 or A.95 occurred in the SERVOPACK.                          | W: Servo Driver Error                                              |  |
|    |                                                            | The distribution was not completed (DEN =                                |                                                                    |  |

When the fixed parameter Automatic Updating of Parameter was enabled, and the setting of Filter Time Constant, Acceleration Rate/Time, or Deceleration Rate/Time was changed at the time a move command was set

OFF).

## 8.2.7 Troubleshooting Motion Errors

Motion errors in the MP2000-series Machine Controller include axis alarms detected for individual SERVOPACKs. The failure location can be determined and appropriate corrections can be taken simply by checking the contents of the Warning (IL□□02) and Alarm (IL□□04) monitoring parameters.

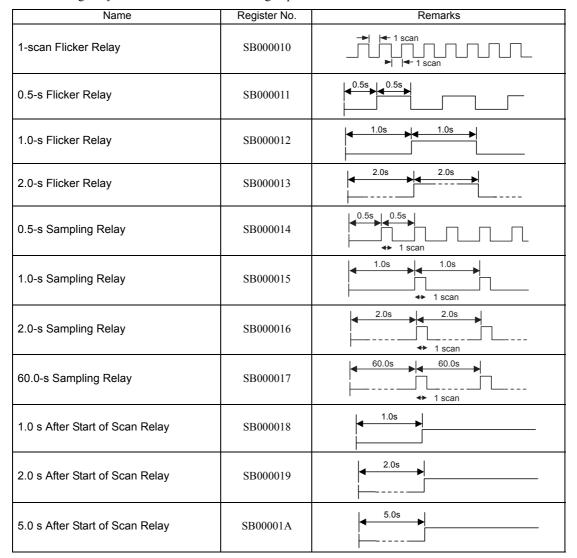
Refer to 12.5 Troubleshooting Motion Errors in the Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module User's Manual (manual no.: SIEP C880700 33) for details.

# **Appendices**

| Α | System Registers Lists                                             | A-2  |
|---|--------------------------------------------------------------------|------|
|   | A.1 System Service Registers                                       | A-2  |
|   | A.2 Scan Execution Status and Calendar                             | A-4  |
|   | A.3 Program Software Numbers and Remaining Program Memory Capacity | A-4  |
| В | SVR Motion Parameter Details                                       | A-5  |
|   | B.1 Fixed Parameter List                                           | A-5  |
|   | B.2 Setting Parameter List                                         | A-7  |
|   | B.3 Monitoring Parameter List                                      | A-12 |
| С | Simple Connection Function of the Engineering Tool                 |      |
|   | (Supported by the CPU-03 and CPU-04)                               | A-16 |
|   | C.1 Preparation                                                    | A-16 |
|   | C.2 Procedure                                                      | A-16 |
| D | MSG-SND/ MSG-RCV Functions (Ethernet)                              | A-20 |
|   | D.1 Message Send Function (MSG-SND)                                | A-20 |
|   | D.2 Message Receive Function (MSG-RCV)                             | A-53 |
|   | D.3 Communication Buffer Channel                                   | A-83 |
| Ε | Optional Functions                                                 | A-85 |
|   | E.1 Clearing D Registers at Startup                                | A-85 |
|   | E.2 Security                                                       |      |
|   | E.3 Battery Backup for Table Data                                  | A-94 |
| F | Installing MPE720 Version 6                                        | A-98 |

## Appendix A System Registers Lists

## A.1 System Service Registers


#### (1) Shared by All Drawings

| Name                   | Register No.            | Remarks                                                                                                       |
|------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| Reserved by the system | SB000000                | (Not used)                                                                                                    |
| High-speed Scan        | SB000001                | ON for only one scan after high-speed scan is started after turning ON the power supply.                      |
| Reserved by the system | SB000002                | (Not used)                                                                                                    |
| Low-speed Scan         | SB000003                | ON for only one scan after low-speed scan is started after turning ON the power supply.                       |
| Always ON              | SB000004                | Always ON (= 1)                                                                                               |
| High-speed scan 2      | SB000005                | ON for only one scan after the start of a high-speed scan that is begun after a CPU Module operation starts.* |
| Low-speed scan 2       | SB000006                | ON for only one scan after the start of a low-speed scan that is begun after a CPU Module operation starts.*  |
| High-speed Scan Flag   | SB000007                | ON during execution of the high-speed scan.                                                                   |
| Reserved by the system | SB000008 to<br>SB00000F | (Not used)                                                                                                    |

<sup>\*</sup> Does not include when MPE720 version 2.75 or earlier is used to execute a batch load or to clear the memory before starting the CPU Module.

#### (2) DWG.H Only

The following relays are reset at the start of the high-speed scan.



## ■ DWG.L Only

The following relays are reset at the start of the low-speed scan.

| Name                            | Register No. | Remarks                  |
|---------------------------------|--------------|--------------------------|
| One-scan Flicker Relay          | SB000030     | 1 scan                   |
| 0.5-s Flicker Relay             | SB000031     | 0.5s                     |
| 1.0-s Flicker Relay             | SB000032     | 1.0s 1.0s                |
| 2.0-s Flicker Relay             | SB000033     | 2.0s                     |
| 0.5-s Sampling Relay            | SB000034     | 0.5s 0.5s 1 scan         |
| 1.0-s Sampling Relay            | SB000035     | 1.0s 1.0s + 1 scan       |
| 2.0-s Sampling Relay            | SB000036     | 2.0s 2.0s 4 1 scan       |
| 60.0-s Sampling Relay           | SB000037     | 60.0s 60.0s 60.0s 1 scan |
| 1.0 s After Start of Scan Relay | SB000038     | 1.0s                     |
| 2.0 s After Start of Scan Relay | SB000039     | 2.0s                     |
| 5.0 s After Start of Scan Relay | SB00003A     | 5.0s                     |

## A.2 Scan Execution Status and Calendar

| Name                          | Register No.             | Remarks                                 |
|-------------------------------|--------------------------|-----------------------------------------|
| High-speed Scan Set Value     | SW00004                  | High-speed Scan Set Value (0.1 ms)      |
| High-speed Scan Current Value | SW00005                  | High-speed Scan Current Value (0.1 ms)  |
| High-speed Scan Maximum Value | SW00006                  | High-speed Scan Maximum Value (0.1 ms)  |
| Reserved by the system.       | SW00007<br>to<br>SW00009 | (Not used)                              |
| Low-speed Scan Set Value      | SW00010                  | Low-speed Scan Set Value (0.1 ms)       |
| Low-speed Scan Current Value  | SW00011                  | Low-speed Scan Current Value (0.1 ms)   |
| Low-speed Scan Maximum Value  | SW00012                  | Low-speed Scan Maximum Value (0.1 ms)   |
| Reserved by the system.       | SW00013                  | (Not used)                              |
| Executing Scan Current Value  | SW00014                  | Executing Scan Current Value (0.1 ms)   |
| Calendar: Year                | SW00015                  | 1999: 0099 (BCD) (Last two digits only) |
| Calendar: Month Day           | SW00016                  | December 31: 1231 (BCD)                 |
| Calendar: Hours Minutes       | SW00017                  | 23 hours 59 minutes: 2359 (BCD)         |
| Calendar: Seconds             | SW00018                  | 59 s: 59 (BCD)                          |
| Calendar: Day of Week         | SW00019                  | 0 to 6: Sun., Mon. to Sat.              |

## A.3 Program Software Numbers and Remaining Program Memory Capacity

| Name                              | Register No.             | Remarks                       |
|-----------------------------------|--------------------------|-------------------------------|
| System Program Software Number    | SW00020                  | S□□□□ (□□□□ is stored as BCD) |
| Reserved by the system.           | SW00021<br>to<br>SW00025 | (Not used)                    |
| Remaining Program Memory Capacity | SL00026                  | Bytes                         |
| Total Memory Capacity             | SL00028                  | Bytes                         |

## pendices

## Appendix B SVR Motion Parameter Details

### B.1 Fixed Parameter List

The following table lists the SVR motion fixed parameters. (Use this list as reference for the SVB.)

| Slot<br>Number | Name                                                      | Contents                                                                                                                                              | SVB | SVR |
|----------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|                |                                                           | 0: Normal Operation Mode                                                                                                                              | Yes | Yes |
|                |                                                           | 1: Axis Unused                                                                                                                                        | Yes | Yes |
| 0              | Selection of Operation Modes                              | 2: Simulation Mode                                                                                                                                    | Yes |     |
|                | 3: Servo Driver Transmission Reference Mode               | Yes                                                                                                                                                   |     |     |
|                | 4 and 5: Reserved                                         | _                                                                                                                                                     | _   |     |
|                |                                                           | Bit 0: Axis Selection (0: Finite length axis/1: Infinite length axis)  • Set to 0 for linear type.                                                    | Yes | Yes |
|                |                                                           | Bit 1: Soft Limit (Positive Direction) Enable/Disable                                                                                                 | Yes |     |
|                | Bit 2: Soft Limit (Negative Direction) Enable/Disable     | Yes                                                                                                                                                   |     |     |
|                |                                                           | Bit 3: Overtravel Positive Direction Enable/Disable                                                                                                   | Yes |     |
|                |                                                           | Bit 4: Overtravel Negative Direction Enable/Disable                                                                                                   | Yes |     |
| 1              | Function Selection Flag 1                                 | Bits 5 to 7: Reserved                                                                                                                                 | _   | _   |
|                |                                                           | Bit 8: Interpolation Segment Distribution Processing                                                                                                  | Yes |     |
|                |                                                           | Bit 9: Simple ABS Rotary Pos. Mode (Simple Absolute Infinite Axis Position Control) (0: Disabled/1: Enabled)  • Set to 0 for linear type.             | Yes |     |
|                |                                                           | Bit A: User Constants Self-writing Function                                                                                                           | Yes |     |
|                |                                                           | Bits B to F: Reserved                                                                                                                                 |     |     |
|                |                                                           | Bit 0: Communication Abnormality Detection Mask                                                                                                       | Yes |     |
| 2              | Function Selection Flag 2                                 | Bit 1: WDT Abnormality Detection Mask                                                                                                                 | Yes |     |
|                |                                                           | Bits 2 to F: Reserved for system use.                                                                                                                 | _   | _   |
| 3              | _                                                         | Reserved                                                                                                                                              | _   | _   |
| 4              | Reference Unit Selection                                  | 0: pulse, 1: mm, 2: deg, 3: inch, 4:μm  • For linear type, only valid for 0: pulse, 1: mm, 4: μm.  When 2: deg, 3: inch is set, converted into 1: mm. | Yes | Yes |
| 5              | Number of Digits below Decimal Places                     | 1 = 1 digit                                                                                                                                           | Yes | Yes |
| 6              | Travel Distance per Machine<br>Rotation<br>(Rotary Motor) | 1 = 1 reference unit                                                                                                                                  | Yes | Yes |
|                | Linear Scale Pitch<br>(Linear Type)                       | 1 = 1 reference unit                                                                                                                                  | Yes | Yes |
| 8              | Servo Motor Gear Ratio                                    | 1 = 1 rotation • Invalid for linear type.                                                                                                             | Yes | Yes |
| 9              | Machine Gear Ratio                                        | <ul><li>1 = 1 rotation</li><li>Invalid for linear type.</li></ul>                                                                                     | Yes | Yes |
| 10             | Infinite Length Axis Reset Position (POSMAX)              | <ul><li>1 = 1 reference units</li><li>• Invalid for linear type.</li></ul>                                                                            | Yes | Yes |
| 12             | Positive Software Limit Value                             | 1 = 1 reference unit                                                                                                                                  | Yes |     |
| 14             | Negative Software Limit Value                             | 1 = 1 reference unit                                                                                                                                  | Yes |     |
| 16             | Backlash Compensation<br>Amount                           | 1 = 1 reference unit                                                                                                                                  | Yes |     |
| 18 to 29       |                                                           | Reserved                                                                                                                                              | -   | -   |
| 30             | Encoder Selection                                         | 0: Incremental Encoder 1: Absolute Encoder 2: Absolute Encoder (Incremental encoder is used.) 3: Reserved                                             | Yes |     |
|                | _                                                         | Reserved                                                                                                                                              | -   |     |

## B.1 Fixed Parameter List

| Slot<br>Number | Name                                                     | Contents                                                                                                                        | SVB | SVR |
|----------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 34             | Rated Motor Speed<br>(Rotary Motor)                      | 1 = 1 min <sup>-1</sup>                                                                                                         | Yes | Yes |
| 34             | Rated Speed<br>(Linear Type)                             | 1 = 0.1 m/s, 0.1 mm/s                                                                                                           | Yes | Yes |
| 36             | Number of Pulses per Motor<br>Rotation (Rotary Motor)    | 1 = 1 pulse/rev<br>Set the value after multiplication.                                                                          | Yes | Yes |
| N              | Number of Pulses per Linear<br>Scale Pitch (Linear Type) | 1 = 1 pulse/scale pitch                                                                                                         | Yes | Yes |
| 38             | Maximum Number of Absolute<br>Encoder Turns Rotation     | <ul> <li>1 = 1 rotation</li> <li>Set to 0 when a direct drive motor is being used.</li> <li>Invalid for linear type.</li> </ul> | Yes |     |
| 40 to 41       | _                                                        | Reserved                                                                                                                        | _   | _   |
| 42             | Feedback Speed Movement Averaging Time Constant          | 1 = 1 ms                                                                                                                        | Yes | Yes |

## B.2 Setting Parameter List

The following table lists the SVR motion setting parameters. (Use this list as reference for the SVB.)

| Register No. | Name                            | Contents                                                                       | SVB | SVR      |
|--------------|---------------------------------|--------------------------------------------------------------------------------|-----|----------|
|              |                                 | Bit 0: Servo ON (0: OFF/1: ON)                                                 | Yes | Yes      |
|              |                                 | Bit 1: Machine Lock (0: Normal operation/1: Machine locked)                    | Yes |          |
|              |                                 | Bits 2 to 3: Reserved                                                          |     |          |
|              |                                 | Bit 4: Latch Detection Demand (0: OFF/1: ON)                                   | Yes |          |
|              | Bit 5: Reserved for system use. |                                                                                |     |          |
|              |                                 | Bit 6: POSMAX Turn Number Presetting Demand                                    |     |          |
|              |                                 | (0: OFF/1: ON)                                                                 | Yes | Yes      |
|              |                                 | • Set to 0 for linear type.                                                    |     |          |
|              | DUN Common d                    | Bit 7: Request ABS Rotary Pos. Load (Absolute System Infinite Length Posi-     | Yes |          |
| OW□□00       | RUN Command<br>Setting          | tion Information LOAD) (0: OFF/1: ON) • Set to 0 for linear type.              | 103 |          |
|              | Coung                           | Bit 8: Forward Outside Limiting Torque/Thrust Input                            |     |          |
|              |                                 | (Forward External Limiting Torque/Thrust Input) (0: OFF/1: ON)                 | Yes |          |
|              |                                 | Bit 9: Reverse Outside Limiting Torque/Thrust Input                            | Yes |          |
|              |                                 | (Reverse External Limiting Torque/Thrust Input) (0: OFF/1: ON)                 | 103 |          |
|              |                                 | Bit A: Reserved                                                                |     |          |
|              |                                 | Bit B: Integration Reset (0: OFF/1: ON)                                        | Yes |          |
|              |                                 | Bits C to D: Reserved                                                          |     |          |
|              |                                 | Bit E: Communication Reset (0: OFF/1: ON)                                      | Yes |          |
|              |                                 | Bit F: Alarm Clear (0: OFF/1: ON)                                              | Yes | Yes      |
|              |                                 | Bit 0: Excessive Deviation Error Level Setting                                 | Yes |          |
|              |                                 | (0: Alarm/1: Warning)                                                          |     |          |
|              |                                 | Bits 1 to 2: Reserved                                                          |     |          |
| OW□□01       | Mode Setting 1                  | Bit 3: Speed Loop P/PI Switch                                                  | Yes |          |
|              |                                 | Bit 4: Gain Switch                                                             | Yes |          |
|              |                                 | Bit 5: Gain Switch 2                                                           | Yes |          |
|              |                                 | Bits 6 to F: Reserved                                                          |     |          |
|              |                                 | Bit 0: Monitor 2 Enabled (0: Disabled/1: Enabled)                              | Yes |          |
|              |                                 | Bits 1 to 3: Reserved                                                          |     |          |
| OW□□02       | Mode Setting 2                  | Bits 4: Reserved                                                               |     |          |
|              |                                 | Bits 5 to 7: Reserved                                                          |     |          |
|              |                                 | Bits 8 to 15: Stop Mode Selection                                              | Yes |          |
|              |                                 | Bits 0 to 3: Speed Unit Selection                                              |     |          |
|              |                                 | 0: Reference unit/s                                                            | Vac | Vac      |
|              |                                 | 1: 10 <sup>n</sup> reference unit/min 2: Percentage of rated speed (1 = 0.01%) | Yes | Yes      |
|              |                                 | 3: Percentage of rated speed (1 = 0.001%)                                      |     |          |
|              |                                 | Bits 4 to 7: Acceleration/Deceleration Degree Unit Selection                   |     |          |
|              | Function Setting 1              | 0: Reference units/s <sup>2</sup>                                              | Yes | Yes      |
| OW□□03       |                                 | 1: ms                                                                          |     | <u> </u> |
|              |                                 | Bits 8 to B: Filter Type Selection                                             |     |          |
|              |                                 | 0: No filter                                                                   | Yes | Yes      |
|              |                                 | Exponential acceleration/deceleration filter     Moving average filter         |     |          |
|              |                                 | Bits C to F: Torque Unit Selection                                             |     | -        |
|              |                                 | 0: Percentage of rated toque (1 = 0.01%)                                       | Yes | Yes      |
| 1            |                                 | 1: Percentage of rated toque (1 = 0.0001%)                                     |     |          |

| Register No.                          | Name                       | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SVB | SVR |
|---------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|                                       |                            | Bits 0 to 3: Latch Detection Signal Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |
|                                       |                            | 0: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |
|                                       |                            | 1: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |
|                                       |                            | 2: Phase-C Pulse Input Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes |     |
|                                       | 3: /EXT1                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
|                                       | 4: /EXT2                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
|                                       | 5: /EXT3                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
| OW□□04                                | Function Setting 2         | Bits 4 to 7: External Positioning Signal Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |
|                                       | Tunction Setting 2         | 0:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
|                                       | 1: -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |
|                                       |                            | 2: Phase-C Pulse Input Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes |     |
|                                       | 3: /EXT1                   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
|                                       |                            | 4: /EXT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes |     |
|                                       |                            | 5: /EXT3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes |     |
|                                       |                            | Bits 8 to B: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |
|                                       | Bits C to F: Bank Selector | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |
| OW□□05 Function  OW□□06  to -  OW□□07 |                            | Bit 1: Phase Reference Creation Calculation Disable (0: Enabled/1: Disabled)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes |     |
|                                       | Function Setting 3         | Bits 2 to A: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |
|                                       |                            | Bit B: Zero Point Return Input Signal (0: OFF/1: ON)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes |     |
|                                       |                            | Bits C to F: Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |     |
|                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |
|                                       | _                          | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   | _   |
| OW□□08                                | Motion Command             | 0: NOP (No Command) 1: POSING (Position Mode)(Positioning) 2: EX_POSING (Latch Target Positioning)(External Positioning) 3: ZRET (Zero Point Return) 4: INTERPOLATE (Interpolation) 5: ENDOF_INTERPOLATE (Last Interpolation Segment) 6: LATCH (Interpolation Mode with Latch Input) 7: FEED (Jog Mode) 8: STEP (Relative Position Mode)(Step Mode) 9: ZSET (Set Zero Point) 10: ACC (Change Acceleration Time) 11: DCC (Change Deceleration Time) 12: SCC (Change Filter Time Constant) 13: CHG FILTER (Change Filter Type) 14: KVS (Change Speed Loop Gain) 15: KPS (Change Position Loop Gain) 16: KFS (Change Feed-Forward) 17: PRM_RD (Read User Constant)(Read SERVOPACK Parameter) 18: PRM_WR (Write User Constant)(Write SERVOPACK Parameter) 19: ALM_MON (Alarm Monitor) 20: ALM_HIST (Alarm History Monitor) 21: ALMHIST_CLR (Clear Alarm History) 22: ABS_RST (Absolute Encoder Reset) 23: VELO (Speed Reference) | Yes | Yes |
|                                       |                            | 24: TRQ (Torque/Thrust Reference) 25: PHASE (Phase Reference) 26: KIS (Change Position Loop Integral Time Constant) 27: PPRM_WR (Stored Parameter Write)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     |

| Register No.           | Name                                                                                   | Contents                                                                                                            | SVB | ont'a)<br>SVR |
|------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----|---------------|
| . 109.0101 110.        | Hamo                                                                                   | Bit 0: Holds a Command. (0: OFF/1: ON)                                                                              | Yes | Yes           |
|                        |                                                                                        | Bit 1: Interrupt a Command. (0: OFF/1: ON)                                                                          | Yes | Yes           |
|                        |                                                                                        | Bit 2: Moving Direction (JOG/ STEP)                                                                                 | 37  | 37            |
| Motion Command         |                                                                                        | (0: Forward rotation/1: Reverse rotation)                                                                           | Yes | Yes           |
|                        | Bit 3: Zero Point Return Direction Selection (0: Reverse rotation/1: Forward rotation) | Yes                                                                                                                 |     |               |
| OW□□09                 | Control Flag                                                                           | Bit 4: Latch Zone Effective Selection (0: Disabled/1: Enabled)                                                      | Yes |               |
|                        |                                                                                        | Bit 5: Position Reference Type (0: Incremental Addition Mode/1: Absolute Mode)                                      | Yes | Yes           |
|                        |                                                                                        | Bit 6: Phase Compensation Type (0: Incremental Addition Mode/1: Absolute Mode)                                      | Yes |               |
|                        |                                                                                        | Bits 7 to F: Reserved                                                                                               |     |               |
|                        |                                                                                        | 0: NOP (No Command)                                                                                                 | Yes | Yes           |
| OW□□0A                 | Motion Subcommand                                                                      | 1: PRM_RD (Read User Constant)(Read SERVOPACK Parameter) 2: PRM_WR (Write User Constant)(Write SERVOPACK Parameter) | Yes |               |
| OWLLOA                 | Wollon Subcommand                                                                      | 3: Reserved<br>4: SMON (Status Monitor)                                                                             | 103 |               |
|                        |                                                                                        | 5: FIXPRM_RD (Read Fixed Parameters)                                                                                | Yes | Yes           |
| OW□□0B                 | _                                                                                      | Reserved                                                                                                            |     |               |
| OL□□0C                 | Torque/Thrust<br>Reference Setting                                                     | Unit is according to OW□□03, bits 12 to 15 (Torque Unit).                                                           | Yes | Yes           |
| OWDD0E                 | Speed Limit Setting at the Torque/Thrust Reference                                     | 1 = 0.01% (percentage of rated speed)                                                                               | Yes |               |
| OW□□0F                 | -                                                                                      | Reserved                                                                                                            |     |               |
| OL□□10                 | Speed Reference<br>Setting                                                             | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                                              | Yes | Yes           |
| OW□□12<br>to<br>OW□□13 | -                                                                                      | Reserved                                                                                                            | _   | _             |
| OL□□14                 | Positive Side Limiting<br>Torque/Thrust<br>Setting at the Speed<br>Reference           | Unit is according to $OW \square \square 03$ , bits C to F (Torque Unit).                                           | Yes |               |
| OL□□16                 | Secondly Speed<br>Compensation                                                         | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                                              | Yes | Yes           |
| OW□□18                 | Override                                                                               | 1 = 0.01%                                                                                                           | Yes |               |
| OW□□19<br>to<br>OW□□1B | _                                                                                      | Reserved                                                                                                            | _   | -             |
| OL□□1C                 | Position Reference<br>Setting                                                          | 1 = 1 reference unit                                                                                                | Yes | Yes           |
| OLDD1E                 | Width of Positioning<br>Completion                                                     | 1 = 1 reference unit                                                                                                | Yes |               |
| OL□□20                 | NEAR Signal Output<br>Width                                                            | 1 = 1 reference unit                                                                                                | Yes |               |
| OL□□22                 | Error Count Alarm<br>Detection                                                         | 1 = 1 reference unit                                                                                                | Yes |               |
| OL□□24                 | _                                                                                      | Reserved for system use.                                                                                            | -   | _             |
| OW□□26                 | Position Complete<br>Cheek Time                                                        | 1 = 1 ms                                                                                                            | Yes |               |
| OW□□27                 | -                                                                                      | Reserved for system use.                                                                                            |     |               |
| OL□□28                 | Phase Correction<br>Setting                                                            | 1 = 1 reference unit                                                                                                | Yes |               |
| OL□□2A                 | Latch Zone Lower<br>Limit Setting                                                      | 1 = 1 reference unit                                                                                                | Yes |               |

| Desister N   | Na                                                            | Combanda                                                                                                                      | •          | onta) |
|--------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------|-------|
| Register No. | Name                                                          | Contents                                                                                                                      |            | SVR   |
| OL□□2C       | Latch Zone Upper<br>Limit Setting                             | 1 = 1 reference unit                                                                                                          |            |       |
| OW□□2E       | Position Loop Gain                                            | 1 = 0.1/s                                                                                                                     | Yes<br>Yes |       |
| OW□□2F       | Speed Loop Gain                                               | = 1 Hz                                                                                                                        |            |       |
| OW□□30       | Speed Feedforward<br>Amends                                   | = 0.01% (percentage of distribution segment)                                                                                  |            |       |
| OW□□31       | Speed<br>Compensation                                         | 1 = 0.01% (percentage of rated speed)                                                                                         | Yes        | Yes   |
| OW□□32       | Position Integration Time Constant                            | 1 = 1  ms                                                                                                                     | Yes        |       |
| OW□□33       | _                                                             | Reserved                                                                                                                      | _          | _     |
| OW□□34       | Speed Integration Time Constant                               | 1 = 0.01  ms                                                                                                                  | Yes        |       |
| OW□□35       | -                                                             | Reserved                                                                                                                      | -          | -     |
| OL□□36       | Straight Line Acceleration/ Acceleration Time Constant        | Unit is according to OW□□03, bits 4 to 7 (Speed Unit).                                                                        | Yes        | Yes   |
| OL□□38       | Straight Line Deceleration/ Deceleration Time Constant        | Unit is according to OW□□03, bits 4 to 7 (Speed Unit).                                                                        | Yes        | Yes   |
| OW□□3A       | Filter Time Constant                                          | 1 = 0.1  ms                                                                                                                   | Yes        | Yes   |
| OW□□3B       | Bias Speed for<br>Index<br>Deceleration/Acceleration Filter   | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                                                        |            | Yes   |
|              |                                                               | 0: DEC1 + C (DEC 1 and C-Phase) 1: ZERO (Zero signal) 2: DEC1 + ZERO (DEC 1 and zero signal) 3: C (C-pulse) 4 to 10: Reserved | Yes –      | _     |
| OW□□3C       | Zero Point Return<br>Method                                   | 11: C Pulse 12: POT & C Pulse 13: POT Only 14: HOME LS & C Pulse 15: HOME Only                                                | Yes        |       |
|              |                                                               | 16: NOT & C Pulse 17: NOT Only 18: INPUT & C Pulse 19: INPUT Only                                                             | Yes        |       |
| OW□□3D       | Width of Starting Point Position Output                       | 1 = 1 reference unit                                                                                                          | Yes        | Yes   |
| OL□□3E       | Approach Speed                                                | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                                                        | Yes        |       |
| OL□□40       | Creep Rate                                                    | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                                                        | Yes        |       |
| OL□□42       | Zero Point Return<br>Travel Distance                          | 1 = 1 reference unit                                                                                                          | Yes        |       |
| OL□□44       | STEP Travel<br>Distance                                       | 1 = 1 reference unit                                                                                                          | Yes        | Yes   |
| OL□□46       | External Positioning Final Travel Distance                    | 1 = 1 reference unit                                                                                                          | Yes        |       |
| OL□□48       | Zero Point Position in<br>Machine Coordinate<br>System Offset | 1 = 1 reference unit                                                                                                          | Yes        | Yes   |
| OL□□4A       | Work Coordinate<br>System Offset                              | 1 = 1 reference unit                                                                                                          | Yes        | Yes   |
| OL□□4C       | Number of<br>POSMAX Turns<br>Presetting Data                  | 1 = 1 reference unit • Invalid for linear type.                                                                               | Yes        | Yes   |

| Register No.           | Name                                                      | Contents                                                                                                                              |     | SVR |
|------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| OW□□4E                 | Servo User Monitor<br>Setting                             | Bits 0 to 3: Monitor 1 (Setting impossible) Bits 4 to 7: Monitor 2 Bits 8 to B: Monitor 3 (Setting impossible) Bits C to F: Monitor 4 |     |     |
| OW□□4F                 | Servo Driver Alarm<br>Monitor No.                         | Set the number of the alarm to monitor.                                                                                               |     |     |
| OW□□50                 | Servo Driver User<br>Constant No.                         | Set the number of the SERVOPACK parameter.                                                                                            | Yes |     |
| OW□□51                 | Servo Driver User<br>Constant Number<br>Size              | Set the number of words in the SERVOPACK parameter.                                                                                   | Yes |     |
| OL□□52                 | Servo Driver User<br>Constant Set Point                   | Set the setting for the SERVOPACK parameter.                                                                                          | Yes |     |
| OW□□54                 | Servo Driver for<br>Assistance User<br>Constant No.       | Set the number of the SERVOPACK parameter number.                                                                                     | Yes |     |
| OW□□55                 | Servo Driver for<br>Assistance User<br>Constant Size      | Set the number of words in the SERVOPACK parameter.                                                                                   |     |     |
| OL□□56                 | Servo Driver for<br>Assistance User<br>Constant Set Point | Set the setting for the SERVOPACK parameter.                                                                                          |     |     |
| OW□□58<br>to<br>OW□□5B | _                                                         | Reserved                                                                                                                              | _   | _   |
| OW□□5C                 | Fixed Parameter<br>Number                                 | Set the number of the fixed parameter to read with the FIXPRM_RD motion subcommand.                                                   | Yes | Yes |
| OW□□5D                 | _                                                         | Reserved                                                                                                                              | _   | -   |
| OL□□5E                 | Encoder Position<br>When Power is OFF<br>(Lower 2 Words)  | 1 = 1 pulse • Do not set in the linear type.                                                                                          |     |     |
| OL□□60                 | Encoder Position<br>When Power is OFF<br>(Upper 2 Words)  | 1 = 1 pulse • Do not set in the linear type.                                                                                          | Yes |     |
| OL□□62                 | Pulse Position When<br>Power is OFF<br>(Lower 2 Words)    | 1 = 1 pulse • Do not set in the linear type.                                                                                          |     |     |
| OL□□64                 | Pulse Position When<br>Power is OFF<br>(Upper 2 Words)    | 1 = 1 pulse • Do not set in the linear type.                                                                                          |     |     |
| OL□□66 to<br>OL□□6E    | _                                                         | Reserved                                                                                                                              |     | _   |
| OW□□70<br>to<br>OW□□7F | Command Buffer for<br>Transparent<br>Command Mode         | This area is used for command data when MECHATROLINK servo commands are specified directly.                                           |     |     |

