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Outline

● Linux file I/O system calls
● Linux I/O subsystem internals
● Windows XP
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Linux file I/O

#include <sys/type.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *name, int flags);

int open (const char *name, int flags, mode_t 
mode);

int creat (const char *name, mode_t mode)
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Reading a file

#include <unistd.h>

ssize_t read (int fd, void *buf, size_t len);

ssize_t ret;

while (len != 0 && (ret = read (fd, buf, len)) != 0) {

  if (ret == -1) {

    if (errno == EINTR) continue; /*syscall interrupt*/

    perror (“read”);

    break;

  }

  len -= ret;

  buf += ret;

}
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Writing a file

#include <unistd.h>

ssize_t write (int fd, const void *buf, size_t count);

unsigned long word = 1720;

size_t count;

size_t nr;

count = sizeof (word);

nr = write (fd, &word, count);

if (nr == -1) 

  /* error, check errno */

else if (nr != count)

  /* possible error, but 'errno' not set */
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Synchronized I/O

#include <unistd.h>

int fsync (int fd);

int fdatasync (int fd);

int sync (void);

int close (int fd);
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Seeking in a file

#include <sys/types.h>

#include <unistd.h>

off_t lseek (int fd, off_t pos, int origin);

off_t ret;

ret = lseek (fd, (off_t) 1825, SEEK_SET);

if (ret == (off_t) -1)

  /* error */
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Positional reads/writes

#include <unistd.h>

ssize_t pread (int fd, void *buf, size_t 
count, off_t pos);

ssize_t pwrite (int fd, voind *buf, size_t 
count, off_t pos);
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Multiplexed I/O

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select (int n,

            fd_set *readfds,

            fd_set *writefds,

            fd_set *exceptfds,

            struct timeval *timeout);
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Multiplexed I/O cont'd

#include <sys/poll.h>

struct pollfd {

  int fd;

  short events;

  short revents;

}

int poll (struct pollfd *fds, unsigned int 
nfds, int timeout);



06/23/09 11 os@sei.ecnu

Buffered I/O

#include <stdio.h>

FILE *fopen (const char *path, const char 
*mode);

FILE *fdopen (int fd, const char *mode);

int fclose (FILE *stream);

int fcloseall (void);

int fgetc (FILE *stream);

char * fgets (char *str, int size, FILE 
*stream);

size_t fread (void *buf, size_t size, size_t 
nr, FILE *stream);
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Buffered I/O

int fputc (int c, FILE* stream);

int fputs (const char *str, FILE *stream);

size_t fwrite (void *buf, size_t size, size_t 
nr, FILE *stream);

int fseek (FILE *stream, long offset, int 
whence);

int fsetpos (FILE *stream, fpos_t *pos);

void rewind (FILE *stream);

long ftell (FILE *stream);

int fgetpos (FILE *stream, fpos_t *pos);
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Buffered I/O

int fflush (FILE *stream);

int ferror (FILE *stream);

int feof (FILE *stream);

void clearerr (FILE *stream);

int fileno (FILE *stream);
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Buffered I/O

#include <stdio.h>

int setvbuf (FILE *stream, char *buf, int 
mode, size_t size);

● Mode:

– _IONBF: unbuffered
– _IOLBF: line-buffered
– _IOFBF: block-buffered
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Thread safety

#include <stdio.h>

void flockfile (FILE *stream);

void funlockfile (FILE *stream);

int ftrylockfile (FILE *stream);
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Scatter/gather I/O

#include <sys/uid.h>

struct iovec {

  void *iov_base;

  size_t iov_len;

}

ssize_t readv (int fd, const struct iovec 
*iov, int count);

ssize_t writev (int fd, const struct iovec 
*iov, int count);
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Mapping files into memory

#include <sys/mman.h>

void * mmap (void *addr,

             size_t len,

             int prot,

             int flags,

             int fd,

             off_t offset);

int munmap (void *addr, size_t len);
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Linux driver registration

● Allows modules to tell the rest of the kernel that a new 
driver has become available

● The kernel maintains dynamic tables of all known drivers, 
and provides a set of routines to allow drivers to be 
added to or removed from these tables at any time

● Registration tables include the following items:  
– Device drivers

– File systems 

– Network protocols

– Binary format
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Linux conflict resolution

● A mechanism that allows different device drivers to 
reserve hardware resources and to protect those 
resources from accidental use by another driver

● The conflict resolution module aims to:
– Prevent modules from clashing over access to hardware 

resources
– Prevent autoprobes from interfering with existing device 

drivers
– Resolve conflicts with multiple drivers trying to access the 

same hardware
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Linux I/O

● The Linux device-oriented file system accesses disk storage 
through two caches:

– Data is cached in the page cache, which is unified with the virtual 
memory system

– Metadata is cached in the buffer cache, a separate cache indexed by 
the physical disk block

● Linux splits all devices into three classes:

– block devices allow random access to completely independent, fixed 
size blocks of data

– character devices include most other devices; they don’t need to 
support the functionality of regular files

– network devices are interfaced via the kernel’s networking 
subsystem
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Linux device-driver block
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Linux network structure

● Networking is a key area of functionality for Linux.
– It supports the standard Internet protocols for UNIX to UNIX 

communications

– It also implements protocols native to nonUNIX operating 
systems, in particular, protocols used on PC networks, such as 
Appletalk and IPX

● Internally, networking in the Linux kernel is implemented by 
three layers of software:
– The socket interface

– Protocol drivers

– Network device drivers
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Network structure

● The most important set of protocols in the Linux 
networking system is the internet protocol suite

– It implements routing between different hosts 
anywhere on the network

– On top of the routing protocol are built the UDP, 
TCP and ICMP protocols



06/23/09 24 os@sei.ecnu

Windows XP executive: I/O manager

● The I/O manager is responsible for 

– file systems

– cache management 

– device drivers

– network drivers

● Keeps track of which installable file systems are loaded, and manages 
buffers for I/O requests

● Works with VM Manager to provide memory-mapped file I/O

● Controls the XP cache manager, which handles caching for the entire I/O 
system

● Supports both synchronous and asynchronous operations, provides time 
outs for drivers, and has mechanisms for one driver to call another
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Windows XP file I/O
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Windows XP volume manager and fault tolerance

● FtDisk, the fault tolerant disk driver for XP, provides several ways 
to combine multiple SCSI disk drives into one logical volume

● Logically concatenate multiple disks to form a large logical volume, a 
volume set

● Interleave multiple physical partitions in round-robin fashion to form 
a stripe set (also called RAID level 0, or “disk striping”)
– Variation: stripe set with parity, or RAID level 5

● Disk mirroring, or RAID level 1, is a robust scheme that uses a mirror 
set — two equally sized partitions on tow disks with identical data 
contents

● To deal with disk sectors that go bad, FtDisk, uses a hardware 
technique called sector sparing and NTFS uses a software 
technique called cluster remapping
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XP volume set on two drives
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XP stripe set on two drives



06/23/09 29 os@sei.ecnu

XP stripe set with parity on 3 drives
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XP mirror set on two drives
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● Many slides are copied or adapted from:

– Slides provided by authors of the textbook (
http://codex.cs.yale.edu/avi/os-book/os7/)

– Robert Love: Linux System Programming. 
O'Reilly 2007.

http://codex.cs.yale.edu/avi/os-book/os7/
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