
Introduction to Operating Systems
Lecture 15: OS examples on I/O system

QIAN Weining
wnqian@sei.ecnu.edu.cn

Institute of Massive Computing
East China Normal University

mailto:wnqian@sei.ecnu.edu.cn

06/23/09 2 os@sei.ecnu

Outline

● Linux file I/O system calls
● Linux I/O subsystem internals
● Windows XP

06/23/09 3 os@sei.ecnu

Linux file I/O

#include <sys/type.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *name, int flags);

int open (const char *name, int flags, mode_t
mode);

int creat (const char *name, mode_t mode)

06/23/09 4 os@sei.ecnu

Reading a file

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t len);

ssize_t ret;

while (len != 0 && (ret = read (fd, buf, len)) != 0) {

 if (ret == -1) {

 if (errno == EINTR) continue; /*syscall interrupt*/

 perror (“read”);

 break;

 }

 len -= ret;

 buf += ret;

}

06/23/09 5 os@sei.ecnu

Writing a file

#include <unistd.h>

ssize_t write (int fd, const void *buf, size_t count);

unsigned long word = 1720;

size_t count;

size_t nr;

count = sizeof (word);

nr = write (fd, &word, count);

if (nr == -1)

 /* error, check errno */

else if (nr != count)

 /* possible error, but 'errno' not set */

06/23/09 6 os@sei.ecnu

Synchronized I/O

#include <unistd.h>

int fsync (int fd);

int fdatasync (int fd);

int sync (void);

int close (int fd);

06/23/09 7 os@sei.ecnu

Seeking in a file

#include <sys/types.h>

#include <unistd.h>

off_t lseek (int fd, off_t pos, int origin);

off_t ret;

ret = lseek (fd, (off_t) 1825, SEEK_SET);

if (ret == (off_t) -1)

 /* error */

06/23/09 8 os@sei.ecnu

Positional reads/writes

#include <unistd.h>

ssize_t pread (int fd, void *buf, size_t
count, off_t pos);

ssize_t pwrite (int fd, voind *buf, size_t
count, off_t pos);

06/23/09 9 os@sei.ecnu

Multiplexed I/O

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select (int n,

 fd_set *readfds,

 fd_set *writefds,

 fd_set *exceptfds,

 struct timeval *timeout);

06/23/09 10 os@sei.ecnu

Multiplexed I/O cont'd

#include <sys/poll.h>

struct pollfd {

 int fd;

 short events;

 short revents;

}

int poll (struct pollfd *fds, unsigned int
nfds, int timeout);

06/23/09 11 os@sei.ecnu

Buffered I/O

#include <stdio.h>

FILE *fopen (const char *path, const char
*mode);

FILE *fdopen (int fd, const char *mode);

int fclose (FILE *stream);

int fcloseall (void);

int fgetc (FILE *stream);

char * fgets (char *str, int size, FILE
*stream);

size_t fread (void *buf, size_t size, size_t
nr, FILE *stream);

06/23/09 12 os@sei.ecnu

Buffered I/O

int fputc (int c, FILE* stream);

int fputs (const char *str, FILE *stream);

size_t fwrite (void *buf, size_t size, size_t
nr, FILE *stream);

int fseek (FILE *stream, long offset, int
whence);

int fsetpos (FILE *stream, fpos_t *pos);

void rewind (FILE *stream);

long ftell (FILE *stream);

int fgetpos (FILE *stream, fpos_t *pos);

06/23/09 13 os@sei.ecnu

Buffered I/O

int fflush (FILE *stream);

int ferror (FILE *stream);

int feof (FILE *stream);

void clearerr (FILE *stream);

int fileno (FILE *stream);

06/23/09 14 os@sei.ecnu

Buffered I/O

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int
mode, size_t size);

● Mode:

– _IONBF: unbuffered
– _IOLBF: line-buffered
– _IOFBF: block-buffered

06/23/09 15 os@sei.ecnu

Thread safety

#include <stdio.h>

void flockfile (FILE *stream);

void funlockfile (FILE *stream);

int ftrylockfile (FILE *stream);

06/23/09 16 os@sei.ecnu

Scatter/gather I/O

#include <sys/uid.h>

struct iovec {

 void *iov_base;

 size_t iov_len;