# B.3 Monitoring Parameter List

The following table lists the SVR motion monitor parameters. (Use this list as reference for the SVB.)

| Register No. | Name                                                | Contents                                                           | SVB | SVR |
|--------------|-----------------------------------------------------|--------------------------------------------------------------------|-----|-----|
| IW□□00       | RUN Status                                          | Bit 0 Motion Controller Operation Ready                            | Yes | Yes |
|              |                                                     | Bit 1: Running (At Servo ON)                                       | Yes | Yes |
|              |                                                     | Bit 2: System Busy                                                 | Yes |     |
|              | RON Status                                          | Bit 3: Servo Ready                                                 | Yes |     |
|              |                                                     | Bit 4: Latch Mode                                                  | Yes |     |
|              |                                                     | Bits 5 to F: Reserved                                              | _   | -   |
| IW□□01       | Parameter Number<br>When Range Over is<br>Generated | Setting parameters: 0 or higher Fixed Parameters: 1000 or higher   | Yes | Yes |
|              |                                                     | Bit 0: Excessive Deviation                                         | Yes |     |
|              |                                                     | Bit 1: Set Parameter Error (Setting Parameter Error)               | Yes | Yes |
|              |                                                     | Bit 2: Fixed Parameter Error                                       | Yes | Yes |
|              |                                                     | Bit 3: Servo Driver Error                                          | Yes |     |
|              |                                                     | Bit 4: Motion Command Set Error                                    | Yes | Yes |
| IL□□02       | Warning                                             | Bit 5: Reserved (AD Conversion Error)                              | _   | -   |
|              |                                                     | Bit 6: Positive Direction Overtravel                               | Yes |     |
|              |                                                     | Bit 7: Negative Direction Overtravel                               | Yes |     |
|              |                                                     | Bit 8: Servo ON Incomplete                                         | Yes |     |
|              |                                                     | Bit 9: Servo Driver Communication Warning                          | Yes |     |
|              |                                                     | Bits A to 1F: Reserved                                             |     |     |
|              |                                                     | Bit 0: Servo Driver Error                                          | Yes |     |
|              |                                                     | Bit 1: Positive Direction Overtravel                               | Yes |     |
|              |                                                     | Bit 2: Negative Direction Overtravel                               | Yes |     |
|              |                                                     | Bit 3: Positive Direction Software Limit                           | Yes |     |
|              |                                                     | Bit 4: Negative Direction Software Limit                           | Yes |     |
|              |                                                     | Bit 5: Servo OFF                                                   | Yes | Yes |
|              |                                                     | Bit 6: Positioning Time Over                                       | Yes |     |
|              |                                                     | Bit 7: Excessive Positioning Moving Amount                         | Yes |     |
|              |                                                     | Bit 8: Excessive Speed                                             | Yes |     |
|              |                                                     | Bit 9: Excessive Deviation                                         | Yes |     |
|              |                                                     | Bit A: Filter Type Change Error                                    | Yes |     |
|              |                                                     | Bit B: Filter Time Constant Change Error                           | Yes |     |
| IL□□04       | Alarm                                               | Bit C: Reserved                                                    | _   | _   |
|              |                                                     | Bit D: Zero Point Unsetting • Invalid for linear type.             | Yes |     |
|              |                                                     | Bit E: Reserved                                                    | _   | -   |
|              |                                                     | Bit F: Reserved                                                    | _   | _   |
|              |                                                     | Bit 10: Servo Driver Synchronization Communications Error          | Yes |     |
|              |                                                     | Bit 11: Servo Driver Communication Error                           | Yes |     |
|              |                                                     | Bit 12: Servo Driver Command Time-out Error                        | Yes |     |
|              |                                                     | Bit 13: Excessive ABS Encoder Rotations • Invalid for linear type. | Yes |     |
|              |                                                     | Bits 14 to 1D: Reserved                                            | _   | _   |
|              |                                                     | Bit1E: Motor Type Set Error                                        | Yes | _   |
|              |                                                     | Bit1F: Connected Encoder Type Error                                | Yes | _   |
| IL□□06       | _                                                   | Reserved                                                           | -   | -   |
| IW□□08       | Motion Command<br>Response Code                     | Same as OW□□08 (Motion Command).                                   | Yes | Yes |

| Pegistor No  | Name                                                          | Contents                                                                                                                                  | SVB | conta)<br>SVR |
|--------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|
| Register No. | inaille                                                       | Contents  Bit 0: Command Execution Flag                                                                                                   | Yes | Yes           |
|              |                                                               | Bit 1: Command Hold Completed                                                                                                             | Yes | Yes           |
|              |                                                               | Bit 2: Reserved                                                                                                                           | -   | -             |
|              |                                                               | Bit 3: Command Error Completed Status                                                                                                     |     |               |
| IW□□09       | Motion Command                                                | (Command Error Occurrence)                                                                                                                | Yes | Yes           |
|              | Status                                                        | Bits 4 to 6: Reserved                                                                                                                     | -   | _             |
|              |                                                               | Bit 7: Reset Absolute Encoder Completed                                                                                                   | Yes |               |
|              |                                                               | Bit 8: Command Execution Completed                                                                                                        | Yes | Yes           |
|              |                                                               | Bits 9 to F: Reserved                                                                                                                     | -   | _             |
| IW□□0A       | Subcommand Response Code                                      | Same as OWxx0A (Motion Subcommand).                                                                                                       | Yes | Yes           |
|              |                                                               | Bit 0: Command Execution Flag                                                                                                             | Yes | Yes           |
|              |                                                               | Bits 1 to 2: Reserved                                                                                                                     | _   | _             |
| IW□□0B       | Subcommand Status                                             | Bit 3: Command Error Completed Status (Command Error Occurrence)                                                                          | Yes | Yes           |
|              |                                                               | Bits 4 to 7: Reserved                                                                                                                     | _   | _             |
|              |                                                               | Bit 8: Command Execution Completed                                                                                                        | Yes | Yes           |
|              |                                                               | Bits 9 to F: Reserved                                                                                                                     | _   | _             |
|              |                                                               | Bit 0: Distribution Completed                                                                                                             | Yes | Yes           |
|              |                                                               | Bit 1: Positioning Completed                                                                                                              | Yes | Yes           |
|              | Position Management<br>Status                                 | Bit 2: Latch Completed                                                                                                                    | Yes |               |
|              |                                                               | Bit 3: NEAR Position                                                                                                                      | Yes | Yes           |
|              |                                                               | Bit 4: Zero Point Position                                                                                                                | Yes | Yes           |
|              |                                                               | Bit 5: Zero Point Return (Setting) Completed                                                                                              | Yes | Yes           |
| IW□□0C       |                                                               | Bit 6: During Machine Lock                                                                                                                | Yes |               |
|              |                                                               | Bit 7: Reserved                                                                                                                           | _   | _             |
|              |                                                               | Bit 8: ABS Rotary Pos. Load Complete (ABS System Infinite Length Position Control Information Load Completed)  • Invalid for linear type. | Yes |               |
|              |                                                               | Bit 9: POSMAX Turn Preset Complete (TPRSE)  • Invalid for linear type.                                                                    | Yes | Yes           |
|              |                                                               | Bits A to F: Reserved                                                                                                                     |     |               |
| IW□□0D       | _                                                             | Reserved                                                                                                                                  | -   | _             |
| IL□□0E       | Target Position in<br>Machine Coordinate<br>System (TPOS)     | 1 = 1 reference unit                                                                                                                      | Yes | Yes           |
| IL□□10       | Calculated Position in<br>Machine Coordinate<br>system (CPOS) | 1 = 1 reference unit                                                                                                                      | Yes | Yes           |
| IL□□12       | Machine Coordinate<br>System Reference<br>Position (MPOS)     | 1 = 1 reference unit                                                                                                                      | Yes | Yes           |
| IL□□14       | CPOS for 32 bit                                               | 1 = 1 reference unit                                                                                                                      |     | Yes           |
| IL□□16       | Machine Coordinate<br>System Feedback<br>Position (APOS)      | 1 = 1 reference unit                                                                                                                      |     | Yes           |
| IL□□18       | Machine Coordinate<br>System Latch Position<br>(LPOS)         | 1 = 1 reference unit                                                                                                                      |     |               |
| IL□□1A       | Position Error (PERR)                                         | 1 = 1 reference unit                                                                                                                      | Yes |               |
| IL□□1C       | Target Position Difference Monitor                            | 1 = 1 reference unit                                                                                                                      |     | Yes           |
| IL□□1E       | Number of POSMAX<br>Turns                                     | 1 = 1 turn • Invalid for linear type.                                                                                                     | Yes | Yes           |

| -                   |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (   | cont'd) |
|---------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|
| Register No.        | Name                                                                                                                   | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SVB | SVR     |
| IL□□20              | Speed Reference<br>Output Monitor                                                                                      | pulse/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |
| IL□□22 to<br>IL□□2A | _                                                                                                                      | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | -       |
| IW□□2C              | Servo Driver Status                                                                                                    | Bit 0: Alarm (ALM) Bit 1: Warning (WARNG) Bit 2: Command Ready (CMDRDY) Bit 3: Servo ON (SVON) Bit 4: Main Power Supply ON (PON) Bit 5: Machine Lock (MLOCK) Bit 6: Zero Position (ZPOINT) Bit 7: Locating Completed (Positioning Completed) (PSET) Velocity Complete (V-CMP) Bit 8: Command Profile Complete (Distribution Completed) (DEN) Bit 9: Torque Restriction (T_LIM) Bit A: Latch Complete (L_CMP) Bit B: Locating Neighborhood (NEAR Position) (NEAR) / Velocity Limit (V-LIM) Bit C: Positive Software Limit (P_SOT) Bit D: Negative Software Limit (N_SOT) | Yes | _       |
| IW□□2D              | Servo Driver Alarm<br>Code                                                                                             | Stores the alarm code from the SERVOPACK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes |         |
| IW□□2E              | Servo Driver I/O Monitor                                                                                               | Bit 0: Forward Side Limit Switch Input (P_OT) Bit 1: Reverse Side Limit Switch Input (N_OT) Bit 2: Deceleration Dog Switch Input (DEC) Bit 3: Encoder Phase-A Signal Input (PA) Bit 4: Encoder Phase-B Signal Input (PB) Bit 5: Encoder Phase-C Signal Input (PC) Bit 6: EXT1 Signal Input Bit 7: EXT2 Signal Input Bit 8: EXT3 Signal Input Bit 9: Brake State Output (BRK) Bit A: Reserved Bit B: Reserved Bit C: CN1 Input Signal (IO12) Bit D: CN1 Input Signal (IO13) Bit E: CN1 Input Signal (IO14) Bit F: CN1 Input Signal (IO15)                                | Yes |         |
| IW□□2F              | Servo Driver User<br>Monitor Information                                                                               | Bits 0 to 3: Monitor 1 Bits 4 to 7: Monitor 2 Bits 8 to B: Monitor 3 Bits C to F: Monitor 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes |         |
| IL□□30              | Servo Driver User<br>Monitor 2                                                                                         | Stores the result of the selected monitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes |         |
| IL□□32              | Servo Driver User<br>Monitor 3                                                                                         | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |
| IL□□34              | Servo Driver User<br>Monitor 4                                                                                         | Stores the result of the selected monitor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes |         |
| IW□□36              | Servo Driver User<br>Constant No.<br>(SERVOPACK Pa-<br>rameter No. for<br>MECHATROLINK<br>Command Area)                | Stores the number of the parameter being processed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes |         |
| IW□□37              | Supplementary Servo<br>Driver User Constant<br>No. (SERVOPACK<br>Parameter No. for<br>MECHATROLINK<br>Subcommand Area) | Stores the number of the parameter being processed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes |         |

| Register No.        | Name                                                                                                                                           | Contents                                                                                           |     | SVR |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----|-----|
| IL□□38              | Servo Driver User<br>Constant Reading<br>Data (SERVOPACK<br>Parameter Reading<br>Data for<br>MECHATROLINK<br>Command Area)                     | Stores the data of the parameter being read.                                                       |     |     |
| IL□□3A              | Supplementary Servo<br>Driver User Constant<br>Reading Data<br>(SERVOPACK<br>Parameter Reading<br>Data for<br>MECHATROLINK<br>Subcommand Area) | Stores the data of the parameter being read.                                                       |     |     |
| IW□□3F              | Motor Type                                                                                                                                     | Stores the type of motor actually connected.  0: Rotation type motor  1: Linear motor              |     |     |
| IL□□40              | Feedback Speed                                                                                                                                 | Unit is according to OW□□03, bits 0 to 3 (Speed Unit).                                             | Yes | Yes |
| IL□□42              | Feedback<br>Torque/Thrust                                                                                                                      | Unit is according to OW□□03, bits 12 to 15 (Torque Unit).                                          | Yes | Yes |
| IW□□44 to<br>IW□□55 | -                                                                                                                                              | Reserved                                                                                           | _   | -   |
| IL□□56              | Fixed Parameter<br>Monitor                                                                                                                     | Stores the data of the fixed parameter when FIXPRM-RD has been specified in the Motion Subcommand. |     | Yes |
| IW□□58 to<br>IW□□5C | -                                                                                                                                              | Reserved                                                                                           |     | -   |
| IL□□5E              | Encoder Position<br>When the Power is<br>OFF (Lower 2 Words)                                                                                   | 1 = 1 pulse                                                                                        | Yes |     |
| IL□□60              | Encoder Position<br>When the Power is<br>OFF (Upper 2 Words)                                                                                   | 1 = 1 pulse                                                                                        | Yes |     |
| IL□□62              | Pulse Position When<br>the Power is OFF<br>(Lower 2 Words)                                                                                     | 1 = 1 pulse                                                                                        | Yes |     |
| IL□□64              | Pulse Position when<br>the Power is OFF<br>(Upper 2 Words)                                                                                     | 1 = 1 pulse                                                                                        | Yes |     |
| IW□□66 to<br>IW□□6F | -                                                                                                                                              | Reserved                                                                                           | _   | _   |
| IW□□70 to<br>IW□□7F | Response Buffer for<br>Transparent<br>Command Mode                                                                                             | Stores the response data when MECHATROLINK Servo commands are specified directly.                  | Yes |     |

# Appendix C Simple Connection Function of the Engineering Tool (Supported by the CPU-03 and CPU-04)

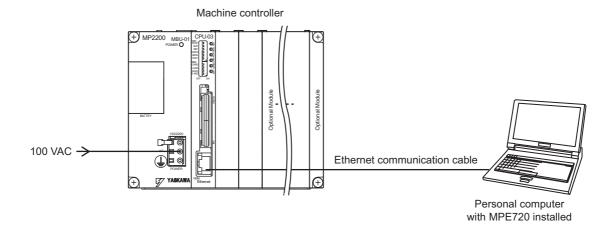
This section explains how to set up a communication process for connecting the MPE720 and MP2200.

In MPE720 Ver.6, set the communication process on the MPE720 window.

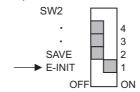
Prepare the following equipment to carry out this procedure:

# C.1 Preparation

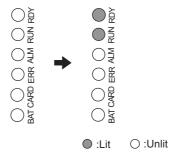
#### (1) Controller


| Product Name |                                     | Model                                 | Q'ty |
|--------------|-------------------------------------|---------------------------------------|------|
| MP2200       | Base Unit with AC power supply      | JEPMC-BU2200                          | 1    |
| IVII 2200    | CPU-03 Module<br>(or CPU-04 Module) | JAPMC-CP2220-E<br>(or JAPMC-CP2230-E) | 1    |

#### (2) Personal Computer


| Product Name                 | Model                                                                   | Q'ty |
|------------------------------|-------------------------------------------------------------------------|------|
| MPE720                       | CPMC-MPE770 (Ver.6.04 or later)                                         | 1    |
| Ethernet Communication Cable | Any commercialized product<br>Ethernet cross cable (category 5 or more) | 1    |
| Personal Computer            | Any commercialized product                                              | 1    |

#### C.2 Procedure

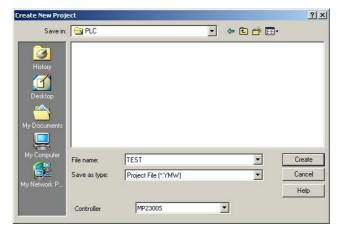

- 1. Turn OFF the 100-VAC power supply to the MP2200.
- 2. Connect the MPE720 installed personal computer and MP2200.



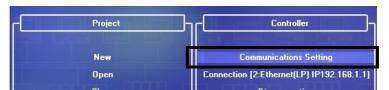
3. Set the E-INIT on the DIP switch (SW2) to ON in the CPU-03/CPU-04 Module.



**4.** Turn ON the 100-VAC power supply to the MP2200, and confirm that the RDY and RUN are lit on the CPU-03/CPU-04 Module.




Note: For the CPU-04, the TRX indicator functions as a CARD indicator.


**5.** Double-click the icon on the personal computer desktop to start up MPE720 Ver6.

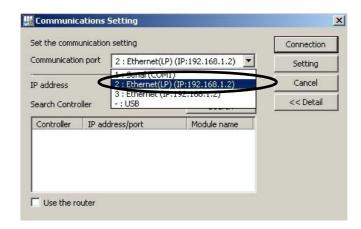


6. Create a new PLC folder.



Click Communications Setting.




C.2 Procedure

#### 8. Select Ethernet (LP) (IP:192.168.1.2) as the communication port.



Personal computer IP address

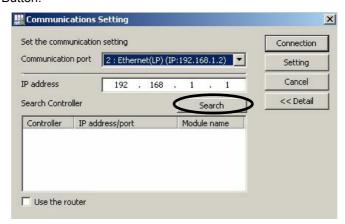
Note: You can check the personal computer IP address in advance in Control Panel.



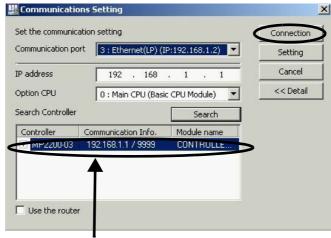
#### ■ Difference between Ethernet (LP) and Ethernet

The LP of Ethernet (LP) is short for "Long packet." Compared with Ethernet, Ethernet (LP) transmits and receives larger packets at one time, resulting in high-speed data transfer. Available communication ports may differ depending on the module of the connected controller. Select the communication port according to the table below.

| Module of the Connected<br>Controller Side | Name   | Communication Port to Be<br>Selected in MPE720 |
|--------------------------------------------|--------|------------------------------------------------|
| 218IF-01                                   | 218IF  | Ethernet                                       |
| 218IF-02                                   | 218IFB |                                                |
| CPU-03 Built-in Ethernet                   | 218IFA | Ethernet (LP)                                  |
| CPU-04 Built-in Ethernet                   | 218IFC |                                                |

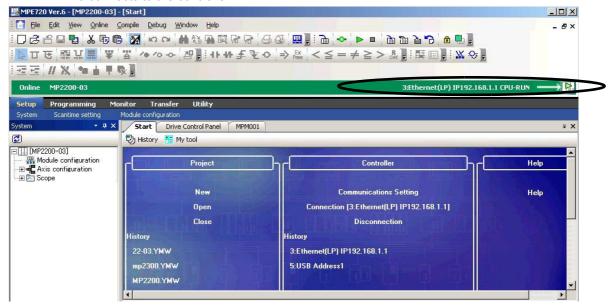

#### ■ When there are multiple LAN ports on the personal computer

If there are multiple LAN ports on the personal computer, multiple IP addresses will be shown in the communication port. Select the IP address of the LAN port to which the cable is connected.


#### ■ Controller search function

When Ethernet is selected in the communication port, the controller search function will be unavailable.

#### 9. Click the Search Button.




**10.** A controller search list will appear. Select the found controller and click the **Connection** Button.



Personal computer IP address

**11.** MPE720 connects to the controller.



# Appendix D MSG-SND/ MSG-RCV Functions (Ethernet)

# D.1 Message Send Function (MSG-SND)

This section explains the message send function (MSG-SND) used in a ladder program when transmitting messages.

# D.1.1 Specification Overview of the Message Send Function

| Function Name  |       |                                                                                                                                                                                                         | MSG-SND         |                                                                                                      |  |  |  |
|----------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Function       | Suppo | Transmits messages to a remote station on the circuit specified by the communication device type.  Supports multiple protocols.  Keep the execution command (Execute) until Complete or Error turns ON. |                 |                                                                                                      |  |  |  |
|                |       | _                                                                                                                                                                                                       |                 | MSG- SND                                                                                             |  |  |  |
|                |       |                                                                                                                                                                                                         | Execute         | Busy                                                                                                 |  |  |  |
|                |       |                                                                                                                                                                                                         | Abort           | Complete                                                                                             |  |  |  |
| Function Defi- |       |                                                                                                                                                                                                         | De <b>⊬</b> Typ | Error                                                                                                |  |  |  |
| nition         |       |                                                                                                                                                                                                         | Pro-Typ         |                                                                                                      |  |  |  |
|                |       |                                                                                                                                                                                                         | Cir - No        |                                                                                                      |  |  |  |
|                |       |                                                                                                                                                                                                         | Ch-No           |                                                                                                      |  |  |  |
|                |       |                                                                                                                                                                                                         | Param           |                                                                                                      |  |  |  |
|                |       |                                                                                                                                                                                                         |                 |                                                                                                      |  |  |  |
| I/O Definition | No.   | Name                                                                                                                                                                                                    | I/O Option (*1) | Contents                                                                                             |  |  |  |
|                | 1     | Execute                                                                                                                                                                                                 | B-VAL           | Executes a transmission                                                                              |  |  |  |
|                | 2     | Abort                                                                                                                                                                                                   | B-VAL           | Forcibly ends a transmission                                                                         |  |  |  |
|                | 3     | Dev-Typ                                                                                                                                                                                                 | I-REG           | Communication device type<br>Ethernet (218IF) = 6, Ethernet (218IFA/218IFB/218IFC) = 16              |  |  |  |
| Input Item     | 4     | Pro-Typ                                                                                                                                                                                                 | I-REG           | Communication protocol MEMOBUS $(*2) = 1$ , non-procedure $1(*3) = 2$ , non-procedure $2(*3) = 3$    |  |  |  |
|                | 5     | Cir-No                                                                                                                                                                                                  | I-REG           | Circuit number<br>Ethernet (218IF/218IFA/218IFC) = 1 to 8                                            |  |  |  |
|                | 6     | Ch-No                                                                                                                                                                                                   | I-REG           | Communication buffer channel number<br>Ethernet (218IF/218IFC) = 1 to 10, Ethernet (218IFA) = 1 to 4 |  |  |  |
|                | 7     | Param                                                                                                                                                                                                   | Address input   | Parameter list start address<br>(MA, DA)                                                             |  |  |  |
|                | 1     | Busy                                                                                                                                                                                                    | B-VAL           | In process                                                                                           |  |  |  |
| Output Item    | 2     | Complete                                                                                                                                                                                                | B-VAL           | Process completed                                                                                    |  |  |  |
|                | 3     | Error                                                                                                                                                                                                   | B-VAL           | Error has occurred                                                                                   |  |  |  |

<sup>\* 1.</sup> The meanings of I/O options are as follows:

B-VAL: Specify I/O by bit type data.

I-REG: Specify I/O by integer type data. When specifying, set an integer type register number.

As for the input only, it can be a constant (literal).

Address input: The address of the specified register (any integer register) is passed to the function.

- \* 2. When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, OMRON, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS(=1). The communication device automatically converts the protocol.
- \* 3. Non-procedure 1: In non-procedural communication, data is transmitted on a per-word basis. Non-procedure 2: In non-procedural communication, data is transmitted on a per-byte basis.

# D.1.2 I/O Item Details of the Message Send Function

### (1) Input Item

The following table shows registers available for each input item.

| Input Item                            | I/O Option    | Available Register                                                            |
|---------------------------------------|---------------|-------------------------------------------------------------------------------|
| Execute<br>Abort                      | B-VAL         | Every bit type register (except #, C registers), Same as above with subscript |
| Dev-typ<br>Pro-Typ<br>Cir-No<br>Ch-No | I-REG         | Every integer type register,<br>Same as above with subscript,<br>Constant     |
| Param                                 | Address input | Register address (except #, C registers), Same as above with subscript        |

# 1. Execute (executes a transmission)

Specifies a bit to command execution of a message transmission.

When the Execute bit turns ON, message transmission is implemented. To execute the process, a ladder program or the like needs to be used to switch it ON/OFF.

Note: Keep Execute (executes a transmission) ON until Complete (process completed) or Error (error occurred) is turned ON. When the command turns ON, the message transmission is implemented. To continuously command the transmit execution, make sure to turn Execute (executes a transmission) OFF for one scan or more.

#### **2.** Abort (forcibly ends a transmission)

Specify a bit to command a forced termination of a message transmission.

When the Abort bit turns ON, the message transmission is forcibly terminated. Abort takes precedence over Execute.

In order to execute the forced abort, a ladder program or the like needs to be used to switch it ON/OFF.

#### **3.** Dev-Typ (communication device type)

Specify the type code of the communication device.

| Communication Device     | Type Code |
|--------------------------|-----------|
| Ethernet (218IF)         | 6         |
| Ethernet (218IFA/218IFC) | 16        |

#### **4.** Pro-Typ (communication protocol)

Specify the type code of the communication device.

| Type Code | Communication Protocol        | Remarks                                                                                                                                                                 |
|-----------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | MEMOBUS                       | Set the type code to "1" when also transmitting using Extended MEMO-BUS, MELSEC, or MODBUS/TCP protocol.  The communication device automatically converts the protocol. |
| 2         | Non-procedure 1<br>(per word) | Data is transmitted on a per-word basis in non-procedural communication. No response is received from the remote.                                                       |
| 3         | Non-procedure 2 (per byte)    | Data is transmitted on a per-byte basis in the non-procedural communication. No response is received from the remote.                                                   |

#### **5.** Cir-No (circuit number)

Specify a circuit number for the communication device.

Specify it in accordance with the circuit number displayed in the MPE720 Module Configuration Window.

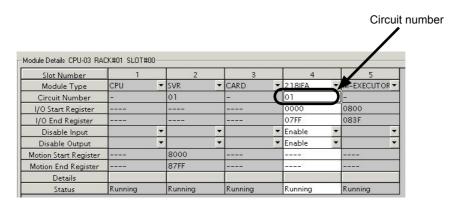



Fig. D.1 MPE720 Module Configuration Window

The following table shows the scope of circuit numbers.

| Communication Device               | Valid Circuit Number |
|------------------------------------|----------------------|
| Ethernet (218IF, 218IFA or 218IFC) | 1 to 8               |

#### **6.** Ch-No (communication buffer channel number)

Specify the channel of the communication buffer.

It can be any channel in the scope. However, when starting up multiple functions at the same time, set a unique channel for each function. If you do not start up multiple functions at the same time, the channel numbers can duplicate each other.

The following table shows the scope of channel numbers.

| Communication Device    | Valid Channel Number |
|-------------------------|----------------------|
| Ethernet (218IF/218IFC) | 1 to 10              |
| Ethernet (218IFA)       | 1 to 4               |

When the communication device is Ethernet (218IFA), because the communication buffer common to the transmission and reception has four channels, four transmissions (or receptions) are available at the same time by using channels 1 to 4.

In the same way, when the communication device is Ethernet (218IFC), because the communication buffers common to the transmission and reception has ten channels, ten transmissions (or receptions) are available at the same time by using channels 1 to 10.

- Note: 1. As many MSG-SND (or MSG-RCV) functions as lines used at the same time are required.
  - 2. For information on communication buffer channels, refer to D.3 Communication Buffer Channel.

#### 7. Param (parameter list start address)

Specify the start address of the parameter list. For the "parameter list," 17 words are automatically assigned from the configured address. In the parameter list, enter the function code and its relevant parameter data. Also, process result and status are output.

Note: For more information about the parameter list, refer to the parameter details for each protocol from D.1.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMOBUS Protocols to D.1.7 Function Setting and Parameter Details for Non-procedural Protocol.

Example: When "DA00000" is specified as a parameter list start address.

| Parameter list  |
|-----------------|
| F ··· ··· ··· 0 |
| PARAM00         |
| PARAM01         |
| PARAM02         |
| PARAM03         |
| PARAM04         |
| PARAM05         |
| PARAM06         |
| PARAM07         |
| PARAM08         |
| PARAM09         |
| PARAM10         |
| PARAM11         |
| PARAM12         |
| PARAM13         |
| PARAM14         |
| PARAM15         |
| PARAM16         |
|                 |

#### (2) Output Item

The following table shows the registers available for each output item.

| Input Item                | I/O Option | Available Register                                                            |
|---------------------------|------------|-------------------------------------------------------------------------------|
| Busy<br>Complete<br>Error | B-VAL      | Every bit type register (except #, C registers), Same as above with subscript |

#### 1. Busy (in process)

Specify a bit that reports a message is transmitting.

The Busy bit is ON while executing a message transmission or forced abort process.

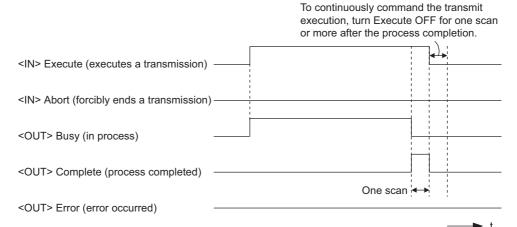
Keep Execute or Abort ON while Busy is ON.

#### 2. Complete (process completed)

Specify a bit that reports that message transmission has ended.

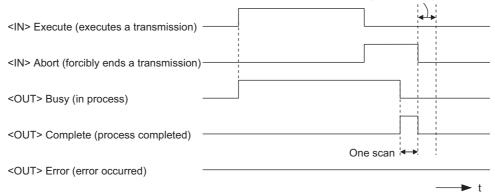
When a message transmission or forced abort process is completed properly, the Complete bit will turn ON only for one scan.

#### **3.** Error (error occurred)


Specify a bit that reports that an error has occurred in the message transmission.

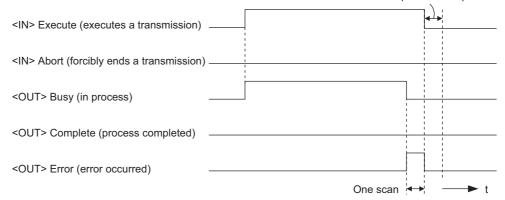
When an error occurs, the Error bit will turn ON only for one scan.

Note: For more information about the error cause, refer to D.1.4 (2) Process Result (PARAM00) and D.1.4 (3) Status (PARAM01).


A timing chart of bit type I/O items in the MSG-SND function is as follows:

#### [In Normal Condition]




#### [When Forcibly Aborted]

To continuously command the transmit execution, turn Execute OFF for a scan or more after the process completion.



#### [When Error Occurs]

To continuously command the transmit execution, turn Execute OFF for a scan or more after the process completion.



# D.1.3 Message Send Function Parameter List (Param) Overview

The param of the MSG-SND function has a parameter list structure composed of 17 words. (The value of the Param itself is the start address (MA, DA) of the parameter list.)

In the parameter list, enter a connection number, function code and its relevant parameter data. Process results and status are also output.

When MEMOBUS or non-procedure is used as a communication protocol, the parameter list is as follows:

Note: Parameter details are explained in the parameter details for each protocol type. Refer to the following items:

- · D.1.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMOBUS Protocols
- D.1.5 Function Setting and Parameter Details for MELSEC Protocol
- D.1.6 Function Setting and Parameter Details for MODBUS/TCP Protocol
- D.1.7 Function Setting and Parameter Details for Non-procedural Protocol

# (1) MEMOBUS Parameter List

| Param No. | IN/OUT | Contents                                                                    | Description                                          |
|-----------|--------|-----------------------------------------------------------------------------|------------------------------------------------------|
| 00        | OUT    | Process result                                                              | Process result is output.                            |
| 01        | OUT    | Status                                                                      | The status of the communication device is output.    |
| 02        | IN     | Connection number                                                           | Specifies the remote destination.                    |
| 03        | IN     | Option                                                                      | Sets a unique setting for each communication device. |
| 04        | IN     | Function code                                                               | Sets a function code to transmit.                    |
| 05        | IN     | Data address                                                                | Specifies the start address of the data.             |
| 06        | IN     | Data size                                                                   | Sets the data size for a read/write request.         |
| 07        | IN     | Remote CPU number                                                           | Sets a remote CPU number.                            |
| 08        | IN     | Coil offset                                                                 | Sets the coil's offset word address.                 |
| 09        | IN     | Input relay offset                                                          | Sets the offset word address of an input relay.      |
| 10        | IN     | Input register offset                                                       | Sets the offset word address of an input register.   |
| 11        | IN     | Holding register offset Sets the offset word address of a holding register. |                                                      |
| 12        | SYS    | Reserved 1                                                                  |                                                      |
| 13 to 16  | SYS    | Reserved 2                                                                  |                                                      |

Note: IN: Input, OUT: Output, SYS: For system use

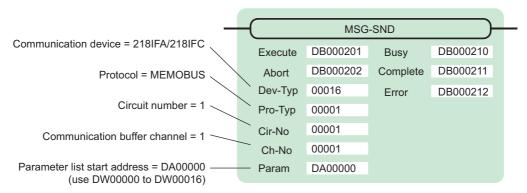
#### (2) Non-procedual Parameter List

| Param No. | IN/OUT | Contents          | Description                                       |
|-----------|--------|-------------------|---------------------------------------------------|
| 00        | OUT    | Process result    | Process result is output.                         |
| 01        | OUT    | Status            | The status of the communication device is output. |
| 02        | IN     | Connection number | Specifies the remote destination.                 |
| 03        | IN     | (unused)          |                                                   |
| 04        | IN     | (unused)          |                                                   |
| 05        | IN     | Data address      | Specifies the start address of the data.          |
| 06        | IN     | Data size         | Sets the data size for a write request.           |
| 07        | IN     | (unused)          |                                                   |
| 08        | IN     | (unused)          |                                                   |
| 09        | IN     | (unused)          |                                                   |
| 10        | IN     | (unused)          |                                                   |
| 11        | IN     | Register offset   | Sets the offset word address of the register.     |
| 12        | SYS    | Reserved 1        |                                                   |
| 13 to 16  | SYS    | Reserved 2        |                                                   |

Note: IN: Input, OUT: Output, SYS: For system use

# D.1.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMO-BUS Protocols

This section explains the MSG-SND function setting and its parameter list details when MEMOBUS or Extended MEMOBUS is used as a protocol type.


#### (1) Message Send Function Setting

#### (a) 218IFA/218IFC Setting Example

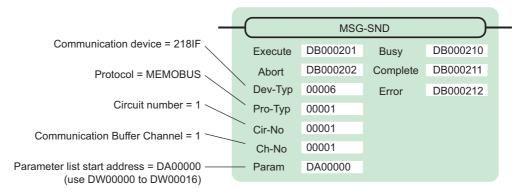
An example of a function setting when 218IFA/218IFC is used as a communication device follows: Set the protocol type to MEMOBUS even when used in Extended MEMOBUS protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC. Set a unique communication buffer channel for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



#### (b) 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS even when used in Extended MEMOBUS protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel for the same circuit.

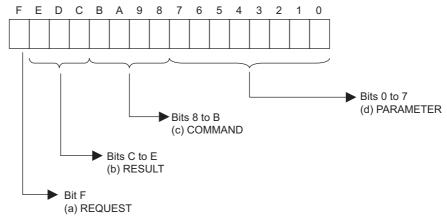
For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



# (2) Process Result (PARAM00)

Process result is output to the upper byte. Lower byte is used for system analysis.

| Value of Process<br>Result | Meaning                      |
|----------------------------|------------------------------|
| 00xxH                      | In process (Busy)            |
| 10xxH                      | Process completed (Complete) |
| 8yxxH                      | Error occurred (Error)       |


When an error occurs, take corrective action by referring to the following error contents:

| Value of<br>Process Result | Error Contents                  | Description                                                                                                                                                                                                            |
|----------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80xxH                      | _                               | Reserved                                                                                                                                                                                                               |
| 81xxH                      | Function code error             | Unused function code was transmitted or received.<br>Check PARAM04 (function code).                                                                                                                                    |
| 82xxH                      | Error in setting address        | The following setting is out of the setting range. Check the setting.  PARAM05 (data address)  PARAM08 (coil offset)  PARAM09 (input relay offset)  PARAM10 (input register offset)  PARAM11 (holding register offset) |
| 83xxH                      | Data size error                 | The transmit or receive data size is out of the setting range. Check PARAM04 (data size).                                                                                                                              |
| 84xxH                      | Error in setting circuit number | The circuit number is out of the setting range. Check Cir-No (circuit number) of the MSG-SND function.                                                                                                                 |
| 85xxH                      | Error in setting channel number | The communication buffer channel number is out of the setting range.  Check Ch-No (communication buffer channel number) of the MSG-SND function.                                                                       |
| 86xxH                      | Connection number error         | The connection number is out of the setting range. Check PARAM02 (connection number).                                                                                                                                  |
| 87xxH                      | _                               | Reserved                                                                                                                                                                                                               |
| 88xxH                      | Communication section error     | An error response was returned from the communication section (communication device). Check the equipment connection.  In addition, confirm communication with the remote device.                                      |
| 89xxH                      | Device select error             | Unavailable device is set.<br>Check Dev-Typ (communication device type) of the MSG-SND function.                                                                                                                       |

# (3) Status (PARAM01)

Outputs status of the communication section (communication device).

The following figure shows the bit assignment and the bit assignment details is listed in the table (a) and after.



#### (a) REQUEST (request)

Outputs whether the MSG-SND function is requesting processing.

| Bit State                                            | Description            |
|------------------------------------------------------|------------------------|
| 1                                                    | Requesting processing. |
| O The acceptance of the process request is complete. |                        |

#### (b) RESULT (result)

Outputs the execution result of the MSG-SND function

| Code | Abbreviation | Meaning                                                                   |
|------|--------------|---------------------------------------------------------------------------|
| 0    | CONN_NG      | In Ethernet communication, transmit error or connection error is complete |
| 1    | SEND_OK      | Normal transmission complete                                              |
| 2    | REC_OK       | Normal reception complete                                                 |
| 3    | ABORT_OK     | Forced abort complete                                                     |
| 4    | FMT_NG       | Parameter format error                                                    |
| 5    | SEQ_NG       | Command sequence error                                                    |
| 6    | RESET_NG     | Reset state                                                               |
| 7    | REC_NG       | Data reception error (error detected in the lower layer program)          |

#### (c) COMMAND (command)

Outputs a process command for the MSG-SND function. The executed process contents may differ depending on the command.

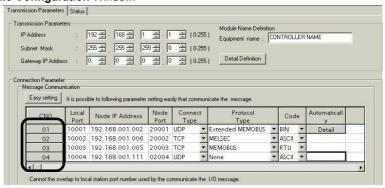
| Code | Abbreviation | Meaning                                                            |
|------|--------------|--------------------------------------------------------------------|
| 1    | U_SEND       | General-purpose message transmission (for non-procedural protocol) |
| 2    | U_REC        | General-purpose message reception (for non-procedural protocol)    |
| 3    | ABORT        | Forced termination                                                 |
| 8    | M_SEND       | MEMOBUS command transmission: Completed when response is received  |
| 9    | M_REC        | MEMOBUS command reception: Accompanies a response transmission     |
| С    | MR_SEND      | MEMOBUS response transmission                                      |

#### (d) PARAMETER (parameter)

When RESULT(process result) = 4 (FMT\_NG: parameter format error), an error code in the table below is output. Otherwise, the connection number is output.

| RESULT (process result)                           | Code (Hex) | Meaning                                               |
|---------------------------------------------------|------------|-------------------------------------------------------|
|                                                   | 00         | No error                                              |
|                                                   | 01         | Connection number is out of range                     |
|                                                   | 02         | Time error for monitoring to receive MEMOBUS response |
| When RESULT                                       | 03         | Error in setting retransmit count                     |
| (process result) = 4<br>(FMT_NG: parameter format | 04         | Error in setting cyclic area                          |
| error)                                            | 05         | CPU number error                                      |
|                                                   | 06         | Data address error                                    |
|                                                   | 07         | Data size error                                       |
|                                                   | 08         | Function code error                                   |
| Others                                            | XX         | Connection number                                     |

#### (4) Connection Number (PARAM02)


Specify the remote destination.

When the communication device is Ethernet (218IF/218IFA/218IFC), set the connection number.

The following table shows the range of settings.

| Communication Device    | Connection<br>Number | Remarks                                                                  |  |
|-------------------------|----------------------|--------------------------------------------------------------------------|--|
| Ethernet (218IF/218IFC) | 1 to 20              | Transmits to the remote station set for the specified connection number. |  |
| Ethernet (218IFA)       | 1 to 4               | Same as above                                                            |  |

Note: When the communication device is Ethernet (218IF/218IFA/218IFC), set the connection number according to the connection number in the 218IF/218IFA/218IFC **Transmission Parameters** Tab Page for the MPE720 **Module Configuration** Window.



Note: For the 218IFC, the setting range for the connection number is larger, i.e., 01 to 20.

Fig. D.2 218IFA/218IFC Transmission Parameters Tab Page for the MPE720 Module Configuration Window

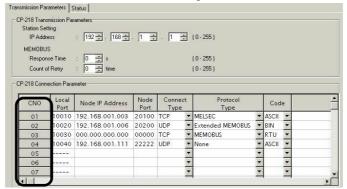



Fig. D.3 218IF Transmission Parameters Tab Page for the MPE720 Module Configuration Window

# (5) Option (PARAM03)

Choose a unique setting for each communication device.

When the protocol is MEMOBUS or Extended MEMOBUS, this is not used, and no setting is necessary.

#### (6) Function Code (PARAM04)

Set a function code to transmit.

The functions (read coil or input relay state, write to holding register, etc.) registered in the function codes are made available by specifying the code.

The following table shows the function codes available when using a MEMOBUS or Extended MEMOBUS protocol.

Table D.1 Function Code List (MEMOBUS, Extended MEMOBUS)

Protocol Type

| Function Code Target Data Type |   |                                                       |                     |           |  |
|--------------------------------|---|-------------------------------------------------------|---------------------|-----------|--|
|                                |   | Function                                              | Extended<br>MEMOBUS | MEMOBUS   |  |
| 00H                            | _ | Unused                                                | _                   | -         |  |
| 01H                            | В | Reads coil state                                      | V                   | $\sqrt{}$ |  |
| 02H                            | В | Reads input relay state                               | √                   | √         |  |
| 03H                            | W | Reads holding register content                        | √                   | √         |  |
| 04H                            | W | Reads input register content                          | √                   | V         |  |
| 05H                            | В | Changes single coil state                             | √                   | V         |  |
| 06H                            | W | Writes to single holding register                     | √                   | V         |  |
| 07H                            | _ | Unused                                                | =                   | -         |  |
| 08H                            | _ | Loopback test                                         | V                   | √         |  |
| 09H                            | W | Reads holding register content (extended)             | √                   | -         |  |
| 0AH                            | W | Reads input register content (extended)               | √                   | _         |  |
| 0BH                            | W | Writes to holding register (extended)                 | √                   | _         |  |
| 0CH                            | _ | Unused                                                | _                   | -         |  |
| 0DH                            | W | Discontinuously reads holding register (extended)     | V                   | -         |  |
| 0EH                            | W | Discontinuously writes to holding register (extended) | V                   | -         |  |
| 0FH                            | В | Changes multiple coil states                          | √                   | V         |  |
| 10H                            | W | Writes to multiple holding registers                  | V                   | V         |  |

Note: 1. B: Bit type, W: Integer type

- 2. √: Available, -: Not available
- 3. Transmit and receive registers in the master operation mode are MW (MB) only.
- 4. In slave operation mode, the coil, holding register, input relay, and input register are MB, MW, IB, IW respectively.

#### (7) Data Address (PARAM05)

Specify the start address of the data.

The address must be input in decimal or hexadecimal numbers.

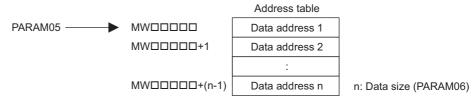
Example: When the start address is MW01000, specify "1000 (decimal)" or "3E8H (hexadecimal)."

The range of data addresses may differ, depending on the function code.

The following table shows the valid ranges of data addresses when using a MEMOBUS or Extended MEMOBUS protocol.

Table D.2 Valid Range of Data Addresses (MEMOBUS, Extended MEMOBUS)

| Function | Target    |                                                         | Valid Range of Data Addresses |                              |  |
|----------|-----------|---------------------------------------------------------|-------------------------------|------------------------------|--|
| Code     | Data Type | Function                                                | Ethernet (218IF)              | Ethernet (218IFA/<br>218IFC) |  |
| 00H      | _         | Unused                                                  | Dis                           | sable                        |  |
| 01H      | В         | Reads coil state*1                                      | 0 to 65535                    | (0 to FFFFH)                 |  |
| 02H      | В         | Reads input relay state*1                               | 0 to 65535                    | (0 to FFFFH)                 |  |
| 03H      | W         | Reads holding register content*2                        | 0 to 65534 (                  | (0 to FFFEH)                 |  |
| 04H      | W         | Reads input register content*2                          | 0 to 32767<br>(0 to 7FFFH)    | 0 to 65535<br>(0 to FFFFH)   |  |
| 05H      | В         | Changes single coil state*1                             | 0 to 65535                    | (0 to FFFFH)                 |  |
| 06H      | W         | Writes to single holding register*2                     | 0 to 65534 (0 to FFFEH)       |                              |  |
| 07H      | _         | Unused                                                  | Disable                       |                              |  |
| 08H      | _         | Loopback test                                           | Disable                       |                              |  |
| 09H      | W         | Reads holding register content (extended)*2             | 0 to 65534 (0 to FFFEH)       |                              |  |
| 0AH      | W         | Reads input register content (extended)*2               | 0 to 32767<br>(0 to 7FFFH)    | 0 to 65535<br>(0 to FFFFH)   |  |
| 0BH      | W         | Writes to holding register (extended)*2                 | 0 to 65534 (                  | (0 to FFFEH)                 |  |
| 0CH      | _         | Unused                                                  | Disable                       |                              |  |
| 0DH      | W         | Discontinuously reads holding register (extended)*3     | 0 to 65534 (0 to FFFEH)       |                              |  |
| 0EH      | W         | Discontinuously writes to holding register (extended)*3 | 0 to 65534 (0 to FFFEH)       |                              |  |
| 0FH      | В         | Changes multiple coil states*1                          | 0 to 65535                    | (0 to FFFFH)                 |  |
| 10H      | W         | Writes to multiple holding registers*2                  | 0 to 65534 (                  | (0 to FFFEH)                 |  |


- \* 1. Request for reading/writing coil or input relay: Specifies the start bit address of data
- \* 2. Request for continuously reading/writing register: Specifies the start word address of data
- \* 3. Request for discontinuously reading/writing register: Specifies the start M register number of the address table Note: Address Table

An address table is used for specifying addresses indirectly in order to indicate discontinuous data. The PARAM06 (data size) sizes of addresses at the beginning of the M register set by PARAM05 (data address) are used as an address table.

When reading, specify the remote station's address to read for the data addresses 1-n. Read values are stored locally according to the data addresses 1-n.

When writing, data stored in the local data addresses 1-n is picked up and written into the remote station's data addresses 1-n.

The address table used when discontinuously reading/writing registers is as follows:



#### (8) Data Size (PARAM06)

Set the data size (number of bits or words) for the read/write request.

Be sure that the last data address determined based on the offset, data address, and data size does not go beyond the scope of the data addresses.

The range of data addresses may differ, depending on the function code and communication device.

The following table shows the valid ranges of data sizes when using a MEMOBUS or Extended MEMOBUS protocol.

Table D.3 Valid Range of Data Sizes (MEMOBUS, Extended MEMOBUS)

|               | Target    |                                                         | Valid Range     | of Data Sizes                        |  |
|---------------|-----------|---------------------------------------------------------|-----------------|--------------------------------------|--|
| Function Code | Data Type | Function                                                | Ethernet(218IF) | Ethernet(218IFA/<br>218IFC)          |  |
| 00H           | _         | Unused                                                  | Dis             | able                                 |  |
| 01H           | В         | Reads coil state*1                                      | 1 to            | 2000                                 |  |
| 02H           | В         | Reads input relay state*1                               | 1 to            | 2000                                 |  |
| 03H           | W         | Reads holding register content*2                        | 1 to            | 0125                                 |  |
| 04H           | W         | Reads input register content*2                          | 1 to            | 125                                  |  |
| 05H           | В         | Changes single coil state                               | Dis             | able                                 |  |
| 06H           | W         | Writes to single holding register                       | Dis             | able                                 |  |
| 07H           | _         | Unused Disable                                          |                 |                                      |  |
| H80           | -         | Loopback test                                           | Disable         |                                      |  |
| 09H           | W         | Reads holding register content (extended)*2             | 1 to 508        | 1 to 2044 (BIN)<br>1 to 1020 (ASCII) |  |
| 0AH           | W         | Reads input register content (extended)*2               | 1 to 508        | 1 to 2044 (BIN)<br>1 to 1020 (ASCII) |  |
| ОВН           | W         | Writes to holding register (extended)*2                 | 1 to 507        | 1 to 2043 (BIN)<br>1 to 1019 (ASCII) |  |
| 0CH           | _         | Unused                                                  | Dis             | able                                 |  |
| 0DH           | W         | Discontinuously reads holding register (extended)*2     | 1 to 508        | 1 to 2044 (BIN)<br>1 to 1020 (ASCII) |  |
| 0EH           | W         | Discontinuously writes to holding register (extended)*2 |                 | 1 to 1022 (BIN)<br>1 to 510 (ASCII)  |  |
| 0FH           | В         | Changes multiple coil states*1                          | 1 to            | 800                                  |  |
| 10H           | W         | Writes to multiple holding registers*2                  | 1 to            | 1 to 100                             |  |

<sup>\* 1.</sup> Specifies the number of bits

Note: Data size in the table is represented as a decimal number.

#### (9) Remote CPU Number (PARAM07)

Set a remote CPU number.

When the remote device is MP2□00 series, specify "1".

When the remote device is a controller manufactured by YASKAWA Electric Corporation, but other than the MP2 $\square$ 00 series, and comprises multiple CPU modules, specify the destination CPU number.

Otherwise, specify "0".

<sup>\* 2.</sup> Specifies the number of words

#### (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify the offset addresses of read data storage areas and write data source of the transmission side.

The address for the transmission side will be displaced by the number of words designated by the offset.

- Note: 1. For more information, refer to D.1.8 Relationship between Data Address, Data Size, and Offset for MSG-SND Function.
  - 2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table lists the offset parameters.

Table D.4 Offset Parameter List

| Parameter                     | Content                 | Description                                         |  |
|-------------------------------|-------------------------|-----------------------------------------------------|--|
| PARAM08                       | Coil offset             | Sets the coil's offset word address.                |  |
| PARAM09 Input relay offset    |                         | Sets the offset word address of an input relay.     |  |
| PARAM10 Input register offset |                         | Sets the offset word address of an input register.  |  |
| PARAM11                       | Holding register offset | Sets the offset word address of a holding register. |  |

The valid offset parameter may differ, depending on the function code.

The following table provides the valid parameters for each function code.

Table D.5 Valid Parameter List for Offset of Each Function Code

| Function |                                                       | Valid Offset | Protoc              | ol Type |
|----------|-------------------------------------------------------|--------------|---------------------|---------|
| Code     | Function                                              | Parameter    | Extended<br>MEMOBUS | MEMOBUS |
| 01H      | Reads coil state                                      | PARAM08      | <b>V</b>            | V       |
| 02H      | Reads input relay state                               | PARAM09      | <b>V</b>            | V       |
| 03H      | Reads holding register content                        | PARAM11      | <b>V</b>            | V       |
| 04H      | Reads input register content                          | PARAM10      | <b>V</b>            | V       |
| 05H      | Changes single coil state                             | PARAM08      | <b>V</b>            | V       |
| 06H      | Writes to single holding register                     | PARAM11      | √                   | V       |
| 09H      | Reads holding register content (extended)             | PARAM11      | √                   | _       |
| 0AH      | Reads input register content (extended)               | PARAM10      | √                   | _       |
| 0BH      | Writes to holding register (extended)                 | PARAM11      | √                   | _       |
| 0DH      | Discontinuously reads holding register (extended)     | PARAM11      | <b>V</b>            | _       |
| 0EH      | Discontinuously writes to holding register (extended) | PARAM11      | <b>V</b>            | _       |
| 0FH      | Changes multiple coil states                          | PARAM08      | √                   | V       |
| 10H      | Writes to multiple holding registers                  | PARAM11      | √                   | √       |

Note: √: Available, -: Not available

#### (11) Reserved by System 1 (PARAM12)

Used by system (the channel number of the communication buffer in use is stored).