}

ssize_t readv (int fd, const struct iovec
*iov, int count);

ssize_t writev (int fd, const struct iovec
*iov, int count);

06/23/09 17 os@sei.ecnu

Mapping files into memory

#include <sys/mman.h>

void * mmap (void *addr,

 size_t len,

 int prot,

 int flags,

 int fd,

 off_t offset);

int munmap (void *addr, size_t len);

06/23/09 18 os@sei.ecnu

Linux driver registration

● Allows modules to tell the rest of the kernel that a new
driver has become available

● The kernel maintains dynamic tables of all known drivers,
and provides a set of routines to allow drivers to be
added to or removed from these tables at any time

● Registration tables include the following items:
– Device drivers

– File systems

– Network protocols

– Binary format

06/23/09 19 os@sei.ecnu

Linux conflict resolution

● A mechanism that allows different device drivers to
reserve hardware resources and to protect those
resources from accidental use by another driver

● The conflict resolution module aims to:
– Prevent modules from clashing over access to hardware

resources
– Prevent autoprobes from interfering with existing device

drivers
– Resolve conflicts with multiple drivers trying to access the

same hardware

06/23/09 20 os@sei.ecnu

Linux I/O

● The Linux device-oriented file system accesses disk storage
through two caches:

– Data is cached in the page cache, which is unified with the virtual
memory system

– Metadata is cached in the buffer cache, a separate cache indexed by
the physical disk block

● Linux splits all devices into three classes:

– block devices allow random access to completely independent, fixed
size blocks of data

– character devices include most other devices; they don’t need to
support the functionality of regular files

– network devices are interfaced via the kernel’s networking
subsystem

06/23/09 21 os@sei.ecnu

Linux device-driver block

06/23/09 22 os@sei.ecnu

Linux network structure

● Networking is a key area of functionality for Linux.
– It supports the standard Internet protocols for UNIX to UNIX

communications

– It also implements protocols native to nonUNIX operating
systems, in particular, protocols used on PC networks, such as
Appletalk and IPX

● Internally, networking in the Linux kernel is implemented by
three layers of software:
– The socket interface

– Protocol drivers

– Network device drivers

06/23/09 23 os@sei.ecnu

Network structure

● The most important set of protocols in the Linux
networking system is the internet protocol suite

– It implements routing between different hosts
anywhere on the network

– On top of the routing protocol are built the UDP,
TCP and ICMP protocols

06/23/09 24 os@sei.ecnu

Windows XP executive: I/O manager

● The I/O manager is responsible for

– file systems

– cache management

– device drivers

– network drivers

● Keeps track of which installable file systems are loaded, and manages
buffers for I/O requests

● Works with VM Manager to provide memory-mapped file I/O

● Controls the XP cache manager, which handles caching for the entire I/O
system

● Supports both synchronous and asynchronous operations, provides time
outs for drivers, and has mechanisms for one driver to call another

06/23/09 25 os@sei.ecnu

Windows XP file I/O

06/23/09 26 os@sei.ecnu

Windows XP volume manager and fault tolerance

● FtDisk, the fault tolerant disk driver for XP, provides several ways
to combine multiple SCSI disk drives into one logical volume

● Logically concatenate multiple disks to form a large logical volume, a
volume set

● Interleave multiple physical partitions in round-robin fashion to form
a stripe set (also called RAID level 0, or “disk striping”)
– Variation: stripe set with parity, or RAID level 5

● Disk mirroring, or RAID level 1, is a robust scheme that uses a mirror
set — two equally sized partitions on tow disks with identical data
contents

● To deal with disk sectors that go bad, FtDisk, uses a hardware
technique called sector sparing and NTFS uses a software
technique called cluster remapping

06/23/09 27 os@sei.ecnu

XP volume set on two drives

06/23/09 28 os@sei.ecnu

XP stripe set on two drives

06/23/09 29 os@sei.ecnu

XP stripe set with parity on 3 drives

06/23/09 30 os@sei.ecnu

XP mirror set on two drives

23/06/09 31 os@sei.ecnu

● Many slides are copied or adapted from:

– Slides provided by authors of the textbook (
http://codex.cs.yale.edu/avi/os-book/os7/)

– Robert Love: Linux System Programming.
O'Reilly 2007.

http://codex.cs.yale.edu/avi/os-book/os7/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