Note: Before the first scan during power up, make sure to set it to "0" by using a user program.

After that, the register is used by the system, so never change the value with the user program.

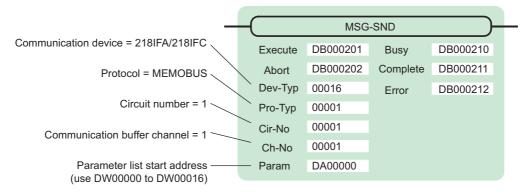
#### (12) Reserved by System 2 (PARAM13 to PARAM16)

Used by the system. Never change the value with the user program, etc.

#### D.1.5 Function Setting and Parameter Details for MELSEC Protocol

This section explains MSG-SND function setting and its parameter list details when MELSEC is used as a protocol.

#### (1) Message Send Function Setting


#### (a) 218IFA/218IFC Setting Example

An example of a function setting when 218IFA/218IFC is used as a communication device follows: Set the protocol type to MEMOBUS when used in MELSEC protocol.

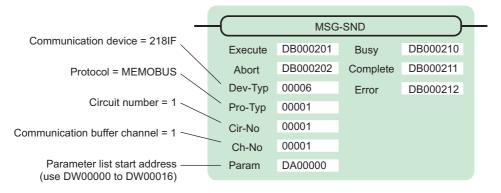
Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC.

Set a unique communication buffer channel for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



#### (b) 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS when used in MELSEC protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



### (2) Process Result (PARAM00)

Refer to D.1.4 (2) Process Result (PARAM00).

#### (3) Status (PARAM01)

Refer to D.1.4 (3) Status (PARAM01).

#### (4) Connection Number (PARAM02)

Refer to D.1.4 (4) Connection Number (PARAM02).

# (5) Option (PARAM03)

Choose a unique setting for each communication device.

This is not used by the MELSEC protocol, and does not require setting when MELSEC is used.

#### (6) Function Code (PARAM04)

Set a function code to transmit.

The functions (read bit/word device, write to word device, etc.) registered in the function codes are made available by specifying the code.

The following table lists function codes used with the MELSEC protocol.

Table D.6 Function Code List

| Function Code   | MELSEC ACPU<br>Common Command | Target Data<br>Type | Function                                                                             |
|-----------------|-------------------------------|---------------------|--------------------------------------------------------------------------------------|
| 01H/02H         | 00H                           | В                   | Reads bit device in units                                                            |
| 03H/04H/09H/0AH | 01H                           | W                   | Reads word device in units                                                           |
| 05H/0FH         | 02H                           | В                   | Writes to bit device in units                                                        |
| 06H/0BH/10H     | 03H                           | W                   | Writes to word device in units                                                       |
| 08H             | 16H                           | -                   | Loopback test                                                                        |
| 0EH             | 05H                           | В                   | Specifies a device number for each word device at random and sets/resets each device |
| 31H             | 60H                           | W                   | Writes to the fixed buffer in words                                                  |
| 32H             | 61H                           | W                   | Reads from the random access buffer in words                                         |
| 33H             | 62H                           | W                   | Writes to the random access buffer in words                                          |

Note: 1. B: Bit type, W: Integer type

2. AnCPU dedicated commands are not supported. When accessing AnCPU, also use the ACPU common commands. You cannot access the AnCPU extended file register.

#### (7) Data Address (PARAM05)

Specify the start address of the data.

The address must be input in decimal or hexadecimal numbers.

Example: When the start address is MW01000, specify "1000 (decimal)" or "3E8H (hexadecimal)."

The valid range of usable function codes and data addresses may differ, depending on the device type and device range of the MELSEC side.

The following table gives the valid ranges of data addresses when using MELSEC as a protocol.

Table D.7 Valid Range of Data Addresses (MELSEC bit device)

| Device | Device Range of<br>ACPU Common<br>Commands | Decimal/<br>Hexa-<br>decimal | Function Code     | Valid Range of<br>Data Addresses | Corresponding Register<br>Number |
|--------|--------------------------------------------|------------------------------|-------------------|----------------------------------|----------------------------------|
| Х      | X0000 to X07FF                             | Hexadecimal                  | 02H: Input relay  | 0 to 2047                        | MB000000 to MB00127F             |
| Y      | Y0000 to Y07FF                             | Hexadecimal                  | 01H/0FH: Coil     | 0 to 2047                        | MB000000 to MB00127F             |
| М      | M0000 to M2047                             | Decimal                      | 01H/05H/0FH: Coil | 2048 to 4095                     | MB001280 to MB00255F             |
| М      | M9000 to M9255                             | Decimal                      | 01H/05H/0FH: Coil | 4096 to 4351                     | MB002560 to MB00271F             |
| В      | B0000 to B03FF                             | Hexadecimal                  | 01H/05H/0FH: Coil | 4352 to 5375                     | MB002720 to MB00335F             |
| F      | F0000 to F0255                             | Decimal                      | 01H/05H/0FH: Coil | 5376 to 631                      | MB003360 to MB00351F             |
| TS     | TS000 to TS255                             | Decimal                      | 02H: Input relay  | 2048 to 2303                     | MB001280 to MB00143F             |
| TC     | TC000 to TC255                             | Decimal                      | 02H: Input relay  | 2304 to 2559                     | MB001440 to MB00159F             |
| CS     | CS000 to CS255                             | Decimal                      | 02H: Input relay  | 2560 to 2815                     | MB001660 to MB00175F             |
| CC     | CC000 to CC255                             | Decimal                      | 02H: Input relay  | 2816 to 3071                     | MB001760 to MB00191F             |
| М      | M2048 to M8191                             | Decimal                      | 01H/05H/0FH: Coil | 8192 to 14335                    | MB005120 to MB00895F             |

Table D.8 Valid Range of Data Addresses (MELSEC word device)

| Device         | Device Range of<br>ACPU Common<br>Commands | Decimal/<br>Hexa-<br>decimal | Function Code                                    | Valid Range of<br>Data Addresses | Corresponding Register<br>Number |
|----------------|--------------------------------------------|------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|
| TN             | TN000 to TN255                             | Decimal                      | 04H/0AH:<br>Input register                       | 0 to 255                         | MW00000 to MW0255                |
| CN             | CN000 to CN255                             | Decimal                      | 04H/0AH:<br>Input register                       | 256 to 511                       | MW00256 to MW00511               |
| D              | D0000 to D1023                             | Decimal                      | 03H/06H/09H/0BH/<br>0EH/10H:<br>Holding register | 0 to 1023                        | MW00000 to MW01023               |
| D<br>(special) | D9000 to D9255                             | Decimal                      | 03H/06H/09H/0BH/<br>0EH/10H:<br>Holding register | 1024 to 1279                     | MW01024 to MW01279               |
| W              | W0000 to W03FF                             | Hexadecimal                  | 03H/06H/09H/0BH/<br>0EH/10H:<br>Holding register | 1280 to 2303                     | MW01280 to MW02303               |
| R              | R0000 to R8191                             | Decimal                      | 03H/06H/09H/0BH/<br>0EH/10H:<br>Holding register | 2304 to 10495                    | MW02304 to MW10495               |
| D              | D1024 to D6143                             | Decimal                      | 03H/06H/09H/0BH/<br>0EH/10H:<br>Holding register | 10496 to 15615                   | MW10496 to MW15615               |

Note: 1. The device range may differ according to the MELSEC sequencer even within the device range. For more information, refer to the MELSEC manual.

The register number corresponding to MP2□00 can be adjusted by the offset setting of the MSG-SND function.

# (8) Data Size (PARAM06)

Set the data size (number of bits or words) for the read/write request.

Be sure that the last data address determined based on the offset, data address, and data size does not go beyond the scope of the data addresses.

The range of data addresses may differ, depending on the function code and communication device.

The following table gives the valid ranges of data sizes when using MELSEC as a protocol.

Table D.9 Valid Range of Data Sizes

|                     | MELSEC                    |                                                                                           | Valid Range          | of Data Sizes               |
|---------------------|---------------------------|-------------------------------------------------------------------------------------------|----------------------|-----------------------------|
| Function Code       | ACPU<br>Common<br>Command | Function                                                                                  | Ethernet(218IF)      | Ethernet(218IFA/<br>218IFC) |
| 01H/02H             | 00H                       | Reads bit device in units                                                                 | 1 to 25              | 66 units                    |
| 03H/04H/<br>09H/0AH | 01H                       | Reads word device in units                                                                | 1 to 256 units       |                             |
| 05H/0FH             | 02H                       | Writes to bit device in units                                                             | 1 to 256 units       |                             |
| 06H/0BH/<br>10H     | 03H                       | Writes to word device in units                                                            | 1 to 256 units       |                             |
| 08H                 | 16H                       | Loopback test                                                                             | -                    |                             |
| 0EH                 | 05H                       | Specifies a device number for each word device at random and sets/resets each word device | 1 to 40 units        |                             |
| 31H                 | 60H                       | Writes to the fixed buffer in words                                                       |                      |                             |
| 32H                 | 61H                       | Reads from the random access buffer in words                                              | See the table below. |                             |
| 33H                 | 62H                       | Writes to the random access buffer in words                                               |                      |                             |

|                                        |                 |       | Valid Range     | of Data Sizes               |
|----------------------------------------|-----------------|-------|-----------------|-----------------------------|
| Function                               | Connection Type | Code  | Ethernet(218IF) | Ethernet(218IFA/<br>218IFC) |
|                                        | ТСР             | BIN   | 1 to 507 words  | 1 to 727 words              |
| Writes to the fixed buffer in words    | TCI             | ASCII | 1 to 362 words  | 1 to 362 words              |
| writes to the fixed buller in words    | UDP             | BIN   | 1 to 507 words  | 1 to 1017 words             |
|                                        | ODI             | ASCII | 1 to 507 words  | 1 to 508 words              |
|                                        | ТСР             | BIN   | 1 to 508 words  | 1 to 728 words              |
| Reads from the random access buffer in | TCr             | ASCII | 1 to 363 words  | 1 to 363 words              |
| words                                  | LUDD            | BIN   | 1 to 508 words  | 1 to 1017 words             |
|                                        | UDP             | ASCII | 1 to 508 words  | 1 to 508 words              |
|                                        | ТСР             | BIN   | 1 to 507 words  | 1 to 726 words              |
| Writes to the random access buffer in  | 101             | ASCII | 1 to 361 words  | 1 to 361 words              |
| words                                  | UDP             | BIN   | 1 to 508 words  | 1 to 1017 words             |
|                                        | ODI             | ASCII | 1 to 508 words  | 1 to 508 words              |

Note: The restricted data size when using TCP is the maximum size transmitted using one segment. The segment size is determined by MTU (maximum transfer unit) as a TCP data transfer unit.

The valid range of data sizes mentioned above is for MTU = 1500 bytes.

#### (9) Remote CPU Number (PARAM07)

Refer to D.1.4 (9) Remote CPU Number (PARAM07).

#### (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify the offset addresses of the read data storage area and the write data source of the transmission side.

The address for the transmission side will be displaced by the number of words designated by the offset.

Note: 1. For more information, refer to D.1.8 Relationship between Data Address, Data Size, and Offset for MSG-SND Function.

2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table provides the offset parameters.

Table D.10 Offset Parameter List

| Parameter | Contents                | Description                                         |
|-----------|-------------------------|-----------------------------------------------------|
| PARAM08   | Coil offset             | Sets the coil's offset word address.                |
| PARAM09   | Input relay offset      | Sets the offset word address of an input relay.     |
| PARAM10   | Input register offset   | Sets the offset word address of an input register.  |
| PARAM11   | Holding register offset | Sets the offset word address of a holding register. |

The valid offset parameter may differ according to function code.

The following table provides the valid parameters for each function code.

Table D.11 Valid Parameter List for Offset of Each Function Code

| Function Code | Function                                              | Valid Offset<br>Parameter |
|---------------|-------------------------------------------------------|---------------------------|
| 01H           | Reads coil state                                      | PARAM08                   |
| 02H           | Reads input relay state                               | PARAM09                   |
| 03H           | Reads holding register content                        | PARAM11                   |
| 04H           | Reads input register content                          | PARAM10                   |
| 05H           | Changes single coil state                             | PARAM08                   |
| 06H           | Writes to single holding register                     | PARAM11                   |
| 09H           | Reads holding register content (extended)             | PARAM11                   |
| 0AH           | Reads input register content (extended)               | PARAM10                   |
| 0BH           | Writes to holding register (extended)                 | PARAM11                   |
| 0EH           | Discontinuously writes to holding register (extended) | PARAM11                   |
| 0FH           | Changes multiple coil states                          | PARAM08                   |
| 10H           | Writes to multiple holding registers                  | PARAM11                   |
| 31H           | Write to fixed buffer                                 | PARAM11                   |
| 32H           | Reads the random access buffer                        | PARAM11                   |
| 33H           | Writes to the random access buffer PARAM11            |                           |

#### (11) Reserved by System 1 (PARAM12)

Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set it to "0" by using the user program. After that, the register is used by system. Do not change the value thereafter with the user program.

#### (12) Reserved by System 2 (PARAM13-PARAM16)

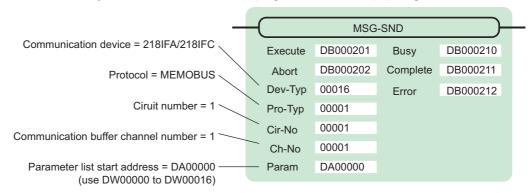
Used by system. Never change this value with the user program, etc.

#### D.1.6 Function Setting and Parameter Details for MODBUS/TCP Protocol

This section explains the MSG-SND function setting and its parameter list details when MODBUS/TCP is used as a protocol type.

#### (1) Message Send Function Setting

#### (a) 218IFA/218IFC Setting Example


An example of a function setting when 218IFA/218IFC is used as a communication device follows:

Set the protocol type to MEMOBUS when used in MODBUS/TCP protocol.

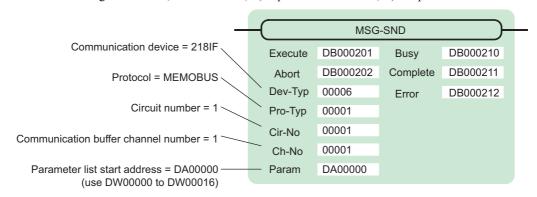
Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



#### (b) 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS when used in MODBUS/TCP protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.



#### (2) Process Result (PARAM00)

Refer to D.1.4 (2) Process Result (PARAM00).

#### (3) Status (PARAM01)

Refer to D.1.4 (3) Status (PARAM01).

#### (4) Connection Number (PARAM02)

Refer to D.1.4 (4) Connection Number (PARAM02).

#### (5) Option (PARAM03)

Choose a unique setting for each communication device.

The following table provides the scope of the setting.

| Communication Device              | Valid Range   | Remarks                                                                                                            |
|-----------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|
| Ethernet(218IF, 218IFA or 218IFC) | 0 to 247, 255 | Set a remote unit ID when MODBUS/TCP protocol is used. When the transmission target is MP2□00 series, specify "0." |

### (6) Function Code (PARAM04)

Set a function code to transmit.

The functions (read coil and input relay state, write to holding register, etc.) registered in the function codes are made available by specifying the code.

The following table shows the available function codes when using MODBUS/TCP as a protocol.

Communication device Function Target Data **Function** Ethernet(218IFA/ Code Type Ethernet(218IF) 218IFC) 00H Unused  $\sqrt{}$  $\sqrt{}$ 01H В Reads coil state  $\sqrt{}$ 02H В Reads input relay state W  $\sqrt{}$ 03H  $\sqrt{}$ Reads holding register content 04H W  $\sqrt{}$  $\sqrt{}$ Reads input register content В  $\sqrt{}$  $\sqrt{}$ 05H Changes single coil state 06H W  $\sqrt{}$  $\sqrt{}$ Writes to single holding register 07H Unused 0EH 0FH В  $\sqrt{}$  $\sqrt{}$ Changes multiple coil states 10H W Writes to multiple holding registers  $\sqrt{}$  $\sqrt{}$ 11H Unused : 15H 16H W Mask writes to holding register  $\sqrt{}$ W  $\sqrt{}$ 17H Reads/Writes multiple holding registers

Table D.12 Function Code List (MODBUS/TCP)

Note: 1. B: Bit type, W: Integer type

- 2. √: Available, -: Not available
- 3. Transmit and receive registers in the master operation mode are MW (MB) only.
- 4. In the slave operation mode, coil, holding register, input relay, and input register are MB, MW, IB, IW respectively.

#### (7) Data Address (PARAM05)

Specify the start address of the data.

The address must be a decimal or hexadecimal number.

Example: When the start address is MW01000, specify "1000 (decimal)" or "3E8H (hexadecimal)."

The range of data addresses may differ according to the function code.

The following table gives the valid ranges of data addresses when using MODBUS/TCP as a protocol.

Table D.13 Valid Range of Data Addresses (MODBUS/TCP)

| Function Code | Target<br>Data Type | Function                                    | Valid Range of Data Addresses |
|---------------|---------------------|---------------------------------------------|-------------------------------|
| 00H           | -                   | Unused                                      | Disable                       |
| 01H           | В                   | Reads coil state                            | 0 to 65535 (0 to FFFFH)       |
| 02H           | В                   | Reads input relay state                     | 0 to 65535 (0 to FFFFH)       |
| 03H           | W                   | Reads holding register content              | 0 to 65534 (0 to FFFEH)       |
| 04H           | W                   | Reads input register content                | 0 to 32767 (0 to 7FFFH)       |
| 05H           | В                   | Changes single coil state                   | 0 to 65535 (0 to FFFFH)       |
| 06H           | W                   | Writes to single holding register           | 0 to 65534 (0 to FFFEH)       |
| 07H           |                     |                                             |                               |
| :             | _                   | Unused                                      | Disable                       |
| 0EH           |                     |                                             |                               |
| 0FH           | В                   | Changes multiple coil states                | 0 to 65535 (0 to FFFFH)       |
| 10H           | W                   | Writes to multiple holding registers        | 0 to 65534 (0 to FFFEH)       |
| 11H           |                     |                                             |                               |
| :             | _                   | Unused                                      | Disable                       |
| 15H           |                     |                                             |                               |
| 16H           | W                   | Mask writes to holding register*1, *2       | 0 to 65534 (0 to FFFEH)       |
| 17H           | W                   | Reads/Writes multiple holding register*1,*3 | 0 to 65534 (0 to FFFEH)       |

<sup>\* 1.</sup> Invalid when Ethernet (218IF) is used.

#### Note: 1. Data table

A data table used for a mask write request to the holding register is used for storing mask data. The two words of addresses at the beginning of the M register specified by PARAM05 (data address) are used as an address table.

Specify AND and OR mask data for the data table.

Note that PARAM05 (data address) used for the mask write request to the holding register doubles as the start M register number in the local station, which is also used for specifying the start data address and as the data table in the remote station for mask writing.

The contents of the data table used when mask writing to the holding register is as follows:

Data table for mask writing to holding register

PARAM05 → MW□□□□ AND mask data

MW□□□□□+1 OR mask data

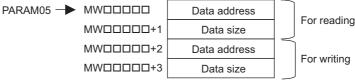
<sup>\* 2.</sup> Mask write request to holding register: Specify the start M register number of the remote address-cum-local data table

<sup>\* 3.</sup> Request for reading/writing multiple holding registers: Specify the start M register number of an address table

#### 2. Address table

An address table used for the read/write request to the multiple holding registers is used for specifying addresses indirectly in order to indicate read/write data. The four words of addresses at the beginning of the M register set by PARAM05 (data address) are used as an address table.

For the address table, specify a data address and data size for reading and a data address and data size for writing.


Read behaves same as "Reads holding register content (function code: 03H)". Write behaves same as "Writes to multiple holding registers (function code: 10H)".

The address table used when reading/writing multiple holding registers is as follows:

Address table for reading/
writing multiple holding registers

Data address

For rea



#### (8) Data Size (PARAM06)

Set the data size (number of bits or words) for the read/write request.

Be sure that the last data address determined based on the offset, data address, and data size does not go beyond the scope of the data addresses.

The range of data sizes may differ, depending on the function code.

The following table gives the valid ranges of data sizes when using MODBUS/TCP as a protocol.

| Function Code | Target<br>Data Type | Function                                      | Valid Range of Data Addresses     |
|---------------|---------------------|-----------------------------------------------|-----------------------------------|
| 00H           | _                   | Unused                                        | Disable                           |
| 01H           | В                   | Reads coil state*1                            | 1 to 2000                         |
| 02H           | В                   | Reads input relay state*1                     | 1 to 2000                         |
| 03H           | W                   | Reads holding register content*2              | 1 to 125                          |
| 04H           | W                   | Reads input register content*2                | 1 to 125                          |
| 05H           | В                   | Changes single coil state*1                   | Disable                           |
| 06H           | W                   | Writes to single holding register*2           | Disable                           |
| 07H           |                     |                                               |                                   |
| :             | _                   | Unused                                        | Disable                           |
| 0EH           |                     |                                               |                                   |
| 0FH           | В                   | Changes multiple coil states*1                | 1 to 800                          |
| 10H           | W                   | Writes to multiple holding registers*2        | 1 to 100                          |
| 11H           |                     |                                               |                                   |
| :             | _                   | Unused                                        | Disable                           |
| 15H           |                     |                                               |                                   |
| 16H           | W                   | Mask writes to holding register*2,*3          | Disable                           |
| 17H           | W                   | Reads/Writes multiple holding registers*2, *3 | Read: 1 to 125<br>Write: 1 to 100 |

Table D.14 Valid Range of Data Sizes (MODBUS/TCP)

Note: The data size in the table is represented in decimal number.

<sup>\* 1.</sup> Specify the number of bits

<sup>\* 2.</sup> Specify the number of words

<sup>\* 3.</sup> Invalid when Ethernet (218IF) is used.

#### (9) Remote CPU Number (PARAM07)

Refer to D.1.4 (9) Remote CPU Number (PARAM07).

#### (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify the offset addresses of the read data storage area and the write data source of the transmission side.

The address for the transmission side will be displaced by the number of words designated by the offset.

Note: 1. For more information, refer to D.1.8 Relationship between Data Address, Data Size, and Offset for MSG-SND Function.

2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table lists the offset parameters.

Table D.15 Offset Parameter List

| Parameter | Contents                | Description                                         |
|-----------|-------------------------|-----------------------------------------------------|
| PARAM08   | Coil offset             | Sets the coil's offset word address.                |
| PARAM09   | Input relay offset      | Sets the offset word address of an input relay.     |
| PARAM10   | Input register offset   | Sets the offset word address of an input register.  |
| PARAM11   | Holding register offset | Sets the offset word address of a holding register. |

The valid offset parameter may differ, depending on the function code.

The following table lists the valid parameters for each function code.

Table D.16 Valid Parameter List for Offset of Each Function Code

| Function Code | Function                                | Valid Offset<br>Parameter |
|---------------|-----------------------------------------|---------------------------|
| 01H           | Reads coil state                        | PARAM08                   |
| 02H           | Reads input relay state                 | PARAM09                   |
| 03H           | Reads holding register content          | PARAM11                   |
| 04H           | Reads input register content            | PARAM10                   |
| 05H           | Changes single coil state               | PARAM08                   |
| 06H           | Writes to single holding register       | PARAM11                   |
| 0FH           | Changes multiple coil states            | PARAM08                   |
| 10H           | Writes to multiple holding registers    | PARAM11                   |
| 16H           | Mask writes to holding register         | PARAM11                   |
| 17H           | Reads/Writes multiple holding registers | PARAM11                   |

#### (11) Reserved by System 1 (PARAM12)

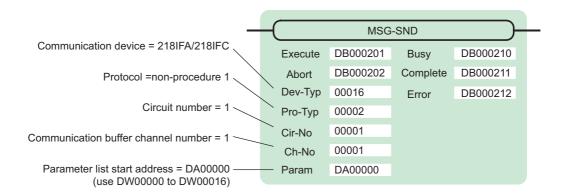
Used by system (the channel number of communication buffer in use is stored).

Note: At the first scan during power up, make sure to set it to "0" by using the user program. After that, the register is used by system. Do not change the value thereafter with the user program.

#### (12) Reserved by System 2 (PARAM13 to PARAM16)

Used by system. Never change the value with the user program, etc.

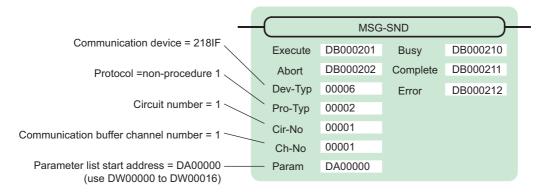
# D.1.7 Function Setting and Parameter Details for Non-procedural Protocol


This section explains the MSG-SND function setting and its parameter list details when non-procedure is used as a protocol.

Note: Non-procedure communication protocol transmits the M register content intact without a protocol conversion. You can create any protocol in accordance with the remote device.

#### (1) Message Send Function Setting

#### (a) 218IFA/218IFC Setting Example


An example of a function setting when 218IFA/218IFC is used as a communication device is as follows: When non-procedure 2 (per byte) is used, set the Pro-Typ field to "00003" (non-procedure 1 (per word)). Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC. Set a unique communication buffer channel number for the same circuit. For information on the register number, refer to *D.1.2 (1) Input Item* and *D.1.2 (2) Output Item*.



#### (b) 218IF Setting Example

An example of a function setting when 218IF is used as a communication device follows: When non-procedure 2 (per byte) is used, set the Pro-Typ field to "00003" (non-procedure 1 (per word)) . Set the circuit number in accordance with the circuit number allocated to the target 218IF. Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.1.2 (1) Input Item and D.1.2 (2) Output Item.

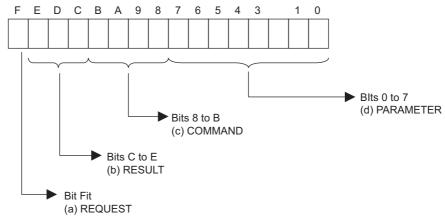


# (2) Process Result (PARAM00)

The process result is output to the upper byte. The lower byte is used for system analysis.

| Value of Process<br>Result | Meaning                      |
|----------------------------|------------------------------|
| 00xxH                      | In process (Busy)            |
| 10xxH                      | Process completed (Complete) |
| 8yxxH                      | Error occurred (Error)       |

When an error occurs, take corrective action by referring to the following error contents:


| Value of Process<br>Result | Error Contents                  | Description                                                                                                                                                                                 |
|----------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80xxH                      | _                               | Reserved                                                                                                                                                                                    |
| 81xxH                      | -                               | -                                                                                                                                                                                           |
| 82xxH                      | Error in setting address        | The following setting is out of range. Check the setting. PARAM05 (data address) PARAM11 (register offset)                                                                                  |
| 83xxH                      | Data size error                 | The transmit or receive data amount is out of range. Check PARAM06 (data size).                                                                                                             |
| 84xxH                      | Error in setting circuit number | The circuit number is out of range. Check Cir-No (circuit number) of the MSG-SND function.                                                                                                  |
| 85xxH                      | Error in setting channel number | The communication buffer channel number is out of range. Check Ch-No (communication buffer channel number) of the MSG-SND function.                                                         |
| 86xxH                      | Connection number error         | The connection number is out of range. Check PARAM02 (connection number).                                                                                                                   |
| 87xxH                      | _                               | Reserved                                                                                                                                                                                    |
| 88xxH                      | Communication section error     | An error response was returned from the communication section (communication device). Check the equipment connection. In addition, confirm that the remote device is open to communication. |
| 89xxH                      | Device select error             | Unavailable device is set. Check Dev-Typ (communication device type) of the MSG-SND function.                                                                                               |

D.1 Message Send Function (MSG-SND)

# (3) Status (PARAM01)

Outputs status of the communication section (communication device).

The following figure illustrates bit assignment. Bit assignment details are listed in the table below.



# (a) REQUEST (request)

Outputs whether MSG-SND function is requesting a process.

| Bit State               | Contents                                       |  |
|-------------------------|------------------------------------------------|--|
| 1 Requesting processing |                                                |  |
| 0                       | The acceptance of process request is completed |  |

## (b) RESULT (result)

Outputs an execution result of the MSG-SND function

| Code | Abbreviation | Meaning                                                                    |
|------|--------------|----------------------------------------------------------------------------|
| 0    | CONN_NG      | In Ethernet communications, transmit error or connection error is complete |
| 1    | SEND_OK      | Normal transmission complete                                               |
| 2    | REC_OK       | Normal reception complete                                                  |
| 3    | ABORT_OK     | Forced abort complete                                                      |
| 4    | FMT_NG       | Parameter format error                                                     |
| 5    | SEQ_NG       | Command sequence error                                                     |
| 6    | RESET_NG     | Reset state                                                                |
| 7    | REC_NG       | Data reception error (error detected in the lower layer program)           |

#### (c) COMMAND (command)

Outputs a process command for the MSG-SND function. The executed process contents can be found according to the command.

| Code (Hex) | Abbreviation | Meaning                                                                                 |
|------------|--------------|-----------------------------------------------------------------------------------------|
| 1          | U_SEND       | General-purpose message transmission                                                    |
| 2          | U_REC        | General-purpose message reception                                                       |
| 3          | ABORT        | Forced abort                                                                            |
| 8          | M_SEND       | MEMOBUS command transmission: Complete when response is received (for MEMOBUS protocol) |
| 9          | M_REC        | MEMOBUS command reception: Accompanies a response transmission (for MEMOBUS protocol)   |
| С          | MR_SEND      | MEMOBUS response transmission (for MEMOBUS protocol)                                    |

#### (d) PARAMETER (parameter)

When RESULT (process result) = 4 (FMT\_NG: parameter format error), an error code in the table below is output. Otherwise, the connection number is output.

| RESULT (process result)   | Code (Hex) | Meaning                                                                        |
|---------------------------|------------|--------------------------------------------------------------------------------|
|                           | 00         | No error                                                                       |
|                           | 01         | Connection number is out of range                                              |
| When RESULT               | 02         | Time error while monitoring to receive MEMOBUS response (for MEMOBUS protocol) |
| (process result) = 4      | 03         | Error in setting retransmit count                                              |
| (FMT_NG: parameter format | 04         | Error in setting cyclic area                                                   |
| error)                    | 05         | CPU number error                                                               |
|                           | 06         | Data address error                                                             |
|                           | 07         | Data size error                                                                |
|                           | 08         | Function code error (for MEMOBUS protocol)                                     |
| Others                    | XX         | Connection number                                                              |

## (4) Connection Number (PARAM02)

Refer to D.1.4 (4) Connection Number (PARAM02).

## (5) Data Address (PARAM05)

Specify the start address of the data.

The address must be input in a decimal or hexadecimal number.

Example: When the start address is MW01000, specify "1000 (decimal)" or "3E8H (hexadecimal)."

The following table provides the valid ranges of the data addresses.

Table D.17 Valid Range of Data Addresses (non-procedure)

| Non-procedural  | n-procedural Target Data Function |                           | Valid Range of Data Addresses |
|-----------------|-----------------------------------|---------------------------|-------------------------------|
| Туре Туре       |                                   | i diletion                | Ethernet(218IF/218IFA/218IFC) |
| Non-procedure 1 | W                                 | Transmits data in words   | 0 to 65534 (0 to FFFEH)       |
| Non-procedure 2 | В                                 | Transmits data in bytes*1 | 0 to 65534 (0 to FFFEH)       |

<sup>\* 1.</sup> The unit for address setting is word address.

D.1 Message Send Function (MSG-SND)

## (6) Data Size (PARAM06)

Set the data size (number of bits or words) for the write request.

Be sure that the last data address determined based on the offset, data address, and data size does not go beyond the scope of the data addresses.

The valid range of data sizes may differ according to the communication device.

Table D.18 Valid Range of Data Sizes (non-procedure)

| Non-procedural    | Target Data |                           | Valid Range of Data Sizes |                                      |  |
|-------------------|-------------|---------------------------|---------------------------|--------------------------------------|--|
| Type Type         |             | Function                  | Ethernet (218IF)          | Ethernet (218IFA/<br>218IFC)         |  |
| Non-procedure 1 W |             | Transmits data in words*1 | 1 to 510                  | 1 to 2046 (BIN)<br>1 to 1023 (ASCII) |  |
| Non-procedure 2   | В           | Transmits data in bytes*2 | 1 to 1020                 | 1 to 4092 (BIN)<br>1 to 2046 (ASCII) |  |

<sup>\* 1.</sup> Specify the number of words

Note: The data size in the table is represented in decimal numbers.

## (7) Register Offset (PARAM11)

Specify the offset address of write data source in the transmission side.

The address for the transmission side will be displaced by the number of words designated by the offset.

Note: 1. For more information, refer to D.1.8 Relationship between Data Address, Data Size, and Offset for MSG-SND Function.

2. The offset cannot be a negative value.

Example: When specifying 1000 words of offset for the register address:

PARAM11=1000

#### (8) Reserved by System 1 (PARAM12)

Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set this to "0" by the user program. After that, the register is used by system, so do not change the value with the user program.

#### (9) Reserved by System 2 (PARAM13-PARAM16)

Used by system. Do not change the value with the user program, etc.

<sup>\* 2.</sup> Specify the number of bytes

# D.1.8 Relationship between Data Address, Data Size, and Offset for MSG-SND Function

The relationship between data address, data size, and offset is as follows, when transmitted with offset:

## (1) When Reading

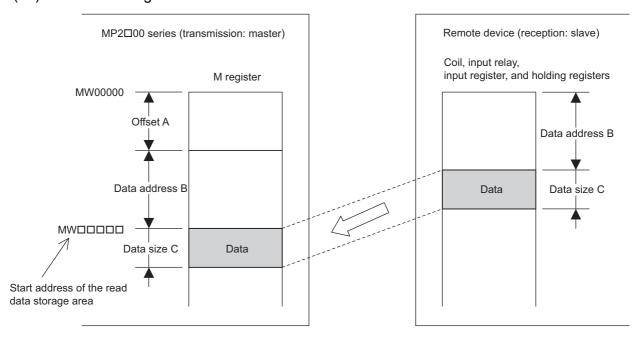



Fig. D.4 Data Flow when Reading

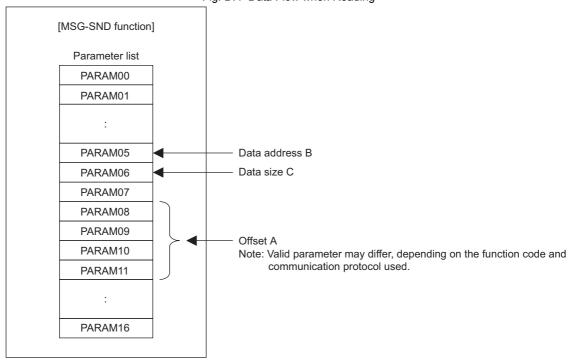



Fig. D.5 Parameter Setting

D.1 Message Send Function (MSG-SND)

# (2) When Writing

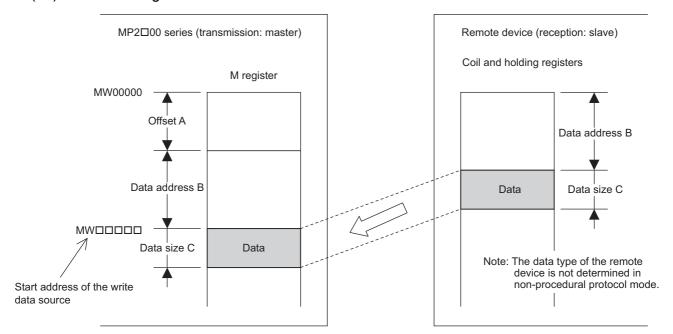



Fig. D.6 Data Flow when Writing

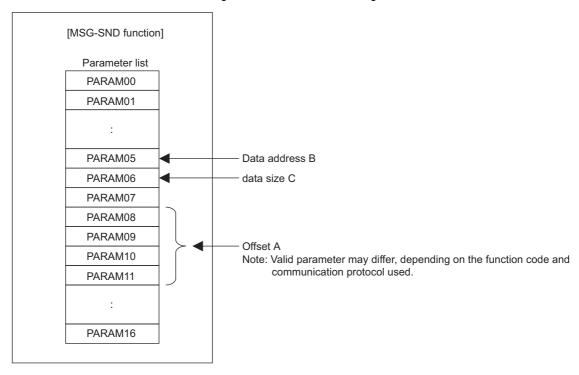
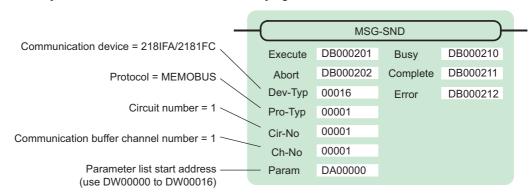




Fig. D.7 Parameter Setting

Example: When reading coil state with offset:

The various setting values and their relationships with the data of the remote device are as follows, when transmitting "reading coil state" with offset in MEMOBUS protocol:

• Description of the MSG-SND function in ladder program



• Parameter list setting of the MSG-SND function

Table D.19 Parameter List Setting

| Register Num-<br>ber | Setting<br>Value | Parameter Num-<br>ber | IN/OUT | Remarks                            |
|----------------------|------------------|-----------------------|--------|------------------------------------|
| DW00000              | _                | PARAM00               | OUT    | Process result                     |
| DW00001              | _                | PARAM01               | OUT    | Status                             |
| DW00002              | 00001            | PARAM02               | IN     | Connection number=1                |
| DW00003              | -                | PARAM03               | IN     | Option (setting unnecessary)       |
| DW00004              | 00001            | PARAM04               | IN     | Function code=1 (reads coil state) |
| DW00005              | 08192            | PARAM05               | IN     | Data address=8192 bits (512 words) |
| DW00006              | 00100            | PARAM06               | IN     | Data size=100                      |
| DW00007              | 00001            | PARAM07               | IN     | Remote CPU number=1                |
| DW00008              | 01000            | PARAM08               | IN     | Coil offset=1000 words             |
| DW00009              | 00000            | PARAM09               | IN     | Input relay offset=0 word          |
| DW00010              | 00000            | PARAM10               | IN     | Input register offset=0 word       |
| DW00011              | 00000            | PARAM11               | IN     | Holding register offset=0 word     |
| DW00012              | _                | PARAM12               | SYS    | Reserved (zero clear at startup)   |
| DW00013              | _                | PARAM13               | SYS    | Reserved                           |
| DW00014              | -                | PARAM14               | SYS    | Reserved                           |
| DW00015              | _                | PARAM15               | SYS    | Reserved                           |
| DW00016              | =                | PARAM16               | SYS    | Reserved                           |

Note: IN: Input, OUT: Output, SYS: For system use

#### D.1 Message Send Function (MSG-SND)

Relationship with the Data of the Remote Device
 The following figure shows the data flow when transmitting "reads coil state" with offset:
 When transmission and reception are carried out normally in the figure below, the coil state in the device is stored in MW01512 and after of MP2200.

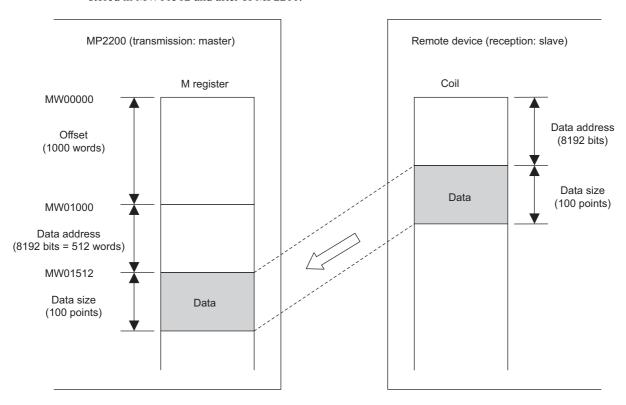



Fig. D.8 Reading Example of Coil State

This section explains how the message receive function (MSG-RCV) is used in a ladder program when receiving messages.

# D.2.1 Specification Overview of the Message Receive Function

| Function Name  | MSG-RCV                                                                                                                                                                                                        |          |                 |                                                                                                      |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------------------------------------------------------------------------------------------------|--|
| Function       | Receives messages from the remote station on the circuit specified by the communication device type. Supports multiple protocol types.  Keep the execution command (Execute) until Complete or Error turns ON. |          |                 |                                                                                                      |  |
|                |                                                                                                                                                                                                                | _        |                 | MSG-RCV                                                                                              |  |
|                |                                                                                                                                                                                                                |          | Execute         | Busy                                                                                                 |  |
|                |                                                                                                                                                                                                                |          | Abort           | Complete                                                                                             |  |
| Function Defi- |                                                                                                                                                                                                                |          | Dev-Typ         | Error                                                                                                |  |
| nition         |                                                                                                                                                                                                                |          | Pro-Typ         |                                                                                                      |  |
|                |                                                                                                                                                                                                                |          | Cir-No          |                                                                                                      |  |
|                |                                                                                                                                                                                                                |          | Ch-No           |                                                                                                      |  |
|                |                                                                                                                                                                                                                |          | Param           |                                                                                                      |  |
|                |                                                                                                                                                                                                                |          |                 |                                                                                                      |  |
| I/O Definition | No.                                                                                                                                                                                                            | Name     | I/O Option (*1) | Contents                                                                                             |  |
|                | 1                                                                                                                                                                                                              | Execute  | B-VAL           | Executes a reception                                                                                 |  |
|                | 2                                                                                                                                                                                                              | Abort    | B-VAL           | Forcibly ends a reception                                                                            |  |
|                | 3 Dev-Typ I-REG                                                                                                                                                                                                |          | I-REG           | Communication device type<br>Ethernet (218IF) = 6, Ethernet (218IFA/218IFB/218IFC) = 16              |  |
| Input Item     | 4                                                                                                                                                                                                              | Pro-Typ  | I-REG           | Communication protocol<br>MEMOBUS* $^2$ = 1, non-procedure 1* $^3$ = 2,<br>non-procedure 2* $^3$ = 3 |  |
|                | 5                                                                                                                                                                                                              | Cir-No   | I-REG           | Line number<br>Ethernet (218IF/218IFA/218IFC) = 1 to 8                                               |  |
|                | 6                                                                                                                                                                                                              | Ch-No    | I-REG           | Communication buffer channel number<br>Ethernet (218IF/218IFC) = 1 to 10, Ethernet (218IFA) = 1 to 4 |  |
|                | 7                                                                                                                                                                                                              | Param    | Address input   | Parameter list start address<br>(MA, DA)                                                             |  |
|                | 1                                                                                                                                                                                                              | Busy     | B-VAL           | In process                                                                                           |  |
| Output Item    | 2                                                                                                                                                                                                              | Complete | B-VAL           | Process completed                                                                                    |  |
|                | 3                                                                                                                                                                                                              | Error    | B-VAL           | Error occurred                                                                                       |  |

<sup>\* 1.</sup> The meanings of I/O options are as follows:

B-VAL: Specify I/O by bit type data.

I-REG: Specify I/O by integer type data. When specifying, set an integer type register number.

As for the input only, it can be a constant (literal).

Address input: The address of the specified register (any integer register) is passed to the function.

- \* 2. When transmitting in MEMOBUS, Extended MEMOBUS, MELSEC, OMRON, or MODBUS/TCP protocol, set the communication protocol (Pro-Typ) to MEMOBUS(=1). The communication device automatically converts the protocol.
- \* 3. Non-procedure 1: In non-procedural communication, data is received on a per-word basis. Non-procedure 2: In non-procedural communication, data is received on a per-byte basis.

# D.2.2 I/O Item Details of the Message Receive Function

## (1) Input Item

The following table indicates the registers available for each input item.

| Input Item                            | I/O Option    | Available Register                                                            |
|---------------------------------------|---------------|-------------------------------------------------------------------------------|
| Execute<br>Abort                      | B-VAL         | Every bit type register (except #, C registers), Same as above with subscript |
| Dev-typ<br>Pro-Typ<br>Cir-No<br>Ch-No | I-REG         | Every integer type register,<br>Same as above with subscript,<br>Constant     |
| Param                                 | Address input | Register address<br>(except #, C registers),<br>Same as above with subscript  |

#### **1.** Execute (executes a reception)

Specify a bit to command execution of a message reception.

When Execute turns ON, the message reception is carried out. In order to execute the process, a ladder program or the like needs to be used to switch the bit ON/OFF.

Note: Keep Execute (executes a reception) until Complete (process completed) or Error (error occurred) is turned ON. When the command turns ON, the message reception is carried out.

To continuously command the receive execution, make sure to turn Execute (executes a reception) OFF for one scan or more.

#### 2. Abort (forcibly ends a reception)

Specify a bit to command a forced abort of a message reception.

When Abort turns ON, the message reception is forcibly terminated. Abort takes precedence over Execute. In order to execute the forced abort, a ladder program or the like needs to be used to switch the bit ON/OFF.

#### **3.** Dev-Typ (communication device type)

Specify the type of communication device.

| Device                   | Type Code |
|--------------------------|-----------|
| Ethernet (218IF)         | 6         |
| Ethernet (218IFA/218IFC) | 16        |

#### **4.** Pro-Typ (communication protocol)

Specify the communication protocol.

| Type Code | Communication Protocol     | Remarks                                                                                                                                                                   |
|-----------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1         | MEMOBUS                    | Set the type code to "1" when also transmitting using Extended MEMOBUS, MELSEC, or MODBUS/TCP protocol. The communication device will automatically convert the protocol. |
| 2         | Non-procedure 1 (per word) | Data is received on a per-word basis in non-procedural communication. No response is transmitted to the remote.                                                           |
| 3         | Non-procedure 2 (per byte) | Data is received on a per-byte basis in non-procedural communication. No response is transmitted to the remote.                                                           |

#### 5. Cir-No (circuit number)

Specify a circuit number for the communication device.

Specify it in accordance with the circuit number displayed in the MPE720 Module Configuration Window.

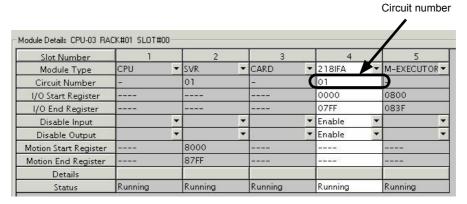



Fig. D.9 MPE720 Module Configuration Window

The following table indicates the range of valid circuit numbers.

| Communication device           | Valid Circuit Number |
|--------------------------------|----------------------|
| Ethernet (218IF/218IFA/218IFC) | 1 to 8               |

#### 6. Ch-No (communication buffer channel number)

Specify the channel number of a communication buffer.

It can be any channel number in the range. However, when starting multiple functions at the same time, set a unique channel for each function. (If you do not start up multiple functions at the same time, the channel numbers can duplicate each other.)

The following table indicates the range of valid channel numbers.

| Communication device    | Valid Channel Number |
|-------------------------|----------------------|
| Ethernet (218IF/218IFC) | 1 to 10              |
| Ethernet (218IFA)       | 1 to 4               |

When the communication device is Ethernet (218IFA), because the communication buffer common to the transmission and reception have four channels, four receptions (or transmissions) are available at the same time by using channel numbers 1 to 4.

In the same way, when the communication device is Ethernet (218IFC), because the communication buffers common to the transmission and reception has ten channels, ten transmissions (or receptions) are available at the same time by using channels 1 to 10.

- Note: 1. As many MSG-RCV (or MSG-SND) functions as lines used at the same time are required.
  - 2. For information on communication buffer channel, refer to D.3 Communication Buffer Channel.

#### **7.** Param (parameter list start address)

Specify the start address of the parameter list. For the "parameter list," 17 words are automatically assigned from the configured address. In the parameter list, enter the function code and its relevant parameter data. Additionally, process result and status are output.

Note: For more information about the parameter list, refer to the parameter details for each protocol from D.2.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMOBUS Protocols to D.2.7 Function Setting and Parameter Details for Non-procedural Protocol.

Example: When "DA00000" is specified as a parameter list start address:

|          | Parameter list  |
|----------|-----------------|
| Register | F ··· ··· ··· 0 |
| DW00000  | PARAM00         |
| DW00001  | PARAM01         |
| DW00002  | PARAM02         |
| DW00003  | PARAM03         |
| DW00004  | PARAM04         |
| DW00005  | PARAM05         |
| DW00006  | PARAM06         |
| DW00007  | PARAM07         |
| DW00008  | PARAM08         |
| DW00009  | PARAM09         |
| DW00010  | PARAM10         |
| DW00011  | PARAM11         |
| DW00012  | PARAM12         |
| DW00013  | PARAM13         |
| DW00014  | PARAM14         |
| DW00015  | PARAM15         |
| DW00016  | PARAM16         |

#### (2) Output Item

The following table lists the registers available for each output item.

| Input Item                | I/O Option | Available Register                                                           |
|---------------------------|------------|------------------------------------------------------------------------------|
| Busy<br>Complete<br>Error | B-VAL      | Every bit type register (except #, C registers), Same as above for subscript |

#### **1.** Busy (in process)

Specify a bit to report message reception.

The Busy bit is turned ON while executing message reception or a forced abort process.

Keep Execute or Abort ON while Busy is ON.

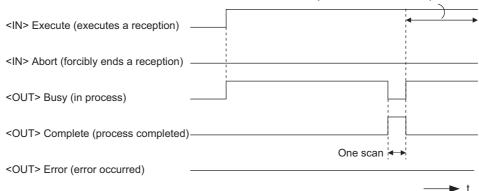
## **2.** Complete (process completed)

Specify a bit to report message reception ended.

When message reception or a forced abort process is completed properly, the Complete bit will turn ON only for one scan.

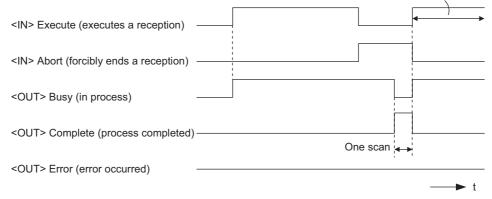
#### **3.** Error (error occurred)

Specify a bit to report when an error occurs in the message reception.


When an error occurs, the Error bit will turn ON only for one scan.

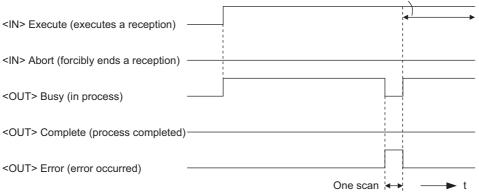
Note: For more information about the error cause, refer to D.2.4 ( 2 ) Process Result (PARAM00) and D.2.4 ( 3 ) Status (PARAM01).

A timing chart of bit type I/O items in the MSG-RCV function follows:


#### [In Normal Condition]

To continuously command the receive execution, keep Execute ON after the process is completed.




#### [When Forcibly Aborted]

To continuously command the receive execution, keep Execute ON after the process is completed.



#### [When Error Occurred]

To continuously command the receive execution, keep Execute ON after the process is completed.



# D.2.3 Message Receive Function Parameter List (Param) Overview

Param of the MSG-RCV function has a parameter list structure composed of 17 words. (The value of Param itself is the start address (MA, DA) of the parameter list.)

In the parameter list, enter the function code and its relevant parameter data. Process result and status are also output.

When MEMOBUS and non-procedure are used as a transmission protocol, the parameter list is as follows:

Note: Parameter details are explained in the parameter details for each protocol type. Refer to the following items:

- D.2.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMOBUS Protocols
- D.2.5 Function Setting and Parameter Details for MELSEC Protocol
- D.2.6 Function Setting and Parameter Details for MODBUS/TCP Protocol
- D.2.7 Function Setting and Parameter Details for Non-procedural Protocol

#### (1) MEMOBUS Parameter List

| Param No. | IN/OUT | Contents                | Description                                                             |
|-----------|--------|-------------------------|-------------------------------------------------------------------------|
| 00        | OUT    | Process result          | Outputs process results.                                                |
| 01        | OUT    | Status                  | Outputs the status of the communication device.                         |
| 02        | IN     | Connection number       | Specifies the remote source.                                            |
| 03        | OUT    | Option                  | Outputs a unique value for each communication device.                   |
| 04        | OUT    | Function code           | Outputs a function code requested from the transmission side.           |
| 05        | OUT*   | Data address            | Outputs the start address of data requested from the transmission side. |
| 06        | OUT    | Data size               | Outputs the read/write data size requested from the transmission side.  |
| 07        | OUT    | Remote CPU number       | Outputs the remote CPU number.                                          |
| 08        | IN     | Coil offset             | Sets the coil's offset word address.                                    |
| 09        | IN     | Input relay offset      | Sets the offset word address of an input relay.                         |
| 10        | IN     | Input register offset   | Sets the offset word address of an input register.                      |
| 11        | IN     | Holding register offset | Sets the offset word address of a holding register.                     |
| 12        | IN     | Write range LO          | Sets the start address for a write range.                               |
| 13        | IN     | Write range HI          | Sets the last address for a write range.                                |
| 14        | SYS    | Reserved 1              |                                                                         |
| 15, 16    | SYS    | Reserved 2              |                                                                         |

<sup>\*</sup> It is IN/OUT for MODBUS/TCP.

Note: IN: Input, OUT: Output, SYS: For system use

## (2) Non-procedural Parameter List

| Param No. | IN/OUT | Contents          | Description                                                       |
|-----------|--------|-------------------|-------------------------------------------------------------------|
| 00        | OUT    | Process result    | Outputs the process results.                                      |
| 01        | OUT    | Status            | Outputs the status of the communication device.                   |
| 02        | IN     | Connection number | Specifies the remote source.                                      |
| 03        | OUT    | Not used          |                                                                   |
| 04        | OUT    | Not used          |                                                                   |
| 05        | OUT    | Not used          |                                                                   |
| 06        | OUT    | Data size         | Outputs the write data size requested from the transmission side. |
| 07        | OUT    | Not used          |                                                                   |
| 08 to 11  | IN     | Not used          |                                                                   |
| 12        | IN     | Register offset   | Sets the register's offset word address.                          |
| 13        | IN     | Write range HI    | Sets the last address for a write range.                          |
| 14        | SYS    | Reserved 1        |                                                                   |
| 15, 16    | SYS    | Reserved 2        |                                                                   |

Note: IN: Input, OUT: Output, SYS: For system use

# D.2.4 Function Setting and Parameter Details for MEMOBUS and Extended MEMO-BUS Protocols

This section explains the MSG-RCV function setting and its parameter list details when MEMOBUS or Extended MEMOBUS is used as a protocol.

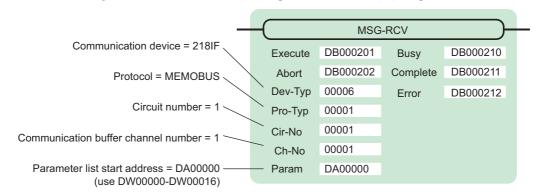
## (1) Message Receive Function Setting

#### [a] 218IFA/218IFC Setting Example

An example of a function setting when 218IFA/218IFC is used as a communication device follows: Set the protocol type to MEMOBUS even when used in Extended MEMOBUS protocol. Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC. Set a unique communication buffer channel number for the same circuit. For information on the register number, refer to *D.2.2 (1) Input Item* and *D.2.2 (2) Output Item*.

MSG-RCV Communication device = 218IFA/2181FC DB000201 DB000210 Execute Busy DB000202 DB000211 Abort Complete Protocol = MEMOBUS Dev-Typ 00016 DB000212 Error Circuit number = 1 Pro-Typ 00001 00001 Cir-No Communication buffer channel number = 1 00001 Ch-No Parameter list start address = DA00000 Param DA00000 (use DW00000-DW00016)

#### [b] 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS even when used in Extended MEMOBUS protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel number for the same circuit.

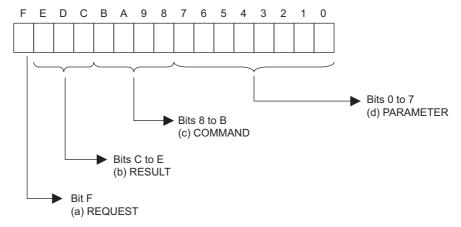
For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.



## (2) Process Result (PARAM00)

The process result is output to the upper byte. The lower byte is used for system analysis.

| Value of Process<br>Result | Meaning                      |
|----------------------------|------------------------------|
| 00xxH                      | In process (Busy)            |
| 10xxH                      | Process completed (Complete) |
| 8yxxH                      | Error occurred (Error)       |


When an error occurs, take corrective action by referring to the following error contents:

| Value of Process<br>Result | Error Contents                  | Description                                                                                                                                                                               |
|----------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80xxH                      | -                               | Reserved                                                                                                                                                                                  |
| 81xxH                      | Function code error             | Unused function code was received. Check the source function code. The following setting is out of range. Check the setting.                                                              |
| 82xxH                      | Error in setting address        | Data address (request from transmission side) PARAM08 (coil offset) PARAM09 (input relay offset) PARAM10 (input register offset) PARAM11 (holding register offset)                        |
| 83xxH                      | Data size error                 | The received data size is out of range. Check the source data size.                                                                                                                       |
| 84xxH                      | Error in setting circuit number | The circuit number is out of range. Check Cir-No (circuit number) of the MSG-RCV function.                                                                                                |
| 85xxH                      | Error in setting channel number | The communication buffer channel number is out of range. Check Ch-No (communication buffer channel number) of the MSG-RCV function.                                                       |
| 86xxH                      | Connection number error         | The connection number is out of range. Check PARAM02 (connection number).                                                                                                                 |
| 87xxH                      | _                               | Reserved                                                                                                                                                                                  |
| 88xxH                      | Communication section error     | An error response was returned from the communication section (communication device). Check the equipment connection. In addition, check that the remote device is open to communication. |
| 89xxH                      | Device select error             | Unavailable device is set. Check Dev-Typ (communication device type) of the MSG-RCV function.                                                                                             |

# (3) Status (PARAM01)

Outputs status of the communication section (communication device).

The following figure shows the bit assignment. Bit assignment details are listed in the tables following.



## [a] REQUEST (request)

Outputs whether MSG-RCV function is requesting a process.

| Bit State | Contents                                       |
|-----------|------------------------------------------------|
| 1         | Requesting processing                          |
| 0         | The acceptance of process request is completed |

## [b] RESULT (result)

Outputs the execution result of the MSG-RCV function.

| Code | Abbreviation | Meaning                                                                  |
|------|--------------|--------------------------------------------------------------------------|
| 0    | CONN_NG      | In Ethernet communication, transmission or connection error is completed |
| 1    | SEND_OK      | Normal transmission complete                                             |
| 2    | REC_OK       | Normal reception complete                                                |
| 3    | ABORT_OK     | Forced abort complete                                                    |
| 4    | FMT_NG       | Parameter format error                                                   |
| 5    | SEQ_NG       | Command sequence error                                                   |
| 6    | RESET_NG     | Reset state                                                              |
| 7    | REC_NG       | Data reception error (error detected in the lower layer program)         |

#### [c] COMMAND (command)

Outputs a process command for the MSG-RCV function. The executed process contents can be found according to the command.

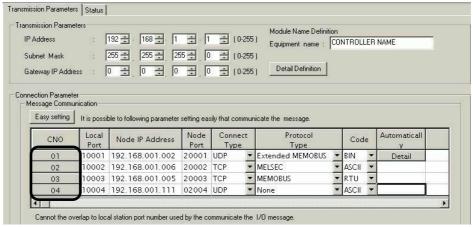
| Code (Hex) | Abbreviation | Meaning                                                            |
|------------|--------------|--------------------------------------------------------------------|
| 1          | U_SEND       | General-purpose message transmission (for non-procedural protocol) |
| 2          | U_REC        | General-purpose message reception (for non-procedural protocol)    |
| 3          | ABORT        | Forced abort                                                       |
| 8          | M_SEND       | MEMOBUS command transmission: Completed when response is received  |
| 9          | M_REC        | MEMOBUS command reception: Accompanies a response transmission     |
| С          | MR_SEND      | MEMOBUS response transmission                                      |

#### [d] PARAMETER (parameter)

When RESULT(process result) = 4 (FMT\_NG: parameter format error), an error code in the table below is output. Otherwise, the connection number is output.

| RESULT (process result)               | Code (Hex) | Meaning                                               |
|---------------------------------------|------------|-------------------------------------------------------|
|                                       | 00         | No error                                              |
|                                       | 01         | Connection number is out of range                     |
|                                       | 02         | Time error for monitoring to receive MEMOBUS response |
| When RESULT (process re-              | 03         | Error in setting retransmit count                     |
| sult) =4<br>(FMT_NG: parameter format | 04         | Error in setting cyclic area                          |
| error)                                | 05         | CPU number error                                      |
| Í                                     | 06         | Data address error                                    |
|                                       | 07         | Data size error                                       |
|                                       | 08         | Function code error                                   |
| Others                                | XX         | Connection number                                     |

## (4) Connection Number (PARAM02)


Specify the remote source.

When the communication device is Ethernet (218IF, 218IFA or 218IFC), set the connection number.

The following table shows the setting range.

| Communication Device    | Connection Num-<br>ber | Remarks                                                                   |
|-------------------------|------------------------|---------------------------------------------------------------------------|
| Ethernet (218IF/218IFC) | 1 to 20                | Receives from the remote station set for the specified connection number. |
| Ethernet (218IFA)       | 1 to 4                 | Same as above                                                             |

Note: When the communication device is Ethernet (218IF/218IFA/218IFC), set the connection number in accordance with the connection number in the 218IF/218IFA/218IFC **Transmission Parameters** Tab Page for the MPE720 **Module Configuration** Window.



Note: For the 218IFC, the setting range for the connection number is larger, i.e., 01 to 20.

Fig. D.10 218IFA/218IFC Transmission Parameters Tab Page for the MPE720 Module Configuration Window

Fig. D.11 218IF Transmission Parameters Tab Page for the MPE720 Module Configuration Window

## (5) Option (PARAM03)

A unique value is output for each communication device. Not used for the MEMOBUS or Extended MEMOBUS protocols.

Transmission Parameters | Status |

## (6) Function Code (PARAM04)

Received function code is output.

The following table lists function codes available when using MEMOBUS or Extended MEMOBUS as a protocol.

Protocol **Target Data Function Code** Function Extended MEMO-Type **MEMOBUS BUS** 00H Unused 01H В Reads coil state 02H В  $\sqrt{}$  $\sqrt{}$ Reads input relay state  $\sqrt{}$ W  $\sqrt{}$ 03H Reads holding register content W  $\sqrt{}$  $\sqrt{}$ 04H Reads input register content 05H В Changes single coil state 06H W Writes to single holding register  $\sqrt{}$ 07H Unused  $\sqrt{}$  $\sqrt{}$ 08H Loopback test  $\sqrt{}$ 09H W Reads holding register content (extended) W 0AH Reads input register content (extended) W 0BH Writes to holding register (extended) 0CH Unused Discontinuously reads holding register  $\sqrt{}$ W 0DH (extended) Discontinuously writes to holding register  $\sqrt{}$ W 0EH (extended) 0FH B Changes multiple coil states  $\sqrt{}$ V W 10H Writes to multiple holding registers

Table D.20 Function Code List (MEMOBUS, Extended MEMOBUS)

Note: 1. B: Bit type, W: Integer type

- 2. √: Available, -: Not available
- 3. Transmit and receive registers in the master operation mode are MW (MB) only.
- 4. In the slave operation mode, coil, holding register, input relay, and input register are MB, MW, IB, IW respectively.

#### (7) Data Address (PARAM05)

A data address requested from the transmission side is output.

#### (8) Data Size (PARAM06)

The read/write data size (number of bits or words) requested from the transmission side is output.

## (9) Remote CPU Number (PARAM07)

When the remote device is MP2□00 series, "1" is output.

When the remote device is a controller manufactured by YASKAWA Electric Corporation other than MP2□00 series and is comprised of multiple CPU modules, the remote CPU number is output.

Otherwise, "0" is output.

#### , 1

#### (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify an offset address for the reception side data address.

The address for the reception side will be displaced by the number of words designated by the offset.

Note: 1. For more information, refer to D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function.

2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table lists the offset parameters.

Table D.21 Offset Parameter List

| Parameter | Contents                                                                         | Description                                         |
|-----------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| PARAM08   | Coil offset                                                                      | Sets the coil's offset word address.                |
| PARAM09   | Input relay offset                                                               | Sets the offset word address of an input relay.     |
| PARAM10   | PARAM10 Input register offset Sets the offset word address of an input register. |                                                     |
| PARAM11   | Holding register offset                                                          | Sets the offset word address of a holding register. |

The valid offset parameter may differ according to the function code.

The following table lists the valid parameters for each function code.

Table D.22 Valid Parameter List for Offset of Each Function Code

| Function |                                                       | Valid Offset | Protocol Type       |         |
|----------|-------------------------------------------------------|--------------|---------------------|---------|
| Code     | Function                                              | Parameter    | Extended<br>MEMOBUS | MEMOBUS |
| 01H      | Reads coil state                                      | PARAM08      | √                   | V       |
| 02H      | Reads input relay state                               | PARAM09      | √                   | V       |
| 03H      | Reads holding register content                        | PARAM11      | √                   | V       |
| 04H      | Reads input register content                          | PARAM10      | √                   | V       |
| 05H      | Changes single coil state                             | PARAM08      | √                   | V       |
| 06H      | Writes to single holding register                     | PARAM11      | √                   | V       |
| 09H      | Reads holding register content (extended)             | PARAM11      | √                   | _       |
| 0AH      | Reads input register content (extended)               | PARAM10      | √                   | _       |
| 0BH      | Writes to holding register (extended)                 | PARAM11      | √                   | _       |
| 0DH      | Discontinuously reads holding register (extended)     | PARAM11      | V                   | -       |
| 0EH      | Discontinuously writes to holding register (extended) | PARAM11      | V                   | -       |
| 0FH      | Changes multiple coil states                          | PARAM08      | √                   | V       |
| 10H      | Writes to multiple holding registers                  | PARAM11      | √                   | V       |

Note: √: Available, -: Not available

## (11) Write Range (PARAM12, PARAM13)

Sets an available address range for the write request from the transmission side. A write request which is out of this available address range will cause an error.

Specify the address range (PARAM12, PARAM13) as a word address.

- Note: 1. In MP9□0/ MP2□00 series, the data storage area for the write request from the transmission side is M register.
  - 2. The write range parameter enables you to specify the range of M register which permits writing messages.

The following table indicates the write range parameters.

Table D.23 Write Range Parameter List

| Parameter | Contents       | Description                      |
|-----------|----------------|----------------------------------|
| PARAM12   | Write range LO | Start address of the write range |
| PARAM13   | Write range HI | Last address of the write range  |

Specify the write range so that the expression below is met:

## $0 \le Write range LO \le Write range HI \le Maximum address of M register$

This write range is effective for the following function codes:

05H (changes single coil state)

06H (writes to single holding register)

0BH (writes to holding register (extended))

0EH (discontinuously writes to holding register (extended))

0FH (changes multiple coil states)

10H (writes to multiple holding registers)

Example: When setting the address of M register which permits writing to 1000 to 1999:

PARAM12=1000 PARAM13=1999

The reception side will return an error against a write request to an address other than MW01000 to MW01999, and will not write it.

#### (12) Reserved by System 1 (PARAM14)

Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set this to "0" with the user program. After that, the register is used by system, so do not change the value with the user program.

#### (13) Reserved by System 2 (PARAM15, PARAM16)

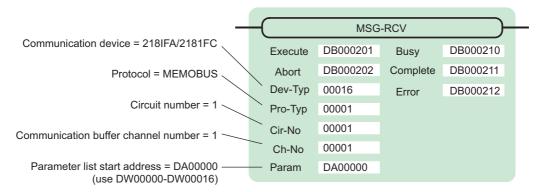
Used by system. Do not change the value with the user program, etc.

## D.2.5 Function Setting and Parameter Details for MELSEC Protocol

This section explains the MSG-RCV function setting and its parameter list details when MELSEC is used as a protocol.

## (1) Message Receive Function Setting

#### [a] 218IFA/218IFC Setting Example


An example of a function setting when 218IFA/218IFC is used as a transmission device follows:

Set the protocol type to MEMOBUS when used in MELSEC protocol.

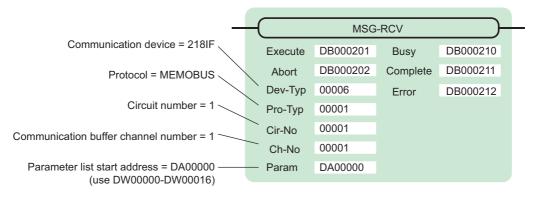
Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.



#### [b] 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS when used in MELSEC protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.



#### (2) Process Result (PARAM00)

Refer to D.2.4 (2) Process Result (PARAM00).

#### (3) Status (PARAM01)

Refer to D.2.4 (3) Status (PARAM01).

#### (4) Connection Number (PARAM02)

Refer to D.2.4 (4) Connection Number (PARAM02).

## (5) Option (PARAM03)

A unique value is output for each communication device.

Not used for the MELSEC protocol.

## (6) Function Code (PARAM04)

Received function code is output.

The following table lists the function codes available when using the MELSEC protocol.

Table D.24 Function Code List (MELSEC)

| Function Code   | MELSEC ACPU<br>Common Command | Target Data<br>Type | Function                                                                                  |
|-----------------|-------------------------------|---------------------|-------------------------------------------------------------------------------------------|
| 01H/02H         | 00H                           | В                   | Reads bit device in units                                                                 |
| 03H/04H/09H/0AH | 01H                           | W                   | Reads word device in units                                                                |
| 05H/0FH         | 02H                           | В                   | Writes to bit device in units                                                             |
| 06H/0BH/10H     | 03H                           | W                   | Writes to word device in units                                                            |
| 08H             | 16H                           | _                   | Loopback test                                                                             |
| 0EH             | 05H                           | В                   | Specifies a device number for each word device at random and sets/resets each word device |
| 31H             | 60H                           | W                   | Writes to the fixed buffer in words                                                       |
| 32H             | 61H                           | W                   | Reads from the random access buffer in words (unable to receive for MP2□00 series)        |
| 33H             | 62H                           | W                   | Writes to the random access buffer in words                                               |

Note: 1. B: Bit type, W: Integer type

## (7) Data Address (PARAM05)

A data address requested from the transmission side is output.

#### (8) Data Size (PARAM06)

The read/write data size (number of bits or words) requested from the transmission side is output.

## (9) Remote CPU Number (PARAM07)

Refer to D.2.4 (9) Remote CPU Number (PARAM07).

AnCPU dedicated commands are not supported. Commands for extended file register are not supported.

## (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify an offset address for the reception side data address.

The address for the reception side will be displaced by the number of words designated by the offset.

Note: 1. For more information, refer to D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function.

2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table lists the offset parameters.

Table D.25 Offset Parameter List

| Parameter | Contents                                                                         | Description                                         |
|-----------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| PARAM08   | Coil offset                                                                      | Sets the coil's offset word address.                |
| PARAM09   | Input relay offset                                                               | Sets the offset word address of an input relay.     |
| PARAM10   | PARAM10 Input register offset Sets the offset word address of an input register. |                                                     |
| PARAM11   | Holding register offset                                                          | Sets the offset word address of a holding register. |

The valid offset parameter may differ according to the function code.

The following table lists the valid parameters for the function codes.

Table D.26 Valid Parameter List for Offset of Each Function Code

| Function Code | Function                                              | Valid Offset Parameter |
|---------------|-------------------------------------------------------|------------------------|
| 01H           | Reads coil state                                      | PARAM08                |
| 02H           | Reads input relay state                               | PARAM09                |
| 03H           | Reads holding register content                        | PARAM11                |
| 04H           | Reads input register content                          | PARAM10                |
| 05H           | Changes single coil state                             | PARAM08                |
| 06H           | Writes to single holding register                     | PARAM11                |
| 09H           | Reads holding register content (extended)             | PARAM11                |
| 0AH           | Reads input register content (extended)               | PARAM10                |
| 0BH           | Writes to holding register (extended)                 | PARAM11                |
| 0EH           | Discontinuously writes to holding register (extended) | PARAM11                |
| 0FH           | Changes multiple coil states                          | PARAM08                |
| 10H           | Writes to multiple holding registers                  | PARAM11                |
| 31H           | Writes to fixed buffer                                | PARAM11                |
| 32H           | Reads the random access buffer                        | Invalid                |
| 33H           | Writes to the random access buffer                    | PARAM11                |

## (11) Write Range (PARAM12, PARAM13)

Sets an available address range for a write request from the transmission side. A write request which is out of this available address range will cause an error.

Specify the address range (PARAM12, PARAM13) as a word address.

- Note: 1. In MP9\(\to 0/MP2\(\to 00\) series, the data storage area for the write request from the transmission side is the M register.
  - 2. The write range parameter enables you to specify the range of M register which permits writing messages.

The following table shows the write range parameters.

Table D.27 Write Range Parameter List

| Parameter | Contents       | Description                      |
|-----------|----------------|----------------------------------|
| PARAM12   | Write range LO | Start address of the write range |
| PARAM13   | Write range HI | Last address of the write range  |

Specify the write range so that the expression below is met:

#### 0 ≤ Write range LO ≤ Write range HI ≤ Maximum address of M register

This write range is effective for the following function codes:

05H (changes single coil state)

06H (writes to single holding register)

0BH (writes to holding register (extended))

0EH (discontinuously writes to holding register (extended))

0FH (changes multiple coil states)

10H (writes to multiple holding registers)

31H (writes to fixed buffer)

33H (writes to the random access buffer)

Example: When setting the address of the M register which permits writing to 1000 to 1999:

PARAM12=1000

PARAM13=1999

The reception side will return an error against a write request to an address other than MW01000 to MW01999, and will not write it.

#### (12) Reserved by System 1 (PARAM14)

Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set this to "0" by user program. After that, the register is used by system, so do not change the value with the user program.

## (13) Reserved by System 2 (PARAM15, PARAM16)

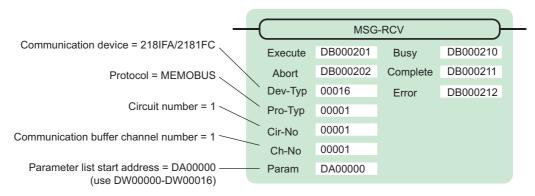
Used by system. Do not change the value with the user program, etc.

## D.2.6 Function Setting and Parameter Details for MODBUS/TCP Protocol

This section explains the MSG-RCV function setting and its parameter list details when MODBUS/TCP is used as a protocol.

#### (1) Message Receive Function Setting

#### [a] 218IFA/218IFC Setting Example


An example of a function setting when 218IFA/218IFC is used as a transmission device follows:

Set the protocol type to MEMOBUS when used in MODBUS/TCP protocol.

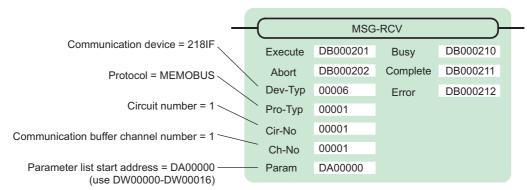
Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to in D.2.2 (1) Input Item and D.2.2 (2) Output Item.



#### [b] 218IF Setting Example


An example of a function setting when 218IF is used as a communication device follows:

Set the protocol type to MEMOBUS when used in MODBUS/TCP protocol.

Set the circuit number in accordance with the circuit number allocated to the target 218IF.

Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.



#### (2) Process Result (PARAM00)

Refer to D.2.4 (2) Process Result (PARAM00).

## (3) Status (PARAM01)

Refer to D.2.4 (3) Status (PARAM01).

## (4) Connection Number (PARAM02)

Refer to D.2.4 (4) Connection Number (PARAM02).

#### (5) Option (PARAM03)

A unique value is output for each communication device. The output details are as follows:

| Communication device           | Output Details                                               |
|--------------------------------|--------------------------------------------------------------|
| Ethernet (218IF/218IFA/218IFC) | A remote unit ID is output when MODBUS/TCP protocol is used. |

## (6) Function Code (PARAM04)

Received function code is output.

The following table lists the function codes available when using the MODBUS/TCP protocol.

Table D.28 Function Code List (MODBUS/TCP)

|               | Target Data |                                             | Protoco          | Protocol Type                |  |
|---------------|-------------|---------------------------------------------|------------------|------------------------------|--|
| Function Code | Туре        | Function                                    | Ethernet (218IF) | Ethernet (218IFA/<br>218IFC) |  |
| 00H           | _           | Not used                                    | _                | _                            |  |
| 01H           | В           | Reads coil state                            | V                | √                            |  |
| 02H           | В           | Reads input relay state                     | V                | √                            |  |
| 03H           | W           | Reads holding register content              | V                | √                            |  |
| 04H           | W           | Reads input register content                | V                | √                            |  |
| 05H           | В           | Changes single coil state                   | V                | √                            |  |
| 06H           | W           | Writes to single holding register           | V                | √                            |  |
| 07H           |             |                                             |                  |                              |  |
| :             | _           | Not used                                    | _                | _                            |  |
| 0EH           |             |                                             |                  |                              |  |
| 0FH           | В           | Changes multiple coil states                | V                | √                            |  |
| 10H           | W           | Writes to multiple holding registers        | V                | √                            |  |
| 11H           |             |                                             |                  |                              |  |
| :             | _           | Not used                                    | _                | _                            |  |
| 15H           |             |                                             |                  |                              |  |
| 16H           | W           | Mask writes to holding register − √         |                  | √                            |  |
| 17H           | W           | Reads/Writes multiple holding registers − √ |                  | $\sqrt{}$                    |  |

Note: 1. B: Bit type, W: Integer type

- 2. √: Available, -: Not available
- 3. Transmit and receive registers in the master operation mode are MW (MB) only.
- 4. In the slave operation mode, coil, holding register, input relay, and input register are MB, MW, IB, IW respectively.

#### (7) Data Address (PARAM05)

A data address requested from the transmission side is output.

However, when reading/writing multiple holding registers (function code: 17H), enter a start M register number for the address table. The four words of addresses at the beginning of the M register set by PARAM05 (data address) are used as an address table. In this address table, read address, read size, write address, and write size requested from the transmission side are output.

For more information about the address table, refer to D.1.6 (7) Data Address (PARAM05).

## (8) Data Size (PARAM06)

The read/write data size (number of bits or words) requested from the transmission side is output.

#### (9) Remote CPU Number (PARAM07)

Refer to D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function.

#### (10) Offset (PARAM08, PARAM09, PARAM10, PARAM11)

Specify an offset address for the reception side data address.

The address for the reception side will be displaced by the number of words designated by the offset.

- Note: 1. For more information, refer to D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function.
  - 2. The offset cannot be a negative value.

The offset parameter is prepared for each target data type.

The following table lists the offset parameters.

Table D.29 Offset Parameter List

| Parameter | Contents                                                                         | Description                                         |
|-----------|----------------------------------------------------------------------------------|-----------------------------------------------------|
| PARAM08   | Coil offset                                                                      | Sets the coil's offset word address.                |
| PARAM09   | Input relay offset                                                               | Sets the offset word address of an input relay.     |
| PARAM10   | PARAM10 Input register offset Sets the offset word address of an input register. |                                                     |
| PARAM11   | Holding register offset                                                          | Sets the offset word address of a holding register. |

The valid offset parameter may differ according to the function code.

The following table lists the valid parameters for each function code.

Table D.30 Valid Parameter List for Offset of Each Function Code

| Function Code | Function                                | Valid Offset<br>Parameter |
|---------------|-----------------------------------------|---------------------------|
| 01H           | Reads coil state                        | PARAM08                   |
| 02H           | Reads input relay state                 | PARAM09                   |
| 03H           | Reads holding register content          | PARAM11                   |
| 04H           | Reads input register content            | PARAM10                   |
| 05H           | Changes single coil state               | PARAM08                   |
| 06H           | Writes to single holding register       | PARAM11                   |
| 0FH           | Changes multiple coil states            | PARAM08                   |
| 10H           | Writes to multiple holding registers    | PARAM11                   |
| 16H           | Mask writes to holding register         | PARAM11                   |
| 17H           | Reads/Writes multiple holding registers | PARAM11                   |

## (11) Write Range (PARAM12, PARAM13)

Sets an available address range for the write request from the transmission side. A write request which is out of this available address range will cause an error.

Specify the address range (PARAM12, PARAM13) as a word address.

- Note: 1. In MP9\(\to 0\)/MP2\(\to 0\)0 series, the data storage area for the write request from the transmission side is the M register.
  - The write range parameter enables you to specify the range of the M register which permits writing messages.

The following table indicates the write range parameters.

Table D.31 Write Range Parameter List

| Parameter | Contents       | Description                      |
|-----------|----------------|----------------------------------|
| PARAM12   | Write range LO | Start address of the write range |
| PARAM13   | Write range HI | Last address of the write range  |

Specify the write range so that the expression below is met:

#### 0 ≤ Write range LO ≤ Write range HI ≤ Maximum address of M register

This write range is effective for the following function codes:

05H (changes single coil state)

06H (writes to single holding register)

0BH (writes to holding register (extended))

0FH (changes multiple coil states)

10H (writes to multiple holding registers)

16H (mask writes to holding register)

17H (reads/writes multiple holding registers)

Example: When setting the address of the M register which permits writing to 1000 to 1999:

PARAM12=1000 PARAM13=1999

The reception side will return an error against a write request to an address other than MW01000 to MW01999, and will not write it.

## (12) Reserved by System 1 (PARAM14)

Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set this to "0" by user program. After that, the register is used by system, so do not change the value with the user program.

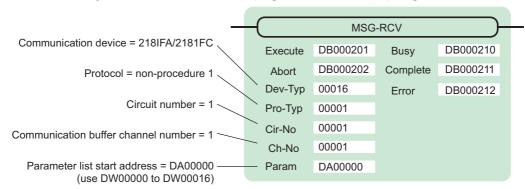
#### (13) Reserved by System 2 (PARAM15, PARAM16)

Used by system. Do not change the value with the user program, etc.

# D.2.7 Function Setting and Parameter Details for Non-procedural Protocol

This section explains the MSG-RCV function setting and its parameter list details when non-procedure is used as a protocol.

Note: Non-procedure communication protocol stores the received data in the M register intact without a protocol conversion.


You can receive any protocol in accordance with the remote device.

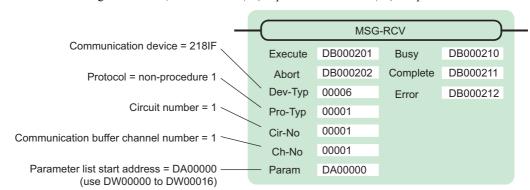
## (1) Message Receive Function Setting

#### [a] 218IFA/218IFC Setting Example

An example of a function setting when 218IFA/218IFC is used as a transmission device follows: When non-procedure 2 (per byte) is used, set the Pro-Typ field to "00003". (non-procedure 1 (per word)) Set the circuit number in accordance with the circuit number allocated to the target 218IFA/218IFC. Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.




#### [b] 218IF Setting Example

An example of a function setting when 218IF is used as a communication device follows:

When non-procedure 2 (per byte) is used, set the Pro-Typ field to "00003". (non-procedure 1 (per word)) Set the circuit number in accordance with the circuit number allocated to the target 218IF.

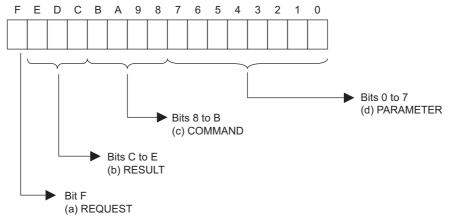
Set a unique communication buffer channel number for the same circuit.

For information on the register number, refer to D.2.2 (1) Input Item and D.2.2 (2) Output Item.



# (2) Process Result (PARAM00)

The process result is output to the upper byte. The lower byte is used for system analysis.


| Value of Process<br>Result | Meaning                      |  |
|----------------------------|------------------------------|--|
| 00xxH                      | In process (Busy)            |  |
| 10xxH                      | Process completed (Complete) |  |
| 8yxxH                      | Error occurred (Error)       |  |

When an error occurs, investigate it by referring to the following error contents:

| Value of Process<br>Result | Error Contents                  | Description                                                                                                                                                                               |  |
|----------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 80xxH                      | _                               | Reserved                                                                                                                                                                                  |  |
| 81xxH                      | _                               | -                                                                                                                                                                                         |  |
| 82xxH                      | Error in setting address        | The following setting is out of range. Check the setting. PARAM11 (holding register offset)                                                                                               |  |
| 83xxH                      | Data size error                 | The received data size is out of range. Check the source data size.                                                                                                                       |  |
| 84xxH                      | Error in setting circuit number | The circuit number is out of range. Check Cir-No (circuit number) of the MSG-RCV function.                                                                                                |  |
| 85xxH                      | Error in setting channel number | The communication buffer channel number is out of range. Check Ch-No (communication buffer channel number) for the MSG-RCV function.                                                      |  |
| 86xxH                      | Connection number error         | The connection number is out of range. Check PARAM02 (connection number).                                                                                                                 |  |
| 87xxH                      | _                               | Reserved                                                                                                                                                                                  |  |
| 88xxH                      | Communication section error     | An error response was returned from the communication section (communication device). Check the equipment connection. In addition, check that the remote device is open to communication. |  |
| 89xxH                      | Device select error             | Unavailable device is set. Check Dev-Typ (communication device type) of the MSG-RCV function.                                                                                             |  |

# (3) Status (PARAM01)

Outputs status of the communication section (communication device). The following figure shows the bit assignment. The bit assignment details are listed in the following tables.



## [a] REQUEST (request)

Outputs whether MSG-RCV function is requesting a process.

| Bit State | Contents                                       |  |
|-----------|------------------------------------------------|--|
| 1         | Requesting to process                          |  |
| 0         | The acceptance of process request is completed |  |

## [b] RESULT (result)

Outputs the execution result of the MSG-RCV function

| Code | Abbreviation | Meaning                                                                     |  |
|------|--------------|-----------------------------------------------------------------------------|--|
| 0    | CONN_NG      | In Ethernet communications, transmit error or connection error is completed |  |
| 1    | SEND_OK      | Normal transmission completed                                               |  |
| 2    | REC_OK       | Normal reception completed                                                  |  |
| 3    | ABORT_OK     | Forced abort completed                                                      |  |
| 4    | FMT_NG       | Parameter format error                                                      |  |
| 5    | SEQ_NG       | Command sequence error                                                      |  |
| 6    | RESET_NG     | Reset state                                                                 |  |
| 7    | REC_NG       | Data reception error (error detected in the lower layer program)            |  |

## [c] COMMAND (command)

Outputs a process command for the MSG-RCV function The executed process content can be found according to the command.

| Code (Hex) | Abbreviation | Meaning                                                                          |  |
|------------|--------------|----------------------------------------------------------------------------------|--|
| 1          | U_SEND       | General-purpose message transmission                                             |  |
| 2          | U_REC        | General-purpose message reception                                                |  |
| 3          | ABORT        | Forced abort                                                                     |  |
| 8          | M_SEND       | Command transmission: Completed when response is received (for MEMOBUS protocol) |  |
| 9          | M_REC        | Command reception: Accompanies a response transmission (for MEMOBUS protocol)    |  |
| С          | MR_SEND      | Response transmission (for MEMOBUS protocol)                                     |  |

#### [d] PARAMETER (parameter)

When RESULT (process result) = 4 (FMT\_NG: parameter format error), an error code in the following table is output. Otherwise, the connection number is output.

| RESULT (process result)               | Code (Hex) | Meaning                                                                        |  |
|---------------------------------------|------------|--------------------------------------------------------------------------------|--|
| When RESULT (process re-              | 00         | No error                                                                       |  |
|                                       | 01         | Connection number is out of range                                              |  |
|                                       | 02         | Time error while monitoring to receive MEMOBUS response (for MEMOBUS protocol) |  |
| sult) = 4                             | 03         | Error in setting retransmit count                                              |  |
| (FMT_NG: parameter for-<br>mat error) | 04         | Error in setting cyclic area                                                   |  |
|                                       | 05         | CPU number error                                                               |  |
|                                       | 06         | Data address error                                                             |  |
|                                       | 07         | Data size error                                                                |  |
|                                       | 08         | Function code error (for MEMOBUS protocol)                                     |  |
| Others                                | XX         | Connection number                                                              |  |

## (4) Connection Number (PARAM02)

Refer to D.2.4 (4) Connection Number (PARAM02).

## (5) Data Size (PARAM06)

A data size requested from the transmission side is output. In case of non-procedure 1, the number of words is output. In case of non-procedure 2, the number of bytes is output.

## (6) Register Offset (PARAM12)

Specify an offset address for the reception side data address.

The address for the reception side will be displaced by the number of words designated by the offset.

- Note: 1. For more information, refer to D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function.
  - 2. The offset cannot be a negative value.

In case of non-procedure, received continuous data is stored in the M register. Setting the register offset enables you to specify a start address of the M register as a storage area.

Example: When specifying MW01000 for the start address of the M register for storing received data: PARAM12=1000

## (7) Write Range HI (PARAM13)

Sets an available address range for the write request from the transmission side. A write request which is out of this available address range will cause an error.

Specify the write range (PARAM13) as a word address.

Note: The write range parameter enables you to specify the range of the M register which permits writing messages.

Specify the write range so that the expression below is met:

 $0 \le Write range HI \le Maximum address of M register$ 

Example: When setting the last address of the M register which permits writing to 1999:

PARAM13=1999

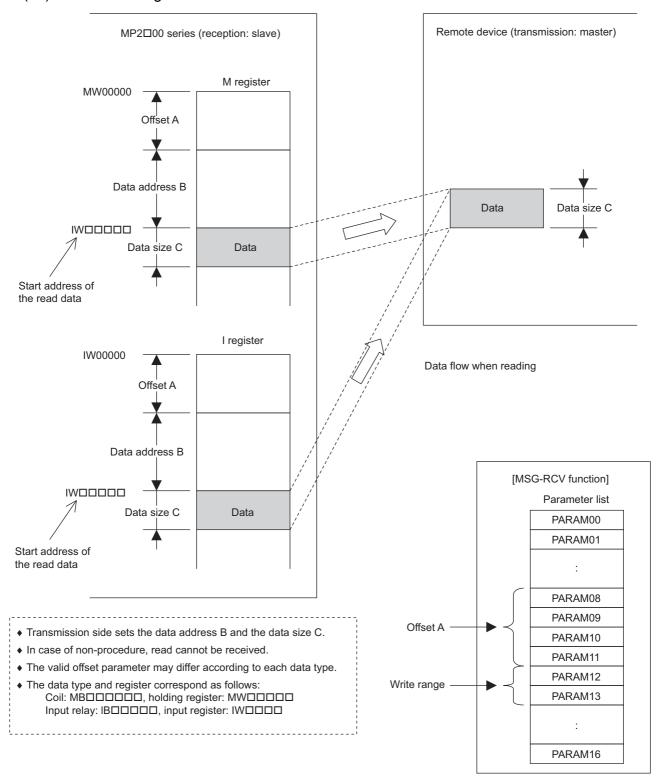
The reception side will return an error against a write request to an address other than MW00000 to MW01999, and will not write it.

# (8) Reserved by System 1 (PARAM14)

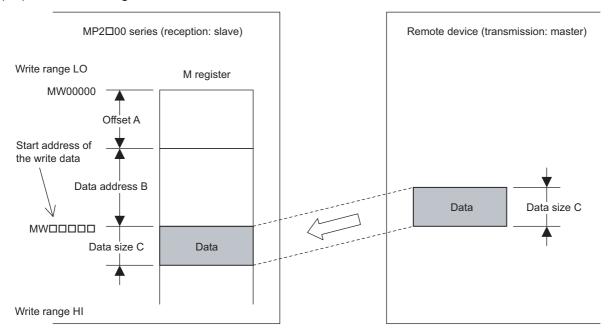
Used by system (the channel number of the communication buffer in use is stored).

Note: At the first scan during power up, make sure to set this to "0" by user program.

After that, the register is used by system, so do not change the value with the user program.


#### (9) Reserved by System 2 (PARAM15, PARAM16)

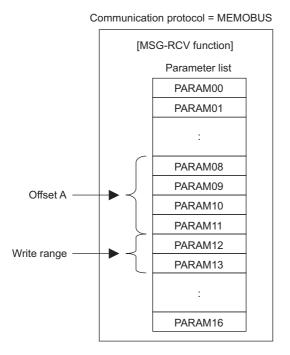
Used by system. Do not change the value with the user program, etc.

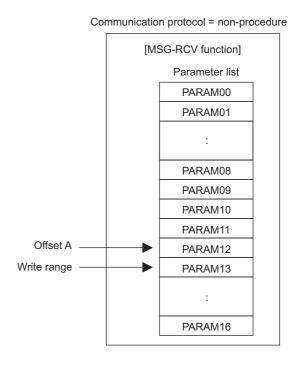

# D.2.8 Relationship between Data Address, Data Size, and Offset for MSG-RCV Function

The relationships between data address, data size, and offset when received with offset are as follows:

## (1) When Reading



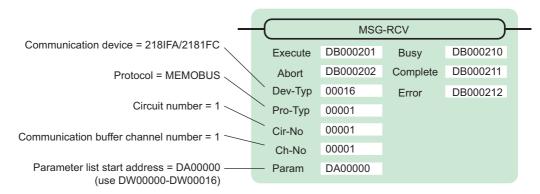

## (2) When Writing




Data flow when writing

- Transmission side sets the data address B and the data size C.
- ♦ In case of non-procedure, read cannot be received.
- ♦ The valid offset parameter may differ according to each data type.
- ♦ The data type and register correspond as follows:

  Coil: MB□□□□□□, holding register: MW□□□□□






Example: "Writes to multiple holding registers" with offset is received:

When "writes to multiple holding registers" with offset is received in MEMOBUS protocol, various setting values and the relationship with the data of remote device are as follows:

• Description of the MSG-RCV function in ladder program



• Parameter list setting of the MSG-RCV function

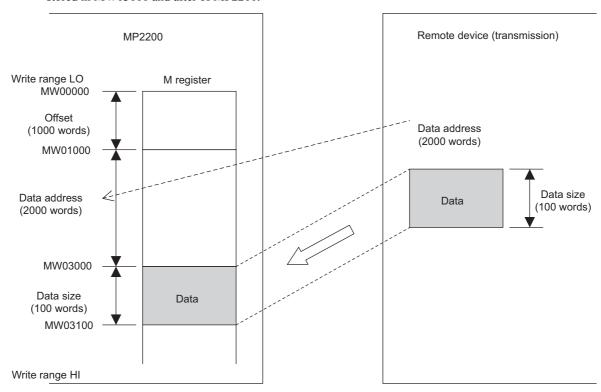
Table D.32 Parameter List Setting

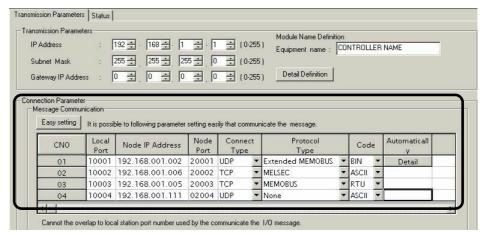
| Register Num-<br>ber | Setting<br>Value | Parameter Num-<br>ber | IN/OUT | Remarks                              |
|----------------------|------------------|-----------------------|--------|--------------------------------------|
| DW00000              | -                | PARAM00               | OUT    | Process result                       |
| DW00001              | -                | PARAM01               | OUT    | Status                               |
| DW00002              | 00001            | PARAM02               | IN     | Connection number = 1                |
| DW00003              | -                | PARAM03               | OUT    | Option (setting unnecessary)         |
| DW00004              | -                | PARAM04               | OUT    | Function Code                        |
| DW00005              | -                | PARAM05               | OUT    | Data address                         |
| DW00006              | -                | PARAM06               | OUT    | Data size                            |
| DW00007              | -                | PARAM07               | OUT    | Remote CPU number                    |
| DW00008              | 00000            | PARAM08               | IN     | Coil offset = 0 word                 |
| DW00009              | 00000            | PARAM09               | IN     | Input relay offset = 0 word          |
| DW00010              | 00000            | PARAM10               | IN     | Input register offset = 0 word       |
| DW00011              | 01000            | PARAM11               | IN     | Holding register offset = 1000 words |
| DW00012              | 00000            | PARAM12               | IN     | Write range LO = 0                   |
| DW00013              | 65534            | PARAM13               | IN     | Write range HI = 65534               |
| DW00014              | -                | PARAM14               | SYS    | Reserved (zero clear at startup)     |
| DW00015              | -                | PARAM15               | SYS    | Reserved                             |
| DW00016              | -                | PARAM16               | SYS    | Reserved                             |

Note: IN: Input, OUT: Output, SYS: For system use

#### D.2 Message Receive Function (MSG-RCV)

Relationship with the Remote Device Data
 The following figure shows the data flow when receiving "writes to multiple holding registers" with offset:
 When transmission and reception are carried out normally in the figure below, the data in the remote device is stored in MW03000 and after of MP2200.





Fig. D.12 Writing Example to Multiple Holding Registers

# D.3 Communication Buffer Channel

A communication buffer channel is used for giving and receiving data between the MSG-SND/ MSG-RCV function and communication device. This data buffer is composed of single or multiple channels, and each channel is distinguished by a communication buffer channel number.

The communication buffer channel is associated with a connection by setting the input item **Ch-No** (communication buffer channel number) of the MSG-SND/ MSG-RCV function and PARAM02 (connection number) in Param (parameter list).

A connection is configuration information for communication between local and remote stations, and is set in the 218IF/218IFA/218IFC **Transmission Parameters** Tab Page of the MPE720 **Module Configuration** Window.



Note: For the 218IFC, the setting range for the connection number is larger, i.e., 01 to 20.

Fig. D.13 218IFA/218IFC Transmission Parameters Tab Page for the MPE720 Module Configuration Window

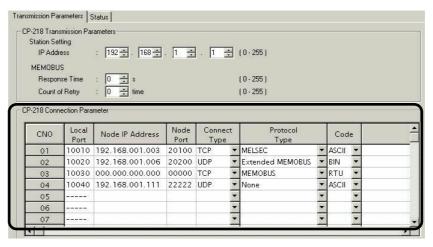
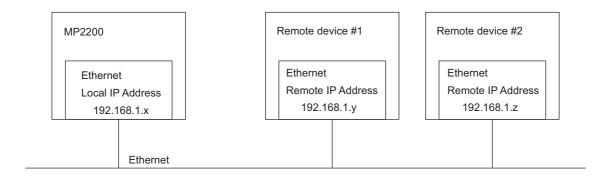




Fig. D.14 218IF Transmission Parameters Tab Page for the MPE720 Module Configuration Window A schematic diagram of the communication buffer channel is shown in the next page.

#### D.3 Communication Buffer Channel



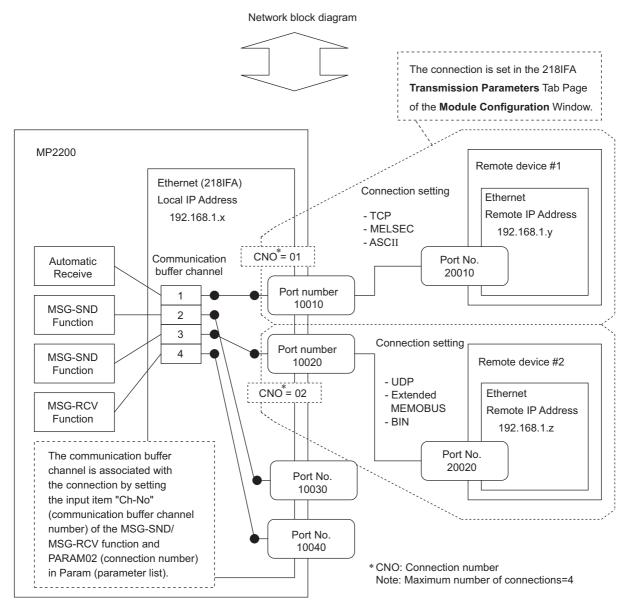



Fig. D.15 Schematic Diagram for Communication Buffer Channel

# Appendix E Optional Functions

# E.1 Clearing D Registers at Startup

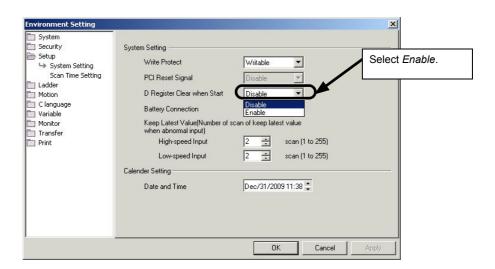
# (1) Overview of Functions

D registers are internal registers that are unique for each user program. Normally, the D register data is not defined at startup, but it is also possible to start with the data cleared. Specifically, the data cleared by this function is the D registers of DWG (drawings), user functions, and motion programs. Make the settings in the **System Setting** of the **Environment Setting** Dialog Box. With the default settings, the D registers will not be cleared at startup.

# (2) Supported Versions

The following versions support function to clear D registers at startup.

- Controller: Version 2.32 or later
- MPE720: Version 5.21 or later
- MPE720 Version 6: All versions


# (3) Setting Procedure for Clearing D Registers at Startup

Use the following procedure to make the setting.

1. Connect the MPE720 online.

Select File (F) - Environment Setting - Setup.

2. Select Enable under the D Register Clear when Start.



**3.** Save data to flash memory before turning OFF the power supply.

The system will start with the D registers cleared to zeroes the next time that the flash memory starts.

# (4) Application Precautions

- Due to the nature of this function, it will only be enabled when starting with flash memory after having set this function to "enabled" and saving to flash memory.
- It is not possible to clear the D registers for only a specific user program.
- No check is performed to see if the CPU Module supports the function to clear D registers at startup when the MPE720 is offline. Therefore, confirm that the CPU Module that is being used supports the function to clear D registers at startup before using this function.

# E.2 Security

## (1) Overview of Functions

Security functions set a password (security key) to prevent data saved in the Controller from being read by other par-

# (2) Supported Versions

The following versions support security functions.

• Controller: Version 2.32 or later

• MPE720: Version 5.21 or later

• MPE720 Version 6: All versions

# (3) Description of Functions

# [a] Security Settings

Only one security condition can be set for each Controller.

Note: 1. You cannot make separate security settings for each user that logs on.

- This security function has no relation to the identify function in terms of user names and passwords used to log on to the MPE720.
- Only users with writing privilege of level 7 or higher can make this security setting.

#### [b] Target data

• The following table shows the data that can be privacy protected.

| Туре       | Description                               | Remarks                                                                          |
|------------|-------------------------------------------|----------------------------------------------------------------------------------|
| Ladder     | Drawings (DWG) and user functions (FUNC)  | All types of drawings, as well as parent, child, grandchild, and error drawings. |
| Motion     | Motion program                            |                                                                                  |
|            | Sequence program                          | Supported by the CPU-03 and CPU-04.                                              |
| C Language | C language tasks and C language functions | Supported from version 2.31 of the embedded API.                                 |

• You can place restrictions (e.g., copy protection) only on reading from the Controller.

Note: It is not possible to use the security functions to restrict writing to the Controller.

• You can place restrictions reading according to the reading privilege level of the application.

Note: File rights: Reading is restricted when R (the reading privilege level) is greater than or equal to the restriction privilege level.

#### [c] Security Identification

• Security identification uses a security key of up to eight alphanumeric case-sensitive characters.

Note: If you forget the key, the security setting cannot be released unless memory is cleared. Keep a record of the key in case you forget it.

- If the key that is entered is incorrect three consecutive times for the current security settings, it will not be possible to change any security settings without turning OFF and then ON again the power supply to the Controller.
- You can release the security without changing the security key setting.

Note: You can enable or disable security while the security key is set by selecting whether to restrict reading of files. This is effective when you do not want other parties to make security settings.

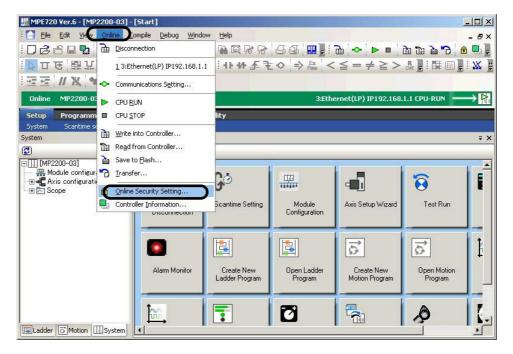
# [d] Precautions for Transfers

- The security settings are not transferred.
- The security settings are automatically canceled after batch transfers or batch loading from a CF card\* are performed. After the batch job has been completed, be sure to return the security settings to their previous state.
  - \* A batch load from a CF card can be only executed when using a CPU-02 or a CPU-03 Module.

Note: If using controller software version 2.76 or later, the security settings are not canceled after batch transfers or batch loading. If the INIT DIP switch for the controller is ON and then the power supply is turned ON, however, the security settings will also be released. For details, refer to E.2 (6) Initialization

• With the CPU-02 or CPU-03, batch saving to the CF card is prohibited regardless of the restriction privilege level if reading is restricted.

# (4) Operation Procedure


# [a] Opening the Security Setting Dialog Box

Make the security settings using the MPE720. The **Security Setting** Dialog Box will start when the Engineering Tool goes online with the Controller.

1. Connect to the Controller online.



2. Select Online - Online Security Setting.

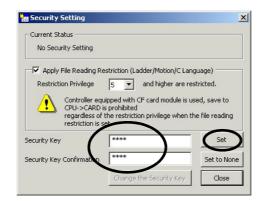


The following dialog box will be displayed in environments that support security settings.



The figure above shows the default status.

# [b] New Security Settings


Make a new security setting in the Security Setting Dialog Box.

1. Select the Apply File Reading Restriction (Ladder/Motion/C Language) Check Box, and then select a restriction privilege level from 0 to 7.



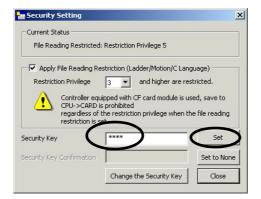
Note: The display depends on the conditions that are set.

2. Enter a password of eight or less alphanumeric characters in the **Security Key** Field. For confirmation, enter the same password in the **Security Key Confirmation** Field. To apply the security settings to the Controller, click the **Set** Button.



The following figure will be displayed if the security settings have been normally applied to the Controller.




# [c] Changing the Restriction Privilege

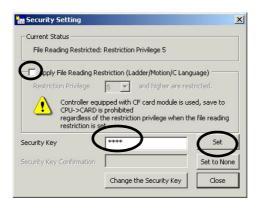
Change the restriction privilege with the security settings made.

**1.** Open the **Security Setting** Dialog Box and change the restriction privilege level to a number from 0 to 7.



2. Enter the password in the **Security Key** Field. To apply the security settings to the Controller, click the **Set** Button.




If a change in restriction privileges has been normally applied to the Controller, the new restriction privilege level will be displayed in the **Current Status** Area of the **Security Setting** Dialog Box.




# [d] Changing the File Reading Restriction

Change the file reading restriction with the security settings made. In this example, we will release the restriction. To set the restriction, use the same procedure. Having no file reading restriction set is the same as security being released.

 Select or clear the Apply File Reading Restriction (Ladder/Motion/C Language) Check Box. Enter the password in the Security Key Field, and then click the Set Button.



2. If the change in file reading restriction has been normally applied to the Controller, the status will change from File Reading Restricted to No Security Setting in the Current Status Area.



# [e] Changing the Security Key

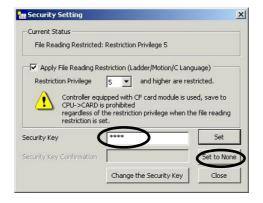
The security key can be changed with the security settings made. This procedure will change only the security settings.

1. Open the Security Setting Dialog Box, and then click the Change the Security Key Button.

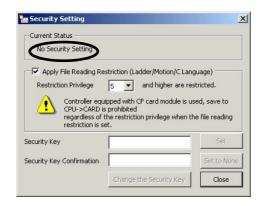


A dialog box for changing the security key will be displayed as shown in the following figure.




2. Enter the set password in the Current Security Key Field. Enter the new password in the New Security Key Field and New Security Key Confirmation Field. Click the OK Button to apply the change to the Controller.

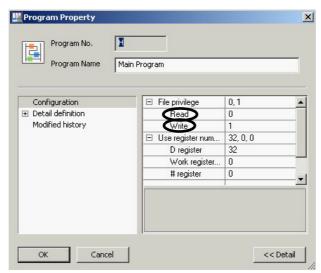



# [f] Releasing Security

The security can be released with the security settings made. This procedure will initialize the security settings.

1. Enter the set password in the **Security Key** Field, and then click the **Set to None** Button.




The text **No Security Setting** will be displayed in the **Current Status** Area if the security release has been normally applied to the Controller.



# (5) Security Operation

# [a] Privilege Settings in User Applications

Privilege settings enable individually set reading privilege levels and writing privilege levels in the properties for each application (i.e., ladder, motion, or C language).



The figure above shows the dialog box for ladder (DWG) properties.

# [b] File Reading with Security Settings

The system will activate a security check if an attempt is made to read a user application with the MPE720 after security settings have been made. If the reading privilege level of the application is equal to or higher than the security restriction privilege level, an error will occur, and you will not be able to read the application. The same will occur when a comparison is performed between the CPU Unit and MPE720.




Fig. E.1 This Error Message is Displayed If an Attempt is Made to Open a User Application (i.e., ladder, motion, or C language).

# (6) Initialization

Set ON the INIT of DIP switch for the Controller and then turn ON the power supply. Memory will be cleared and operation will start. The security settings will also be initialized.

# (7) Security-related System Registers

The security setting status can be checked by using the following system registers.

| Name                                     | Register Number |                                 | Description                                                                                    |
|------------------------------------------|-----------------|---------------------------------|------------------------------------------------------------------------------------------------|
| Security Status                          | SW00506         | 0: No security, 1: Security set |                                                                                                |
| Security Reading Restriction Information | SW00507         | SB005070 to SB005073            | File Reading Restriction Privilege<br>SW00507=***xH<br>x: Restriction privilege level (0 to 7) |
|                                          |                 | SB005074 to SB005076            | Reserved by system.                                                                            |
|                                          |                 | SB005077                        | File reading not restricted     File reading restricted                                        |
|                                          |                 | SB005078 to SB00507F            | Reserved by system.                                                                            |

# (8) Application Precautions

- The security settings data is saved in flash memory.
   When starting from flash memory, an operation will be performed according to the status when data was saved to flash memory. Therefore, be sure to save the data to flash memory after making the security settings if the Controller will be started from flash memory.
- Security function does not apply when offline (i.e., when the MPE720 is used alone).
   You cannot make security settings even if you log on offline. Manage offline data so that applications are protected from being disclosed.
- Always enter at least one alphanumeric character for the security key.
   To ensure security, at least one alphanumeric character must be entered in the security key. Although no key can guarantee foolproof security, you can increase the security of your key by entering a mixture of uppercase, lowercase, and numeric characters (e.g., A to Z, a to z, and 0 to 9).

# E.3 Battery Backup for Table Data

# (1) Overview of Functions

For the MP2000 Series, one table consists of the following three types of data.

- 1. Table definitions (e.g., definitions of table name, table type, number of columns, and number of rows)
- 2. Attribute definitions (e.g., definitions for column names, data type (size), and table type)
- 3. Table data

Normally, the data listed above is placed in volatile memory in the same way as drawings. Therefore, data will not be held the next time operation is started unless the data has been saved to flash memory. To back up the data when the power supply is turned OFF, you can place the table data (item number three above) into memory that is backed up with a battery. This is called "battery backup memory." You can access table data that has been backed up using this function by following normal table data operation instructions.

# (2) Applicable Models

• CPU-02/CPU-03/CPU-04

# (3) Supported Versions

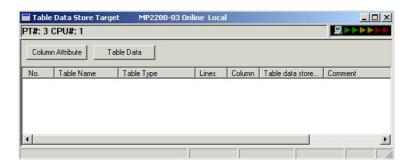
Controller: Version 2.32 or later
MPE720: Version 5.21 or later
MPE720 Version 6: All versions

# (4) Battery Backup Memory Capacity

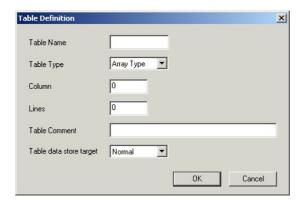
• CPU-02: 1 MB (including data used by the system)

• CPU-03/CPU-04: 3 MB (including data used by the system)

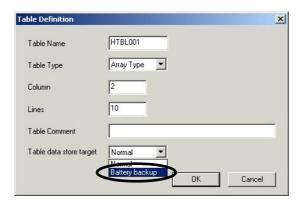
# (5) System Registers for Battery Backup Memory Capacity


Data related to battery backup memory is stored in the system registers given in the following table.

| Name                                     | Register Number | Remarks |
|------------------------------------------|-----------------|---------|
| Battery Backup Memory Remaining Capacity | SL00640         | Bytes   |
| Battery Backup Memory Total Capacity     | SL00642         | Bytes   |

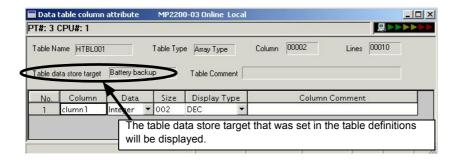

# (6) Setting Procedure for Using Battery Backup Memory

Use the following procedure.

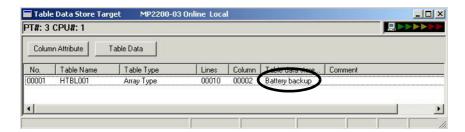

1. Open the Table Data Store Target Window from the MPE720.



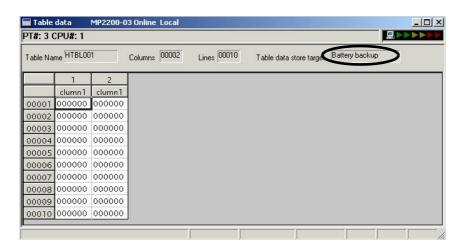
2. Select File - Create New to open the Table Definition Dialog Box.




3. Select Battery Backup in the Table data store target List.




E.3 Battery Backup for Table Data


**4.** When you finish setting the table definitions, the window for setting the column attribute definitions will be displayed to allow you to enter the required data.



**5.** After saving the attribute definitions and returning to the **Table Data Store Target** Window, the following figure will be displayed.



6. Table data will be displayed as in the following figure.



# (7) Application Precautions

- a) Always save data to the flash memory before turning OFF the power supply if new table data is created or definitions are changed by using this function. Table definitions and column attribute definitions will be saved to volatile memory even if battery backup memory is specified for the table data store target. Therefore, the table itself will be deleted the next time the system is started if data is not saved to the flash memory after table definitions have been created. Also, access will be normally performed if the definitions have been changed and the table names before and after the change are the same. Actually, however, you will be accessing the table data store target with the status from before the change, and the entire battery backup memory data will be incorrect.
- b) Tables with their table data store target set to battery backup memory will start with table data in the status that existed before the power supply was turned OFF (when starting from flash memory). The table data, however, will be unstable (same as for M registers) if the data has not been held because the battery is not mounted or the battery voltage is low. In this case, you can use the system normally by initializing the table data.
- c) If you turn ON the INIT of DIP switch pin and then turn ON the power supply, the battery backup memory data will be cleared to all zeroes. To recover the data, dump it in advance, and then reload it.
- d) If the table data store target is set to battery backup memory, areas allocated to table data will be allocated in block units. Empty blocks may occur if you repeatedly delete and save definitions. To delete these empty blocks, dump the data, initialize the battery backup memory, and then reload the data.
- e) If the table data store target is changed, the table data will be cleared to all zeros even if there is no change in the size.

# Appendix F Installing MPE720 Version 6

MPE720 Version 6 (CPMC-MPE770) is the Engineering Tool for the MP2000-series Machine Controllers.

With this Tool installed on a computer and with a connection to a Machine Controller through a Communication Module, you can program, control, and monitor the Controller from computer windows.

When you purchase MPE720 version 6, you will receive an installation CD-ROM.

Use this installation CD-ROM to install MPE720 version 6.

For the installation procedure, refer to the *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual* (manual no.: SIEP C880700 30).

If you register online as a user of MPE720 version 6, you can download upgraded versions of the product free of charge for two years from the time of purchase from the Yaskawa e-Mecha website (http://www.e-mechatronics.com).

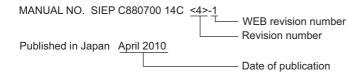
We will also send you e-mail notification of version upgrades to the product as they are released. You must register as a member of the e-Mecha website before registering as an online user. If you are unable to use the online download service, please use the MPE720 Version 6 CD Dispatch Application that is included with the installation CD-ROM.

CARD module connector ----- 3-13, 3-14

# Index

| HIGON                                             | causes for command error occurrence 8-32                       |
|---------------------------------------------------|----------------------------------------------------------------|
|                                                   | child drawings 5-7                                             |
|                                                   | CNTR-01 module 2-78                                            |
|                                                   | communication buffer channel A-83                              |
| Symbols                                           | communication interface 2-39, 2-73                             |
| # registers 5-36                                  | communication module 2-78                                      |
|                                                   | communication protocols 2-39, 2-73                             |
| Numerics                                          | communication with other MP series 6-3                         |
| 100Base-TX 2-38, 2-72, 3-14                       | master                                                         |
| 10Base-T 3-14                                     | with I/O message communication function 6-34                   |
| 215AIF-01 module 2-78                             | with ladder program 6-47                                       |
| 217IF-01 module 2-78                              | slave                                                          |
| 218IF-01 module 2-78                              | with automatic receive function 6-3 with ladder program 6-16   |
| 218IF-02 module 2-78                              | communication with PLC by Mitsubishi Electric Corporation 6-73 |
| 218IFA module 2-38                                | master 6-80                                                    |
| configuration definition 2-41                     | slave 6-73                                                     |
| detailed definition window 2-42                   | communication with touch panel 6-63                            |
| functions 2-38                                    | Compact Flash 2-19                                             |
| specifications 2-39                               | functions 2-20                                                 |
| 218IFC module 2-72                                | system registers 2-20                                          |
| configuration definition 2-75                     | Compact Flash card 2-19                                        |
| detailed definition window 2-75                   | Compact Flash slot specifications 3-13                         |
| functions 2-72                                    | Compatible                                                     |
| specifications 2-73                               | Inverters 1-10, 1-12                                           |
| 260IF-01 module 2-78                              | Modules 1-12                                                   |
| 261IF-01 module 2-78                              |                                                                |
| 262IF-01 module 2-78                              | SERVOPACKs1-10, 1-12                                           |
| 263IF-01 module 2-78                              | compiling 4-11                                                 |
| A                                                 | connection parameter setting2-46, 2-51                         |
|                                                   | constants registers 5-36                                       |
| accessories1-16                                   | control signal 5-21                                            |
| actions to be taken when an I/O error occurs 8-22 | correcting user program errors                                 |
| address5-39                                       | counter interrupts                                             |
| AI-01 module 2-78                                 | cover for option slot                                          |
| AO-01 module2-78                                  | CPU-01 and CPU-02 module definition information 5-51           |
| ARP2-39, 2-73                                     | CPU-01 module 2-9                                              |
| automatic negotiation 2-39, 2-73                  | external appearance 2-9                                        |
| automatically reception dialog box 2-49           | hardware specifications 2-11                                   |
| automatically reception dialog box 2-47           | LED indicators 2-9                                             |
| В                                                 | overview of functions 2-9                                      |
| base unit 2-6                                     | SVR module 2-12                                                |
| AC-input power supply2-6                          | SW1 2-10                                                       |
| connection 3-10                                   | switch settings 2-10                                           |
| DC-input power supply 2-6                         | virtual motion module 2-12                                     |
| external appearance 2-6                           | CPU-02 module 2-15                                             |
| hardware specifications2-8                        | CARD module 2-19                                               |
| LED indicator 2-7                                 | connections 3-13                                               |
| short rack 2-7                                    | external appearance 2-15                                       |
| basic unit                                        | hardware specifications 2-18                                   |
| appearance 1-3                                    | LED indicators 2-16                                            |
| connection 3-10                                   | overview of functions 2-15                                     |
| external dimensions 2-79                          | SVR module 2-18                                                |
| batch load from Compact Flash 2-23                | SW1 2-16                                                       |
| batch save to Compact Flash 2-22                  | SW2 2-17                                                       |
| batch transfer 4-15                               | switch settings 2-16                                           |
| battery 1-16                                      | virtual motion module 2-18                                     |
| bit 5-39                                          | CPU-03 and CPU-04 module                                       |
| С                                                 | connections 3-14                                               |
|                                                   | definition information 5-53                                    |
| cables 1-13                                       | CPU-03 module 2-33                                             |
| calling a motion program                          | CARD module 2-37                                               |
| direct designation 5-17                           | external appearance 2-34                                       |

hardware specifications ----- 2-37


| LED indicators2-                                          | 34 connectors 3-                                           | -18 |
|-----------------------------------------------------------|------------------------------------------------------------|-----|
| overview of functions 2-                                  |                                                            |     |
| SVR module2-                                              | hardware specifications 2                                  | -76 |
| SW12-                                                     | 35 overview of functions2                                  | -76 |
| SW22-                                                     |                                                            |     |
| switch settings 2-                                        | 35                                                         |     |
| virtual motion module2-                                   | <b>P</b>                                                   |     |
| CPU-04 module 2-                                          |                                                            | A-5 |
| external appearance2-                                     | **                                                         |     |
|                                                           | **                                                         |     |
| hardware specifications2                                  | · -                                                        |     |
| LED indicators2-                                          |                                                            |     |
| overview of functions2-                                   | ,                                                          | -11 |
| SVR module2-                                              | G                                                          |     |
| SW12-                                                     | grandshild drawings                                        | 5-7 |
| SW22-                                                     | 70                                                         |     |
| switch settings 2-                                        | 70                                                         |     |
| virtual motion module2-                                   | 71                                                         | 12  |
| creating a project                                        |                                                            |     |
| creating motion programs4-                                | hardware driver installation 2                             | -25 |
| D                                                         | hierarchical structure of drawings                         |     |
| <del>-</del>                                              |                                                            |     |
| D registers5-                                             | 50                                                         |     |
| daily inspections                                         | 3-2                                                        |     |
| data registers 5-                                         | how to disable the I/O manage                              |     |
| data types 5-                                             | how to foreibly turn ON/OFF coil                           |     |
| debug mode4-                                              | hove to immediately control a motion program from external | -17 |
| definition information updated with self-configuration 5- | ogvinment 5                                                | -27 |
| DI interrupts8-                                           | 25 how to apprete work register 5                          |     |
| difference between Ethernet (LP) and EthernetA-           | 18 now to operate work register                            |     |
| differences from SVB simulation mode 2-                   | 14                                                         |     |
| DIN rail                                                  | I/O message communication 2-51, 2                          | -53 |
| fixing 3                                                  | ICMP2-39, 2                                                |     |
| mounting3                                                 | Individual transfer 4                                      | -15 |
| mounting parts1-                                          | 16 INIT                                                    |     |
| mounting procedure3                                       | 3-3 input registers5                                       |     |
| DIP switch settings                                       | input/output module 2                                      |     |
| DO-01 module2-                                            | 78 inspection items                                        |     |
| double-length integer5-                                   | installing MPF720 version 6 A                              |     |
| drawing A5                                                | 5-7 integer 5                                              |     |
| drawing execution control5                                | internal function registers 5                              |     |
| drawing H5                                                | interpolation override 5                                   |     |
| drawing I                                                 | 5-7 interrupt status 8                                     |     |
| drawing L5                                                | 3-7 IP2-39, 2                                              |     |
| DWG                                                       | 5-7                                                        | -/3 |
| DWG registers5-                                           | <b>J</b>                                                   |     |
| DWG.A                                                     | JZSP-BA01                                                  | 8-4 |
| DWG.H5                                                    |                                                            |     |
| DWG.I5                                                    | 5-7 <b>L</b>                                               |     |
| DWG.L5                                                    | ladder drawings                                            | 5-7 |
| <b>-</b>                                                  | LAN cable4-4,                                              | 7-4 |
| E                                                         | LED indicator details                                      | 5-5 |
| easy setting dialog box2-48, 2-                           | 53 LIO-01/ LIO-02 module 2                                 | -78 |
| encoder cable 4-4, 7                                      | 7-4 LIO-04/ LIO-05 module 2                                | -78 |
| error list dialog box4-                                   | 11 LIO-06 module 2                                         | -78 |
| Ethernet2-38, 2-                                          | 72                                                         |     |
| Ethernet cable 3-                                         | M                                                          |     |
| Ethernet communication methods                            | 1 0                                                        | -33 |
| Ethernet connection example 3-                            | making a 100/200-VAC power supply cable 3-                 | -11 |
| Ethernet connector3-                                      |                                                            | -12 |
| executing a motion program4-                              |                                                            |     |
| executing motion 7-                                       |                                                            | -10 |
| execution schedule for scan processing drawings           |                                                            |     |
| EXIOIF module                                             | MBU-02/MBU-03 power supply connector 3-                    | -12 |
| cables3-                                                  |                                                            |     |
| connections 3-                                            | 18                                                         |     |

| MECHATROLINK-I/-II-compatible devices                  | Р                                                             |
|--------------------------------------------------------|---------------------------------------------------------------|
| modules 1-11                                           | parent drawings 5-                                            |
| MECHATROLINK-III-compatible devices 1-12               | PLC function specifications 2-                                |
| MELSEC protocol 6-73                                   | PO-01 module 2-7                                              |
| message communication 2-45, 2-46, 2-48, 2-49           | power supply connector 1-1                                    |
| message receive functionA-53                           | precautions 5-5                                               |
| message send functionA-20                              | setting or changing module configuration definition files 5-5 |
| M-EXECUTOR definition 5-54                             | setting or changing the scan time 5-5                         |
| M-EXECUTOR module2-57, 2-75                            | setting or changing user definition files 5-5                 |
| allocation control register tab2-63                    | using MP2200 5-5                                              |
| configuration definition 2-59                          | program control method 2-5                                    |
| execution scheduling 2-66                              | program debugging 4-1                                         |
| function overview 2-57                                 | program information used by work n 5-3                        |
| initializing7-9                                        | program software numbers A-                                   |
| program definition tab 2-61                            | programming 7-                                                |
| program execution registry screen dialog box 2-65      | programming tool 1-1                                          |
| specifications 2-58                                    | _                                                             |
| module information 8-25                                | R                                                             |
| monitoring parameter listA-12                          | real number 5-3                                               |
| motion editor 4-11                                     | recommended ferritic core 3-1                                 |
| motion program 5-12                                    | register number direct designation 5-4                        |
| alarm codes 8-30                                       | registers 5-3                                                 |
| alarms 8-28                                            | regular inspections 8-                                        |
| calling a motion program 5-17                          | remaining program memory capacity A-                          |
| execution information 5-30                             | repeater hub 3-1                                              |
| program numbers 5-12                                   | replacing the basic unit battery 8-                           |
| registering a motion program for execution 4-12        |                                                               |
| status flag 5-20                                       | S                                                             |
| motion program executor 2-57, 2-75                     | S register 5-3                                                |
| motion program without using a ladder program 2-57     | saving a program to flash memory 4-1                          |
| MP2200 1-2                                             | scan execution status and calendar A-                         |
| error check flow 8-6                                   | scan time set value examples 5-5                              |
| features 1-2                                           | screwed method 3-                                             |
| general specifications 2-3                             | self-configuration 5-4, 5-4                                   |
| installation clearance 3-6                             | all the modules 5-4                                           |
| modules 1-4                                            | each module 5-4                                               |
| mounting direction 3-5                                 | procedure using MPE720 5-4                                    |
| mounting methods 3-2                                   | procedure using the DIP switch 5-4                            |
| product specifications2-4                              | self-diagnosis at startup 5-                                  |
| system configuration precautions 1-9                   | sequence program 2-57, 5-3                                    |
| MPE720 1-16                                            | alarm 5-3                                                     |
| MSG-RCV A-53                                           | calling a sequence program 5-3                                |
| MSG-SND A-20                                           | program numbers 5-3                                           |
| MSG-SND/MSG-RCV functions A-20                         | status flag 5-3                                               |
| multiple group operation 5-12                          | setting parameter list A-                                     |
| N                                                      | short rack2-                                                  |
|                                                        | simple connection function of the engineering tool A-1        |
| non-procedure receive buffer mode selection 2-39, 2-74 | single group operation 5-1                                    |
| 0                                                      | standard system functions 5-1                                 |
| _                                                      | starting motion program from an external signal 7-1           |
| online self-diagnosis5-4                               | startup sequence 5-                                           |
| operation error processing drawings 5-7                | step in icon 4-1                                              |
| operation in case of scan time over                    | subprogram 5-12, 5-3                                          |
| operation start 5-4                                    | subscripts i, j 5-4                                           |
| operation stop 5-4                                     | SVA-01 module 2-7                                             |
| optional cover                                         | SVB-01 module 2-7                                             |
| optional module2-77                                    | SVC-01 module 2-7                                             |
| overview list 2-77                                     | SVR2-12, 2-18, 2-37, 2-7                                      |
| optional modules 1-4                                   | SVR definition 5-52, 5-5                                      |
| installing3-9                                          | SVR execution timing 2-1                                      |
| removing 3-7                                           | SVR motion parameter listA-                                   |
| replacing and adding 3-7                               | SVR processing time 2-1                                       |
| options1-16                                            | symbol designation 5-4                                        |
| output registers 5-36                                  | system configuration example 1-                               |
|                                                        | system configuration example 2.2                              |

| system error8-8                            |
|--------------------------------------------|
| status 8-17                                |
| system errors                              |
| troubleshooting flowchart 8-10             |
| system I/O error status8-21                |
| system registers 5-36                      |
| accessing8-9                               |
| allocations8-8                             |
| configuration8-16                          |
| lists A-2                                  |
| system service execution status8-21        |
| system service registers A-2               |
| system startup 4-2, 7-2                    |
| executing motion7-14                       |
| programming7-12                            |
| self-configuration 4-5, 7-5                |
| test operation 4-6, 7-6                    |
| wiring 4-3, 7-3                            |
| system status 8-16                         |
| system work number5-23                     |
| Ŧ                                          |
| TCP2-39, 2-73                              |
| total number of system works5-23           |
| transferring a program4-14                 |
| troubleshooting8-5                         |
| LED indicator meaning 8-6                  |
|                                            |
| U                                          |
| UDP2-39, 2-73                              |
| USB cable3-13                              |
| USB communications driver installation2-25 |
| USB connectors 3-13                        |
| USB module 2-24                            |
| general specifications2-24                 |
| LED display2-25                            |
| overview2-24                               |
| user functions5-11                         |
| user operation error status 8-19           |
| user programs5-6                           |
| W                                          |
| work register 5 10 5 25                    |

# **Revision History**

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.



| Date of<br>Publication | Rev.<br>No. | WEB<br>Rev.<br>No. | Section            | Revised Contents                                                                                                          |
|------------------------|-------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| November 2018          | <20>        | 0                  | Back cover         | Revision: Address                                                                                                         |
| February 2018          | <19>        | 0                  | 2.1.1              | Revision: Noise resistance                                                                                                |
| December 2017          | <18>        | 0                  | 1.2.2, 1.5.1       | Addition: Description of CC-Link IE Field Communication Module (269IF-01)                                                 |
|                        |             |                    | 1.5.1              | Addition: Description of PO-01Cable for PO-01Module (JEPMC-W6060-□□)                                                      |
| June 2017              | <17>        | 0                  | Back cover         | Revision: Address                                                                                                         |
| March 2017             | <16>        | 0                  | _                  | Printed version of the manual that is available on the web (web version: SIEP C880700 14H<15>-1)                          |
| January 2017           | <15>        | 1                  | 5.3.1 (1)          | Revision: Notes for DWG Registers                                                                                         |
|                        |             |                    | Appendix E.1 (1)   | Revision: Description of Clearing D Registers at Startup                                                                  |
|                        |             |                    | Back cover         | Revision: Address                                                                                                         |
| December 2016          |             | 0                  | _                  | Printed version of the manual that is available on the web (web version: SIEP C880700 14H<14>-1)                          |
| July 2016              | <14>        | 1                  | 1.2.2              | Revision: MP2200 Modules                                                                                                  |
|                        |             |                    | 1.3                | Revision: Optional modules                                                                                                |
|                        |             |                    | 1.4                | Revision: Devices Connectable to MECHATROLINK-I/II/III                                                                    |
|                        |             |                    | 1.5                | Revision: Cables, Accessories and Options, and Software                                                                   |
| November 2015          | -           | 0                  | _                  | Printed version of the manual that is available on the web (web version: SIEP C880700 14G<13>-1)                          |
|                        |             |                    | Back cover         | Revision: Address                                                                                                         |
| August 2015            | <13>        | 1                  | 1.5.1              | Revision: Sumitomo 3M → 3M Japan Limited                                                                                  |
|                        |             |                    | 2.2.3              | Addition: Description of the allowable frequency range                                                                    |
| April 2015             |             | 0                  | Front cover, spine | Revision: Format                                                                                                          |
|                        |             |                    | Back cover         | Revision: Address and format                                                                                              |
| January 2014           | <12>        | 0                  | -                  | SIEP C880700 14F<11>-1, available on the Web.                                                                             |
| November 2013          | <11>        | 1                  | 1.5.2              | Revision: Power connector model                                                                                           |
|                        |             |                    | 2.9.1 (1)          | Addition: Explanation of illustration (cable-end connector), notes for cable-end connector and handle for power connector |
|                        |             |                    | 2.9.1 (2)          | Revision: Notes for cable-end connector                                                                                   |
| September 2013         |             | 0                  | Back cover         | Revision: Address                                                                                                         |
| November 2012          | <10>        | 0                  | Back cover         | Revision: Address                                                                                                         |
| March 2012             | <9>         | 0                  | Back cover         | Revision: Address                                                                                                         |
| November 2011          | <8>         | 0                  | -                  | SIEP C880700 14E<7>-3, available on the Web.                                                                              |
|                        |             |                    | 1.2.2, 1.3.1 (2)   | Addition: Notes for EXIOIF Cable                                                                                          |
| September 2011         | <7>         | 3                  | D.1.1, D.2.1       | Revision: Communication device type<br>Ethernet (218IFA/218IFC) = $16 \rightarrow$ Ethernet (218IFA/218IFB/218IFC) = $16$ |
| July 2011              |             | 2                  | 1.5.3              | Revision: Supported version of MPE720 for CPU-02<br>Version 5.30 or higher → Version 5.31B or later                       |
| _                      |             | 1                  | 2.2.3, 8.1.2       | Revision: Input voltage 85 to 276 VAC $\rightarrow$ 85 to 132 VAC / 198 to 276 VAC                                        |
| May 2011               | ]           | 0                  | _                  | SIEP C880700 14D<6>-1, available on the Web.                                                                              |
| April 2011             | <6>         | 1                  | 8.2.4 (5) [b]      | Revision: Description of *1 to *3                                                                                         |
| February 2011          |             | 0                  | _                  | SIEP C880700 14C<5>-3, available on the Web.                                                                              |

| Date of Publication | Rev.<br>No. | WEB<br>Rev.<br>No. | Section                    | Revised Contents                                                                  |
|---------------------|-------------|--------------------|----------------------------|-----------------------------------------------------------------------------------|
| December 2010       | <5>         | 3                  | Preface, 1.2.2             | Addition: Description of MPU-01 Module (JAPMC-CP2700-E)                           |
|                     |             |                    | 1.5.1                      | Revision: Cable-end connector model<br>10114-3000VE → 10114-3000PE                |
|                     |             |                    | 8.2.4 (5) [b]              | Addition: 0051H (Module synchronous error)                                        |
| October 2010        |             | 2                  | Front cover,<br>back cover | Revision: Format                                                                  |
|                     |             |                    | E.2 [d]                    | Addition: Description of a controller software version                            |
| August 2010         |             | 1                  | 3.2.1 (2) [b]              | Revision: Size of twisted-pair cable                                              |
|                     |             |                    | A.1 (1)                    | Addition: Description of * of SB000005 and SB000006                               |
|                     |             |                    | Back cover                 | Revision: Address                                                                 |
| May 2010            |             | 0                  | _                          | SIEP C880700 14C<4>-1, available on the Web.                                      |
| April 2010          | <4>         | 1                  | Preface                    | Addition: ■ Terms Used to Describe "Torque"                                       |
|                     |             |                    | 2.2.3                      | Addition: Allowable Power Loss Time                                               |
|                     |             |                    | 6.3.1 (1)                  | Revision: The other device to be connected in step 4 ⑥ and ⑦ MP2300 → touch panel |
| November 2009       |             | 0                  | All chapters               | Completely revised                                                                |
|                     |             |                    | Back cover                 | Revision: Address                                                                 |
| October 2006        | <3>         | -                  | _                          | Based on Japanese user's manual, SIJP C880700 14C<4>-0, printed in October 2006.  |
|                     |             |                    | 4.4                        | New section added: CPU-02 Module                                                  |
|                     |             |                    | 2.4.2, 7.2                 | Revision: Accessory battery model<br>ZZK000064 → JZSP-BA01                        |
| April 2006          | <2>         | -                  | _                          | Based on Japanese user's manual, SIJP C880700 14B<2>-1, available on the Web.     |
| August 2005         | <1>         | -                  | Back cover                 | Revision: Address                                                                 |
| September 2004      | _           | -                  | _                          | First edition                                                                     |

# Machine Controller MP2200 **USER'S MANUAL**

# IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan Phone: +81-4-2962-5151 Fax: +81-4-2962-6138 http://www.yaskawa.co.jp

# YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 http://www.yaskawa.com

#### YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187 http://www.yaskawa.com.br

#### YASKAWA EUROPE GmbH

Hauptstraβe 185, 65760 Eschborn, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

#### YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea Phone: +82-2-784-7844 Fax: +82-2-784-8495 http://www.yaskawa.co.kr

#### YASKAWA ASIA PACIFIC PTE. LTD.

30A, Kallang Place, #06-01, 339213, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 http://www.yaskawa.com.sq

#### YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD. 22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave., Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

#### YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 http://www.yaskawa.com.tw

# **YASKAWA**

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2004 YASKAWA ELECTRIC CORPORATION